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Abstract

In several cases we show that it is possible to extend a notion in classical mathematics
by identifying each fuzzy subset with the continuous chain of its closed cuts and by ap-
plying this notion to these cuts. In particular this idea is applied to extend functions
from subsets into subsets (for instance, closure operators) and functions from sets into
real numbers (for instance, measures). © 1998 Elsevier Science Inc. All rights reserved.
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1. Introduction

Zadeh’s extension principle is one of the most important tools in fuzzy set
theory. It enables to extend any map 4: 8 x --- x S, — S, where S,....S,
and S are sets, to a map h*: F(S)) x --- x F(S,) — F(S) where, for every
set X, F(X) denotes the class of fuzzy subsets of X; namely the formula to de-
fine 4~ is

(st 08,)(x) = sup{s)(x)) A As,(x,) /hlx, ... x,) =x} (1)

fors; € #(S)),...,s, € #(S,) and x € §. A characterization of this principle in
terms of cylindrical extension and projection can be found in [1]. Another prin-
ciple was proposed by Ramik [2,14] and successively applied by Gerla [3] and
by Biacino and Gerla [4]; namely, given an operator J: 2(S) — #(S), the ca-
nonical extension of J is the operator J*: #(S) — .#(S) defined by setting
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J*(s)(x) = sup{i € [0, 1]/x € J(C(s, 7))} (2)
for every s € .#(S) and x € §.

In this paper we show that, in accordance to Eq. (2), in several cases it is
possible to extend a notion in classical mathematics by identifying each fuzzy
subset with the continuous chain of its closed cuts and by applying this notion
to these cuts. This enables to extend Ramik’s and Zadeh’s principles and also
to define notions like the one of the diameter of a fuzzy set, distance between
two fuzzy sets and so on.

More precisely, in Section 4 we show how to extend a set operator in several
variables and we examine some properties of the resulting extension principle.
In Section 5 we use this principle to restate some basic notion of fuzzy set the-
ory. In Section 6 we extend compact operators, and in Section 7 we examine
the properties that are preserved under the extension principle. In Section 8
we consider the closure operators. In Section 9 we substitute the minimum op-
eration with a join-continuous triangular norm. In Section 10 we consider an
extension principle for relations among sets. Finally, in Section 11, we propose
a general way to extend a real-valued map (for instance, a measure, a proba-
bility. the distance between sets, the diameter of a set and so on).

2. Basic notions on fuzzy sets

We denote by U the real interval [0,1] and let AV 4 = max{z. 4’} and
AA A =min{i 4"} for any /,/ € U. Under these operations, U is a complete,
completely distributive lattice whose minimum is 0 and maximum 1. Also, in U
the negation operation ~: U — U is defined by setting ~ x = 1 — x for every
x € U. Given a set S, a fuzzy subset of S is any map from S into U and we de-
note by .#(S), the class of all the fuzzy subsets of S (see [10,11]). The basic
notions of set theory are extended to the fuzzy subsets as follows. The inclusion
“C" is defined by setting, for any s, s" € #(S)

sCs" <= s(x)<s'(x) forevery x € 5.
If s C s, we say that s is contained in s’ or that s is a part of . The union s Us'
and the intersection s N s’ of two fuzzy subsets s and s are defined pointwise by

(sUs)(x) =s(x) vVs'(x) and (sNs)(x) = s(x) As'(x),

respectively. More generally, given a family (s;),., of fuzzy subsets of S, the un-
ion |J,., s; and the intersection (), s; are defined by

(Us,-) (x) = sup{s;(x)/i €} and
(ﬂs,) (x) = inf{s;(x)/i € 1}.
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We define the complement ~ s of s by (~ s){x) =~ s(x) for every x € S.

Proposition 2.1. (#(S),U.N.~) is a complete, completely distributive, lattice
with an involution, i.e. the direct power, with index set S, of the structure
(U,V, A, ~). This structure extends the Boolean algebra (#(S),U,N, ~). namely,
the map assoc iating 10 any subset X of S the related characteristic function y is
an embedding of (#(S).U,N.~) in F(S5).U,N, ~).

As usually, we call crisp a fuzzy subset s such that s(x) € {0.1} for every
x € §. Then Proposition 2.1 says that we can identify the classical subsets of
S with the crisp fuzzy subsets of S (i.e. the characteristic functions). In partic-
ular, we identify S with the map constantly equal to 1 and @ with the map con-
stantly equal to 0.

We conclude by recalling that further types of complement are possible. For
instance, we define the strong negation as the function neg: [0. 1] — [0. 1] de-
fined by setting neg(+) = 1if 7. # | and neg(4) = 0 if 2 = 1. In correspondence,
the strong complement of a fuzzy set s is the fuzzy set —-s defined by
(—s)(x) = neg(s(x)) for every x € §.

3. Fuzzy subsets as continuous chains of sets

As proposed in [5], we identify the fuzzy subsets with the continuous chains.
In order to achieve this aim, we recall some definitions and results. Given
s € F(8), for every /. € [0. 1] the subsets

Cls.a)={xeS8/six) 22} and O(s.2) = {x € S/s(x) > 7}
are called the closed 7-cut and the open i-cut of s, respectively.

