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1. INTRODUCTION

The notions of closure system and closure operator are very useful tools
in several areas of classical mathematics. As an example, we may quote the

Ž .following closure systems and the related closure operators :

}the class of closed subsets of a given topological space;
}the class of substructures of a given algebraic structure;
}the class of filters of a given Boolean algebra;
}the class of convex subsets of a given Euclidean space;
}the class of theories of a given deductive system.

This led several authors to investigate the closure systems and the closure
operators in the framework of fuzzy set theory. The resulting researches
give an elegant and powerful treatment of notions such as those of fuzzy

Ž w xsubalgebras, necessity measures, and envelopes for example, see 1]4 and
w x.11 .

Ž . Ž .Let S be any set, and denote by PP S and FF S the class of the subsets
and the class of the fuzzy subsets of S, respectively. In this paper we
propose an ‘‘extension principle’’ enabling us to extend any classical

Ž . Ž . Ž . Ž .operator J: PP S ª PP S to an operator J*: FF S ª FF S in such a way
that J* is a closure operator if and only if J is a closure operator. Also, we
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examine a related ‘‘extension principle’’ to extend a class CC of subsets of S
in a class CC* of fuzzy subsets of S in such a way that CC* is a closure
system if and only if CC is a closure system. This enables us to restate in a
uniform way several basic notions in fuzzy set theory, such as the natural
fuzzy topologies, fuzzy subalgebras, necessity measures, and fuzzy convex
subsets.

2. PRELIMINARIES

Ž .In the following we adopt the convention that, if S, F , 0, 1 is an
ordered set with minimum 0 and maximum 1, then the least upper bound
of the empty class is 0 and the greatest lower bound is 1, that is

Ž . Ž . w xSup B s 0 and Inf B s 1. We denote by U the real interval 0, 1 , and, if
l and l are elements of U, we set1 2

� 4 � 4l k l s Max l , l and l n l s Min l , l .1 2 1 2 1 2 1 2

Given a set S, we call a fuzzy subset of S any map s: S ª U and we denote
Ž . Ž w x.by FF S the class of fuzzy subsets of S Zadeh 16 . We say that s is crisp

Ž . � 4 Ž .provided that s x g 0, 1 for every x g S. We identify the class PP S of
all subsets of S with the class of the crisp fuzzy subsets by associating to

Ž .every X g PP S the related characteristic function x . So, we identify SX
and B with the map constantly equal to 1 and 0, respectively. Let s and s9
be two fuzzy subsets; we then say that s is contained in s9 or that s is a

Ž . Ž .part of s9 and we write s : s9 provided that s x F s9 x for any x g S.
Ž .Ž .Also, the union s j s9 is the fuzzy subset defined by setting s j s9 x s

Ž . Ž . Ž .Ž . Ž .s x k s9 x and the intersection s l s9 by setting s l s9 x s s x n
Ž . Ž .s9 x for every x g S. More generally, given a family s of fuzzyi ig I

subsets of S, we set

s x sSup s x N ig I and s x s Inf s x N ig I .� 4 � 4Ž . Ž . Ž . Ž .D Fi i i iž / ž /
igI igI

Ž . Ž .The complement ys of s is defined by ys x s 1 y s x . The support
Ž . Ž . � Ž . 4Supp s of s is defined by Supp s s x g S N s x / 0 and s is finite if
Ž .Supp s is finite. For every l g U the subsets

C s, l s x g S N s x G l and O s, l s x g S N s x ) l� 4 � 4Ž . Ž . Ž . Ž .
are called the closed and the open l-cut of s, respectively. We list below
the main properties of the cuts

Ž . Ž . Ž . Ž . Ž . Ž .a C s j s9, m s C s, m j C s9, m ; O s j s9, m s O s, m j
Ž .O s9, m

Ž . Ž . Ž . Ž . Ž . Ž .b C s l s9, m s C s, m l C s9, m ; O s l s9, m s O s, m l
Ž .O s9, m
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Ž . Ž . Ž . Ž . Ž .c C s, m s F O s, l ; O s, m s D C s, ll- m l) m