Proposition 3.1. Ler s,5' € .#(S). Then for ever V relU

(a) C(SO)—S'(/))/</ = C(s,2) 2 C(s, )

(¢) sCs = Cls,2) C O A). (d) Cls, 7) ﬂ‘,OY;L)

(¢) C(sUS/,/l):('(,s./,)w(( A ) Clss' . 4) =C(s. /)N C(, 4).

The following proposition shows that every fuzzy subset can be defined by
means of its cuts. Given 2 € U and X C S, we denote by 2 AX and 2 v X the
fuzzy subset /. A yy and 7V .. respectively.

Proposition 3.2. For every s € #(S):

§ = U(Mc(;s.z)), (3)
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s=J(An00s.2) (4)
pRazes
and, dually,
s = ﬂ (2 V O(s, 2)), (5)
rell
s=()(vCls ). (6)
zeld

Observe that it is possible to rewrite ( Egs. (3)~(6)) in the following equalities.

s(x) = sup{/ € U/x € Cls. 1)}, (7
s(x) = sup{z e U/x € O(s, 1)}, (8)
s(x) = inf{/ € Ujx g O(s. 1)} (9)
s(x) = inf{/ € U/x & Cls. 7). (10)

where x € §.

Definition 3.3. We define a chain in S any order-reversing family (C;),.,, of
subsets of S such that Cy = S and we denote by Ch(S) the class of all the chains
in §. We say that a chain (C;);_,; is continuous if

¢ = ﬂ Cu (ll)

<0,

for every 2 € U. We denote by CCh(S) the class of all the continuous chains in
S.

The family (C(s, 4)),.,, of the closed cuts of a given fuzzy subset s is a con-
tinuous chain. The following Lemma shows that given any chain of subsets. a
fuzzy subset is defined in a natural way.

Lemma 3.4. Let (C,); . be a chain of subsets of S and define s by

s=Junc. (12)

el

Then we have also that

s= v ), (13)
sels

Oty =JC c G cC = Cls,n). (14)

At
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We say that s is the fuzzy subset associated with (C;),_,.. Note that Egs. (12)
and (13) are equivalent to.

s(x) = sup{i € U/x e C;}. (15)

s(x) =inf{2 e U/x & C,}. (16)
respectively. Also, observe that the subsets Cy and Cy have no influence for defin-
ing the fuzzy subset s. In fuct, the fuzzy subset 0 A Cy = ( gives no contribution to
the union in Eq. (12) und the fuzzy subset 1 vV Cy = S gives no contribution to the
intersection in Eq. (13).

In Ch(S), and therefore in CCh(S), an ordering is defined by setting,

(A,;),-.‘,:U < (B,)/ oo A, CB; fOI every Lrel

for every pair of chains (A,),.., and (B;), ..

Proposition 3.5. Let (C;),,; be a chain and define (C)),.,, by setting,

Al
¢ ={C. (17)
J<l
for every 2 € U. Then (C;),_, is the continuous chain generated by (C;),_, . i.e.

the smallest continuous chain greater or equal (C;)

sl

Proof. Since C, D C; for every / > u, we have that C; D C;. To prove that
(C;),cy 1s a continuous chain, observe that

Ne-N <ﬂc\.) “Ne=c.

< it vlp
Let (A4,),., be a continuous chain containing (C;),_,,. Then

4, =4.2C=C. O

<. e i

As an immediate consequence of Eq. (12) we also have the following prop-
osition whose meaning can be pictured as follows:

(C)ier — 8 = (C)ser

Proposition 3.6. Ler (C), ., be a chain and s the fuzzy subset obtained by
Eq. (12). Then, C(s, 1) = Cy, Le. the family (C(s,pt)) ... of cuts of s coincides
with the continuous chain generated by (C,)

He
el

The following theorem shows that we can identify the fuzzy subsets with the
continuous chains.

Theorem 3.7. Let S be a set, then:
1. CCh(S) is a complete, completely distributive, lattice,
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2. the correspondence H: F(S) — CCh(S) defined by setting, for every
se F(S)

H(s) = (C(s.4)),c: (18)

is a lattice isomorphism between F (S) and CCh(S),
3. the inverse map H™': CCh(S) — Z(S) associates every continuous chain
(C3),c with the fuzzy subset s defined by Eq. (12).

4. An extension principle for operators

In this section we propose an extension principle generalizing a principle giv-
en by Ramik [2]. Let Sy,...,S,,S be sets and J: 2(S)) x --- x 2(S,) — P(S)
any operator. Then, given s, € #(S)),...,s, € #(§,), it is natural to proceed
in the following way:

e identify s,....s, with the continuous chains (C(s;,4))c. - (C(50, 4))cp

e given A € U, apply J to the sets C(s1,4),...,C(sq, 4) obtammg the chain
(JLC(Sl ’ /“) R <_C(5n, /)))AGL’

e consider the continuous chain generated from this chain,

e assume as image of s, ...,s, the fuzzy subset J*(s|,...,s,) corresponding to
the continuous chain previously obtained.

Such a procedure can be pictured by the following diagram.

($1e= oo 80) = (Cl81,4))sepin - (Clsus 2)e0 = J(C(s1.4)y o . Cl80 A0,
! !
JH(syyey8,) & (J(C(s1:4)s -, Clsn D)) e

As we have seen earlier in Section 3, we can obtain J*(s),....s,) in a more di-
rect way using the following definition.

Definition 4.1 (Extension-principle for operators). If J:2(S)) x ---x
2(S,) — #(S) is an operator, then we define the fuzzy operator

JE F(S) x o x F(S,) ——»](S), called the canonical extension of J, by
setting for any s, € #(S)),....s, € Z(S,)andx e S
J(svees) = JEAI(C(s1.4), .. Clsy, 1)), (19)
In terms of membership functions, we can read Eq. (19) as
J sy, s)(x) = sup{2 e Ufx e J(C(s1,4),...,Cls,, A)) } (20)

for every x € S. The term “‘extension” is justified by the following proposition:

Proposition 4.2. The fuzzy operator J* is the extension of the operator J, i.e. for
every Xi,..., X, € #(§)
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Proof. Let yy,....,xy, be the characteristic functions of the sets Xi....,X,,
respectively. Then for every 2 # 0.C(yy. A) =X, fori=1,..., ,n. Therefore

xeJX...... X,) = xeJ(Clyy-7).....Clyy,+)) forevery . #0

X ¢J(X1 ..... X)) = x Q J(((/\‘ . /A)‘ s C(Z,\’,I, /)) for every / ?‘: 0
U VIRTEES 7x,)(x) = 0.

Thus, J*(y) = 7., and the restriction of J* to the crisp subsets coincides with
J. O

4

The following lemma relates the cuts of J*(s.....s,) with cuts of s;,...,s,.

Lemma 4.3. Let J: 2(S|) x -+ x 2(S,) — P(S) be any order-preserving
operator. Let s € #(8)).... .. Sy € F(S,). Then for every p e U:
OJ"(s). ... Sp). 1)
= UJ (s7. ). ... C(5,. 2)) TI(O(s1. ). .. .., O(sy, 1))
7o
g '](C<S] . /l) “““ Spe ,“ C ﬂ ‘l / 1(;(5123 /"))

=CJ (5. ..., L Sn) ).

Proof. Since C(s;, A) C O(s;. u) forevery 2 > pandi=1,.. ., n and J is order-
preserving, we have that J( (Cs1.2) 0. C(sp. 4)) CJ(O(sl,,u) ..... O(sn. 1t)).
Then J(O(sy, @), ....0(sq. 1)) 2 ;- “J(((sl 2),....C(s,. A)). The remaining

part of the proposition is a consequence of Eq. (14) in Lemma 3.4 when we set
C; = J(Cls1.4),....C(sy, 2)). Therefore s =J"(sy.... .. s.). [

Note that, since the family (J(C(s).4)....,C(sy,4))) 2y 1S nOt necessarily
continuous, we have that J(C(sy, 1) .. .. LClsy ) # C(J*(s1, ..., 8,), 1), In gen-
eral.

Proposition 4.4. Ler J: 2(S1) x - x 2(S,) — 2(S) be order-preserving. Then:

JH 1. s,) = () (ZVI(Clsi 7)o Clsyn ), (21)
it

J(si..s) = | G AT(O0s1. 7). ... Ols,. 7)) (22)
el

J sy s0) = [V J(O0s1,7)..... Ols,. 4))) (23)

sl
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or, equivalently,

J (s, s)x)=mf {2 € U/x € J(Cls),4),....C(s,, A))}. (24)
J (51, us0(x) = sup{Ad e U/x € J(O(s1, 7). ..., O(s,, 1)) }. (25)
J(s1h..sai(x)y = inf {2 e U/x € J(O(s1. A),....0(s,, 2)) }. (26)

Proof. Equality (21) and the equivalence between Egs. (22) and (23) follow
from Lemma 3.4. To prove Eq. (22) observe that, since J is order preserving,
J(O(si, A)) € J(C(s;. 4)) for i =1....,n and hence,

sup{i e U/x € J(O(s).2),. ...O(S,,,A”))}

<sup{r e U/x e J(Clsy,4), . ... (sp, A) =T (81,00 $u)(x)
for every fuzzy subsets sy, ..., s, and x € S. Moreover, by Lemma 4.3, we also
have O(J"(sy,..... $n)s4) C J(O(s).2).....0(s,, /) and therefore
J (51,000, $)(x) = sup{i e U/x € O (s1,...,5:),7)}
<sup{z e U/x e J(O(s),4),....0(s,. 2))}.
In a similar way one proves the remaining part of this proposition. O

5. Compactness

Now we examine the canonical extension of a classical operator J in the case
in which the set /(X') can be obtained by considering only some particular part
of X. Recall that an operator J: 2(S) — 2(S) is called compact if

= J{J(F)/F C X and F finite}.
We extend such a notion as follows.

Definition 5.1. Let & be a cardinal number. Then an operator
J i P(S1) x - x P(S,) — P(S) is d-compact if for every X; C Sy,.. ., X, CS§,

JX. X)) = J{/(R,....F) | F CS andcard (F) < 5}. (27)
The w-compact operators coincide with the compact operators. An example

of (w + 1)-compact operator is furnished by the topological closure in a Euclid-
ean space. The following is a further extension of the notion of compactness.

Definition 5.2. Let J: 2(S)) x .- x 2(S,) — 2(S) be an operator and
% = (%1....,%,), where %, is a class of subsets of S;. Then we say that J is
6-compact provided that

JX. Xy = JUR.....E) | FCS and F € 6} (28)
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If we set €, = {F;, C S;/card(F;) < d}, then the ¥-compact operators coincide
with the d-compact operators.

Proposition 5.3. Let J: #(S)) x --- x P(S,) — P(S) be an operator. Then the
following are equivalent.

1. J is €-compact with respect to a suitable €.

2. J is 6-compact with respect to a suitable cardinal number 6,

3. J is order-preserving.

Proof. Obvious. []

In the following if s: § — U is a fuzzy subset and ¥ C §, then we define
sub(s, ) by

sub(F.s) =

inf {s(x)/x € F} if F # 0,

1 it F=10.
The number sub(F,s) is a multivalued valuation of the statement “for every
x € F,x is an element of s i.e. a measure of the degree of inclusion of F in s.

Proposition 5.4. Let J: #(S)) x -+ x 2(S,) — P(S) be a 6-compact operator.

Then J*(s).....5,)(x) =
sup {sub(F,s;) A+ Asub(F,,s,)/x € J(F....,F,).F € 6.}.

Proof. By Definitions 4.1 and 5.2 we have that

J(s1e e 8)(0) = sup{2 € U/x € J(Clsiu )., Cls,, 1))
= sup{Le U/F..... F, exist such that

F € %.F,CC(s.;)and x € J(F.....F,)}.

But F; C C(s;, 1) means that s;(x) > / for every x € F; and hence sub(F},s;) > /.
fori=1,...,n Then,

sub(Fy,s,) A - Asub(F,.s,) = 4.
Thus, we can write

J (510 ..,8,)(x) = sup{i € U/sub(F,.51) A - Asub(F,,s,) = 4,
xeJ(F...., F). F €%}

and this completes the proof. []
In particular, we have the following proposition.

Proposition 5.5. If J : #(S) — (S} is a compact operator, then J™(s)(x) =1 if
x € J(0) and
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J(s)x) = sup{s{x)) A Aslx,)/xeJ({x,....x, D} (29)
otherwise.

Eq. (29) was used in [3] to extend any crisp logic to a fuzzy logic. Indeed, one
proves that if & is the deduction operator of any crisp logic, then there exists a
fuzzy logic whose deduction operator is the canonical extension %*. Assume

that o, 21y, . . ., 2, are formulas in such a logic and that s is a fuzzy set of axioms.
Then if we write x;,..., 2, F 2 to denote that x € %({«),...,2,}), we have that,
I (s)(z)=1if xis a tdutology and

J(s)(2) = sup {s( e As(o) oy %, = al, (30)
otherwise.

Proposition 5.6. Let J: 2(S)) x - x 2(S,) — 2(S) be a compact operator.
Then

O(J*(Yl Sn) )'— ](() S /) (Su /)) (:H)
Proof. J*(s|,...,s,)(x) > ~ <= there exist finite sets Fi,...,F, such that
sub(Fr.s1) A Asub(F,.s,) > Zand x € J(Fy....,F,) < there exist finite

sets Fi.....F, such that FLCO(s1.4), ..., F, CO(s,. 4) and
xe€J(F,. .. F) = xeJ(O(s1.4),...,0(s,.2)).

Note that for the closed cuts is not possible to prove an analogous proposi-
tion.

6. Some examples

In the following proposition we show that the union, the intersection and
the strong complement can be obtained by the proposed extension principle.

Proposition 6.1. The canonical extensions of the union (intersection) in classical
set theory is the usual union (intersection) in fuzzy set theory. Instead, the
canonical extension of the classical complement is the strong complement.

Proof. Let J: #(S) x #(S) — #(S) be the union operator,ie. J(X.Y) =X NY.
Then

J*(s1,82)(x)

1 I

sup{s € U/x € Cls;. AU C(s2,4)}
sup{/eb/s()Z/or s2(x) = 4}
= supf{s € U/s(x) Vsalx) = 4}
=81 (x) Vosa(x).
Let J be the intersection operator, i.e. J(X.Y) =X N Y. Then we have that

f
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J(s1,5)(x) = sup{i e U/x € Cls;,A) NC(s2,4)}
= sup{i € U/si(x) = Aand s;(x) = 2} = 51 (x) A s2(x).
Finally, let J: Z(S) — #(S) be the complement operator, i.e. J(X) =S5 —X.
Then we have that if s(x) # 1,
JH(s)(x) = sup{s € U/x € J{(C(s,4))} = sup{ie U/x & C(s.4)}
=sup{/ € U/s(x) <4} =1.
If s(x) = 1, it is immediate that J*(s)(x) =0. [

The following proposition shows that Zadeh’s extension principle is gener-
alized by the principle proposed here.

Proposition 6.2. Let #: S| x --- x S, — § be a function and define J, by setting
J(Xrs X)) = {hlxy, .o x)/x € X, X, € X}
Then the canonical extension of J, coincides with the Zadeh's extension h* of h,
ie J =h.
Proof. Since J;, is 2-compact,
Ji(s1, e 50)(x)
= sup{s,(xl) A Asa(x,) /x € J( {r;} A}
= sup{s;(x) A Asy(x,)/h(x1,. ... Xp)=x} =R, 0. O

Now we will show that some basic notions of fuzzy set theory can be ob-
tained by the extension-principle for operators. Let S;, 5, and S3 be sets. Then
we recall that the composition R o R’ of two binary relations R C 5] x $» and
R’ C S x §3 is the relation between S| and S3 defined by setting

RoR ={(x;.x1)/{x1.x2) € R and (x2.x3) € R for some x; € $,}.

Propeosition 6.3. Denote by o the canonical e\temion of the composition between
two binary relations. Let S1,5,,53 be sets and r € F (85} x $2),F' € F(§ x 53)
Suzzy relations. Then we have

(ror)(xy,x3) = sup{r(x;.x2) A¥(x:,x3)/x; € $:}. (32)

Proof. Define J:#(8) x$) x 2(5; x S3) — 2(S) x 53) by setting
J(R,R") = RoR' for every pair of relations R and R’. Then, since J is a 2-
compact operator,
J*(_r,r’)(rl ’Cz)
= sup{r(x,y) Ar'(y.2)/(x1.x3) € J({(x,)}.{(»,2)})}
sup{r(x,y) A¥(y.z)/(x1,x3) = (x,2)}
sup{r(x;,x;) A ¥ (x2,x3)/x2 € S }.

Il

Il
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Proposition 6.4. Denote by x the canonical extension of the Cartesian product of
two subsets. Then, for every sy € Z(S|) and s; € F(S,), 51 x 55 is the fuzzy
subset of Sy x S defined by

(51X 82)(xp.x2) = 51(x)) A sa(xa). (33)
Proof. Let J::2(S)) x 2(S7) — 2(S| x $») be the operator defined by setting
JX.Y) =X xY for any X € #(S;) and Y € #(S,). Since J is a 2-compact
operator, we have

J’ (S],Sg) (\| Yg) = sup{s| (X) A SQ()’)/(X] ‘Xg) S J({x}, {}’}‘)}

= sup {s;(x) As2(y)/(x1.x2) = (x,3)}

= 81 (x) A sa(xa). 0
We recall that if R € S} x S, is a relation and X' C S, then the image R(X) of
a subset X by R is defined by
R(X) = {J&‘g S Sz/X]RX: for some x, € X}
Proposition 6.5. Let r € .7 (8. 8,) be a fuzzy relation, s a fuzzy subset of S) and

let ¥(s) be the image of s by r (as the canonical extension of the classical notion of
image ). Then

r(s)(x2) = sup{r(x;.xa) As(xy)/x; € 5} (34)

Jfor every x» € S5,

Proof. Define J: #(S) x $;) x 2(5,) — 2(S,) by setting J(R,X)=R(X). Let
r € F(S; x S)) be a fuzzy relation and s a fuzzy subset of S;. Then

T (ros)(xa) = sup {r(x.v) A s(z) /2 € J({(xop)}. {z})

= sup {rix.x2) As(x)/xa e J({(x,x2)}. {x}}. 0

Proposition 6.6. Let V' be a linear space and, for every subset X of V, let J(X) be
the subspace generated by X. Then J is G-compact, where 6 is the class of
independent finite systems of vectors. Consequently, for every x € V

JH(s)(x) = sup{s(x)) A--- Aslx,)/xi.....x, are independent

and x is a linear combination of x,. .. X} (35)

7. Some properties preserved by the extension principle

In this section we will examine some properties that are preserved under the
extension principle.
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Proposition 7.1. If J : 2(S)) x --- x 2(S,) — 2(S) is an operator, then J order
preserving <= J* is order-preserving.

Proof. Assume that ./ is order preserving and that s; C v; for every i. Then, since
C(s;, 2) € C(v;, 4), we have

J(sy. . 08)(x) = sup{z € U/x € J(C(s1.4),...,Clsn, 4)) }
<sup{de U/x € J(Clu 4), ..., Clv,. A))}
=J(vy, ..., tn)(x).

The converse implication is obvious. [

Proposition 7.2. Assume that J, and J, are two order-preserving operators. Then:

(N VL) =J7 vy, (36)
Sz J o= Jy =) (37)
(S AL) =J] Ay, (38)
(Jioh) < (J)oJ5). (39)
Proof. Let (s1,...,s,) € .Z(S)) x - x #(S,) and x € S. In order to prove

Eq. (36), we observe that the following equalities hold:
(L VI (51, 80)(x)

=sup{ic U/xe (S VL)(C(s1.2),....Cls0,4))}
= sup{i € U/x e ,(Cls1, 2).. (s”/)) UL(C(s1,4), ... Cls,. 2))}
= sup{sup{/ € U/x € J,(C(s )) (s0. AN
sup{4 € U/x € /,(C(s1,4),... C(s,,, )}
=J (51, s (X)) VIS (s, s, )(x).

In order to prove Eq. (37), we observe that if J; <.J,, we have that
JivJ=J. So, as consequence of Eq.(36), we have that
J3 = (L1 v.Jy)" =J) v.J5 and then J5 > J}.

In order to prove Eq. (38), assume that J; (s1....,5,)(x) <J5(s1.....85.)(x).
Then
{aeU/xe )(Clsy, 2)....,Clsa. /))}
ClieU/x e h(Cls1,2), ... Clsn 2)}}

But it is easily seen that the fo]lowmg equalities hold:

(L AL (51,0080 (x)
sup{A e U/x € JI(C(s1, A)...., Clsp, ANNA(C(s1,4), ..., Clsp. A))}
sup{ie U/x € J(C(s1,A),...,Clsn, A))} = J] (s ....,s,,)(x)
=J (51, S )(x) AT (510000 s ,,)(x).

Il
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Finally, observe that Lemma 4.3 implies
JAC(s1,4), .. Clsp, A)) S CU (815 y80), 4)-
Then Eq. (39) follows from the following inequality:
JI 5051, 080))(x) = sup{A € U/x € Ji(C(J; (81, .. ,8,),A))}
= sup{i € U/x € Jy(Jo(C(s1,4),....Cls,. 1))}
= (o) (s1,...,8,)(x). O

Corollary 7.3. The map J — J* is an embedding of the lattice of the order-
preserving operators into the lattice of the fuzzy order-preserving operators.

Proof. Egs. (36) and (38) show that the lattice operations are preserved.
Proposition 4.2 entails that the map is injective. []

8. Closure operators

The case n = 1 is particularly interesting and extensively examined in [3,4].
In this section we confine ourselves to recall some basic results without the
proofs. Recall that if S is any nonempty set, then a closure operator in S is
any map J: 2(§) — 2(S) such that, for X, Y € 2(S),

XCY = JX)CJ(Y); X CJX); JUWX)) =J(X).
If we have also that
JXUY)=J(X)uJ(Y) and J(§) =0,
then J is called a ropological closure operator. Finally, if J is compact, then we

say that J is an algebraic closure operator. We will extend such a definition as
follows.

Definition 8.1. If S is a set, then a fuzzy closure operator in S is any operator
J: F(S) — F(S) satisfying the following properties:

l. s1<s2 = J(s1) <J(s2) (monotony),

2. s < J(s) (inclusion),

3. J(J(s)) = J(s) (idempotence). If we have also that

4. J(s1Usy) =J(s1)UJ(s)),

5. J(0) = 0, then we say that J is a fuzzy topological closure operator.

A fixed point of a fuzzy operator J is a fuzzy subset s such that J (s) =s. The
proof of the following propositions is immediate.

Proposition 8.2. The class of the fixed points of a (fuzzy) closure operator is
closed with respect to the intersection.
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Proposition 8.3. The class of fixed points of a (fuzzy) tepological closure
operator is the class of closed (fuzzy) subsets of a (fuzzy) topology.

We have the following Proposition.

Proposition 8.4. Let J: :#(S) — P(S) be an operator and J* the related extension.
Then

J* is a closure operator <= J is a closure operator.

J* is a topological closure operator <= J is a topological closure operator.

Definition 8.5 (Extension-principle for fixed points). Let € be the class of fixed
points of an order-preserving operator J : 2(S) — 2(S). Let € be the class of
fixed points of J*. Then we say €* to be the canonical extension of €.

In the following we give two applications of the extension-principle for fixed
points [4]. The first one is related with the notion of natural fuzzy topology as
defined in [6].

Proposition 8.6. Le: J be the closure operator of a topological space (S, 1) and let
% be the related class of closed subsets. Then the extension € of € is the class of
closed subsets of the natural fuzzy topology associated with 1. If (S,1) is a
Fréchet space and s a fuzzy subset of S, then the topological closure s = J*(s) of s
is given by

§(x) = sup {sub((x,) ey, )/ (Xa) e IS @ sequence converging to x}.
Equivalently,

5(x) = lims(y).

px

Proof. We observe only that J is %-compact where % is the class of the
converging sequences. [

The second application is related with the notion of fuzzy subalgebras as de-
fined by Rosenfeld [7].

Proposition 8.7. Let o/ be an algebraic structure and define J by setting
J(X) = (X), forany X C o, i.e. the algebraic substructure of o/ generated by X.
Then the extension of the class € of the subalgebras of o is the class €* of the
Sfuzzy algebras of . Given a fuzzy subset s, the fuzzy subalgebra (s) = J(s)
generated by s can be obtained by setting

<§>(X) = { sup{s(xl) AN A S(Xn)/p(xl" o ,x,,) =x,pe€ pOI(Q/)} lf X g (C>
‘ ! if x €(C)’
where C is the set of constants and pol (&) the set of polynomial functions of .
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9. Extending by a join-continuous triangular norm

If J: 2(8) — 2(S) is a compact operator, then we can obtain J* by using
Eq. (29). In this section we will attempt to substitute both the lattice [0.1]
and the operation A in such a formula by using join-continuous triangular
norm. Assume that U is a complete lattice equipped with a binary operation
% that we suppose a join-continuous triangular norm in U. This means that &
is a binary continuous operation such that
o (x®y)®z=ux& (v&:z) (associativity),
e x &y =y&®x (commuiativity).
e x& 1 =ux(lisa neutral element),
o (Sup,cx) ® ¥ = supy.(x, @ ¥).
where x,y and z are elements of U and (x;),., is any family of elements in U.
For instance, we can assume that & is the ordinary product in the interval
U =[0,1]. We call U-subset of S any map s from § into U/ and we denote
by US the class of U-subsets of S. It is immediate that U® is a complete lat-
tice. The notion of closure operator in US is obvious. The following defini-
tion enables to extend any operator J: 2(S) — 2(§) to an operator
J:US = US.

Definition 9.1. For every operator J, the function J.. defined by

J(‘)()_{l if x € J(0).
B\ = sup{s(x;)® - @s(x,)}/x e J({x....,x,}) otherwise
(40)

is called the canonical extension of J via ®.

Proposition 9.2. Let J be an algebraic closure operator. Then Jg is a closure
operator in US extending J. Let U = [0, 1] and let J* be the extension of J via the
meet operation. Then J. <J* and Js. # J~, in general.

Proof. Firstly, observe that, since x @ y<x & | = x, we have x % y < x Ay and,
in particular, that x & x < x. It is immediate that J-(s) 2 s and that, since © is
order-preserving, J is order-preserving. So we have only to prove that, for
every x € S, Jo(s)(x) = J5(J=(s))(x). Now, this inequality is immediate if
x € J(0), while, in the case x ¢ J(()), we have to prove that for every x € S and
xeJ{xi,....x )

J(s)x) & -2 (s)(x,)

<sup{siz)) & - Ds(z)/xeJ{z, ...z 1)} (41)

Let,fori=1,....n
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Jo(s)(x) = sup{s(z) ® - ‘QY( ) /xi € J( CE Zlur)})}
Then, since the least upper bounds are preserved by &, we obtain that

Jau(s)(x) & () (x,)

By noting that, from x €J({z,....5,}) for i=1....n and
xeJ({x,..., Xux}), it follows that x € J({z,. ... ,-,,})., where zi,...,z, are the
(distinct) elements of the sequence z|,....z,,,....2],,, and that

s(a)® @ ‘( A(]l) Lo Bsz)® 8 ‘s‘(fi(m) <s(z2)) @ -+ © s(an).,

we obtain Eq. (41). In order to prove that J., is an extension of J, let s be a crisp
subset, namely the characteristic function of the subset X. Then it is immediate
that J.(s)(x) =1 iff either x € J(@) or x;....,x, exist in X such that
x€J{{x)....,x,}). Since J is algebraic, this is equivalent to say that
x € J(X). Thus J,(s) is the characteristic function of J(X). [

10. Extension-principle for relations

Together with the extension-principle for operators on subsets we can con-
sider the following very simple extension-principle of relations among subsets.

Definition 10.1 (extension-principle for relations). Let £ C #(S1) x -+ x 2(S,)
be an n-ary relation between subsets. Then the canonical extension of A is the
(classical) relation #* C #(S)) x --- x F(8,) among fuzzy subsets defined by
setting

(S],.A .,Sn) S A
= (Cs1.2),....C(s51.4).....C(s,, A)) € # forevery . € U.

For instance, if # is the usual inclusion between sets, then it is easy to prove
that #* is the inclusion between fuzzy subsets. In the case # = 1, this principle
is very simple and useful. For instance, we can define bounded (measurable,
compact, convex and so on) a fuzzy subset s of the Euclidean plane provided
that every closed cut of s is bounded (measurable, compact, convex, respective-
ly). Also, in the case n = 1 the extension-principle for relations is strictly related
with the Extension-principle for fixed points.
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Proposition 10.2. Let € be the class of fixed points of a closure operator J and let
6" be the extension of € by the extension-principle for fixed points. Then €* is
the extension of 6 in accordance with the extension-principle for relations, i.e.

€ ={s€S/C(s, /) € € forevery . € U}.

Proof. Let 5 be a fixed point of J*. Then, since each J(C(s, u)) is a fixed point
for J and the intersection of a family of fixed points is a fixed point, we have

Cls,A) = C(U(s), ) = [J{/(Cls,w) < i} € @.
Conversely, assume that every cut of s belongs to %. Then
J(s)(x) = sup{ie U|xeJ(C(s, 1)}
=sup{l e U]|xe€ C(s.2)} = s(x).
and therefore s is a fixed point for J*. O

Note. An operator J: 2(5)) x --- x 2(S,) — #(S) can be regarded as a
relation Z; C 2(81) x - -« x 2(S,) x 2(S), where one puts

(X],“.,AX,,.X>€»%_] <~ ./(X[,...,)(,,) =X.

Now, in general we have that J* is different from (#,)" and it is also possible
that (#,)" is the empty relation. In fact, if s,,...,s,, s are fuzzy subsets,

($15- 0 8m.8) € (#))
< (C(s1,4),....C(5,,4),C(s,4)) € #, forevery i e U

<= J(C(s1,4),...,Cls,, A)) = C(s,4) forevery i e U.

So, in the case that (J(C{s,4),...,C(s,, 4)));e; 1s not a continuous chain, no
fuzzy subset s can exist for which (s. ..., $0,8) € (R))".

11. Extending real-valued maps

Let /0 2(S}) x --- x 2(S,) — R be a real-valued map. Then we can extend

ftoamap f*: F(§) x - x #(S,) — R as follows:

¢ we identify STy...y8n with the continuous chains
(Clst. s+ (Clon 4)) e

* forevery 2 € U, we apply f to C(s1.2),....C(s,, +) by obtaining the family
(f(C(s1,4),. ... C8n,2))) ¢, Of real numbers;

® we assume as image of s|,...,s, the mean of the obtained values.

Then, we have the following definition:

Definition 11.1 (Extension-principle for real-valued maps). Let D be a subset of
P(S1) x - x P(S,) and f:D— R a monotone map. Then the canonical
extension of f is the map f~: D* — R defined by setting,
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s ) = / F(Cls1, ), Clsy, 2))di (42)
0.1)

for every (sy,...,s,) € D.

Note that the function g(4) = f(C(s, 4), C(s', 2)) is monotone and therefore
the right side of Eq. (42) is always defined (although it could be either finite or
infinite). Such a procedure can be pictured by the following diagram:

(1500 580) = (Cls1,4)) e (C(80. A)) je00
1 i
Sostsysn) = (F(ClsiA) - Clsn ) ey
The term “‘extension” is justified by the following obvious proposition:

Proposition 11.2. The function f* is the extension of [ |ie.
S&Xr X)) = (g, ). for every Xy € 2(8)),..., X, € P(S,).

The proof of the following proposition is immediate:

Proposition 11.3. Let f: D — R be a monotone function. Then:

. f order — preserving = f* order — preserving,

2. [ order — reversing = [ order — reversing,

3. the codomain of [* is contained in the smallest interval containing the codo-
main of f,

4. f finitely additive = [~ finitely additive.

Examples (See [8,9]). (a) Consider a classical measure, for instance, a finitely
additive probability p:D — [0, 1], where D C 2(S). Then D" is the class of
measurable fuzzy subsets and, by Proposition 11.1, the extension
w7 (S) — [0,1] is a finitely additive fuzzy measure. We have that

wis)y= ‘/sd,u.

N
(b) Let (M,d) be a metric space. Then the distance between two nonempty
subsets X and Y is the number ¢(X, ¥) defined by the formula

0(X,Y) = inf{d(x,y)/x e X,y €T} (43)

Since ¢ is defined in the class D= {(X,Y)/X # @ and Y 3 0}, 6" is defined in
the class

D= {(s,5)/s(x) = 1 and s'(¥') = 1 for some x.x" € M}.
Moreover,
5 (s,8) = / (C(s, 4), C(s', A)) d2. (44)

0.1)
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(c) Recall that the diameter of a nonempty subset X of M is defined by
diam(X) = sup{d(x.»)/x,v € X}. (45)
In this case:
D ={X/X isbounded}, D" = {s/C(s,A)is bounded for every 4 # 0}

and, then

diam”(s) = / diam (C(s, 7)) d4 (46)
fi.1!
for every s € D,
Note. We can extend a real-valued map f: 2(51) x -+ x 2(S,) — R also via

the extension-principle for operators. Indeed, we can apply such a principle to
the operator f:#(S;) x - x 2(S,) — Z(R) defined by settmg Flxr, ... x)

={f(x1....,x,)}. We obtain the function 7.Z(S))x .- x Z(S,) — F(R)
where
F(sty. . s)(x) = sup{i€ U/x = f(Cls;,4),...,Clsp 7))} (47)

Then,f* (s1,...,5,)1s a fuzzy real number and not a real number as in Eq. (42).
For instance, if we consider a finitely additive probability u: 2(S) — [0,1],
then the extension &' is the map &*: #(S) — F (R) defined by

L (s)(x) = sup{i e U/x = u(C(s, 7))} (48)
Then, while the extension-principle for real-valued maps extends a probability
in a map assuming values in [0,1], the extension-principle for operators extends
a probability to a map assuming values in the class # ([0, 1]) of the “fuzzy num-
bers” of the interval [0,1]. In the literature, sometimes one prefers Eqs. (47) and
(42), e.g. Zadeh [10] defined the cardinality |s| of a fuzzy subset s (whose cuts
are finite sets) as the fuzzy number |s| obtained by setting

Is|(r) = sup{z e U/n= C(s,/)|}. (49)
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