Ž . Ž . Ž . Ž . Ž .d C s, Sup l s F C s, l ; O s, Inf l s D O s, lig I i ig I i ig I i ig I i

Ž . Ž . Ž . Ž . Ž .e C F s , l s FC s , l ; O D s , l s DO s , l ,i i i i

Ž . Ž .where s, s9 g FF S , l, m g U, l is a family of elements of U andi ig I
Ž .s is a family of fuzzy subsets. A fuzzy subset is characterized by thei ig I
family of its cuts, indeed

s x s Sup l g U N x g C s, l s Sup l g U N x g O s, l 2.1� 4 � 4Ž . Ž . Ž . Ž .
or, dually,

s x s Inf l g U N x f C s, l s Inf l g U N x f O s, l 2.2� 4 � 4Ž . Ž . Ž . Ž .
In the following, given a subset X of S and l g U, we denote by l n X
and l k X the fuzzy subsets defined by

l if x g X
l n X x sŽ . Ž . ½ 0 otherwise

and

l if x f X
l k X x sŽ . Ž . ½ 1 otherwise

Ž . Ž .respectively. By such notations we may rewrite 2.1 and 2.2 respectively
by

s s D l n C s, l s D l n O s, l 2.3Ž . Ž . Ž .
and

s s F l k C s, l s F l k O s, l . 2.4Ž . Ž . Ž .
Ž .Equation 2.1 suggests that we may associate to any order-reversing family

Ž .C of subsets of S a fuzzy subset s as follows:l lgU

� 4s x s Sup l g U N x g C . 2.5Ž . Ž .l

Ž .In other words, we set s s D l n C . Likewise, 2.2 suggests settingl

s s F l k C . The following lemma shows some properties of s.l

Ž .LEMMA 2.1. Let C be any order-rë ersing family of subsets of S,l lgU
Ž .and define s by 2.5 ; then, for e¨ery m g U,

O s, m s C : C : C s C s, m . 2.6Ž . Ž . Ž .D Fl m l
l)m l-m

Proof. We have

x g O s, m m s x ) m m 'l ) m such that x g C m x g C .Ž . Ž . Dl l
l)m
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Moreover,

� 4x g C « ;l - m x g C « s x G Sup l N l - mŽ .F l l
l-m

« s x G m « x g C s, mŽ . Ž .
and

x g C s, m « s x G m « ;l - m 'n ) l x g CŽ . Ž . n

« ;l - m x g C « x g C .Fl l
l-m

Ž .Note that if C is order-reversing then C has no relevance inl lgU 1
Ž .defining s. Indeed, s can be defined by the equality F C s C s, ml- m l

and in this equality C does not occur. We call continuous any chain1
Ž .C of subsets of S such thatl lgU

C s S and C s CF0 l x
x-l

Ž .The following well known proposition follows from 2.6 and it shows that
we may identify the fuzzy subsets of S with the continuous chains of

Ž w x.subsets of S see Negoita and Ralescu 12 .

Ž Ž ..PROPOSITION 2.2. Gï en a fuzzy subset s, the family C s, l of itslgU
closed cuts is a continuous chain. Con¨ersely, gï en any continuous chain
Ž . Ž .C of subsets of S define s by 2.5 . Then s is a fuzzy subset such thatl lgU
Ž .C s, m s C for e¨ery m g U.m

3. FUZZY CLOSURE OPERATORS

Ž . Ž .Recall that, given a set S, a classical closure operator in PP S is a map
Ž . Ž .J: PP S ª PP S such that, for every X and Y subset of S,

i X : Y « J X : J Y ; ii X : J X ; iii J J X s J X .Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .

A collection CC of subsets of S is a closure system if the intersection of any
family of elements of CC is an element of CC. In particular, since S is the
intersection of the empty family, S g CC. The extension of such concepts to
fuzzy set theory is straightforward. We call fuzzy operator, in brief operator,

Ž . Ž .any map J from FF S to FF S and we say that J is a fuzzy closure operator,
in brief a closure operator, provided that

i s : s9 « J s : J s9 ; ii s : J s ; iii J J s s J s .Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .
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Likewise, a class CC of fuzzy subsets of S is called a fuzzy closure system, in
brief a closure system, if the intersection of any family of elements of CC is
an element of CC. Now, it is well known that if J is a closure operator, then
the set

CC s X N J X s X� 4Ž .J

is a closure system and, if CC is a closure system, then by setting

� 4J X s F Y g CC N Y = XŽ .CC

we obtain a closure operator J . The following proposition shows thatCC

such a connection holds for the fuzzy closure operators and the fuzzy
closure systems, too.

PROPOSITION 3.1. Let CC be a class of fuzzy subsets, then the operator JCC

defined by

� 4J s s F s9 g CC N s9 = s 3.1Ž . Ž .CC

Ž . Ž .is a fuzzy closure operator. Let J be a fuzzy operator satisfying i and ii and
set

CC s f g FF S N J f s f , 3.2� 4Ž . Ž . Ž .J

then CC is a closure system. Moreo¨er, if J is a closure operator and CC is aJ
closure system, then

J s J and CC s CC . 3.3Ž .CC JJ CC

Ž .Proof. The first part of the proposition is immediate. Let f be ai ig I
Ž . Ž . Ž . Ž .family of elements of CC , then by ii J F f = F f = F J f = J F fJ i i i i

Ž .and therefore J F f s F f . This proves that CC is a closure system. Toi i j
Ž .prove that J s J it suffices to observe that, given a fuzzy set s, J s is theCCJ

least fixed point of J greater than or equal to s. Equation CC s CC isJ CC

obvious.

4. EXTENDING CLASSICAL CLOSURE OPERATORS
AND SYSTEMS

In this section we will propose an extension principle for classical
Ž . Ž .closure operators. Namely, given a classical operator J: PP S ª PP S we

Ž . Ž .extend it in a fuzzy operator J*: FF S ª FF S by setting, for every
Ž .s g FF S ,

J* s x s Sup l g U N x g J C s, l . 4.1� 4Ž . Ž . Ž . Ž .Ž .
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We call a canonical extension of J the operator J*. From Lemma 2.1 it
follows that, if J is order-preserving,

O J* s , m s J C s, l : J O s, m : J C s, mŽ . Ž . Ž . Ž .Ž . Ž . Ž . Ž .D
l)m

: J C s, l s C J* s , m . 4.2Ž . Ž . Ž .Ž . Ž .F
l-m

PROPOSITION 4.1. Let J be a classical operator, then J* is an extension
of J. Moreo¨er, J* is a closure operator if and only if J is a closure operator.
In this case the closed cuts of J* are fixed points for J.

Proof. Assume that s is crisp, namely the characteristic function of the
Ž .set X, then for every l / 0, C s, l s X and therefore

x g J X « x g J C s, l for every l / 0 « J* s x s 1;Ž . Ž . Ž . Ž .Ž .
x f J X « x f J C s, l for every l / 0 « J* s x s 0.Ž . Ž . Ž . Ž .Ž .

Ž . Ž .This proves that J* s is the characteristic function of J X and therefore
that J* is an extension of J. Assume that J is a closure operator, then it is

Ž .immediate that J* is increasing. To prove that J* s = s, observe that,
Ž . Ž Ž ..since C s, l : J C s, l ,

s x s Sup l g U N x g C s, l� 4Ž . Ž .
F Sup l g U N x g J C s, l s J* s x .� 4Ž . Ž . Ž .Ž .

Ž Ž .. Ž . Ž Ž . .To prove that J* J* s s J* s , we observe that every cut C J* s , l
is a fixed point for J. Indeed, the intersection of a class of fixed points is a

Ž Ž . . Ž Ž ..fixed point and C J* s , l s F J C s, m . Thusm- l

J* J* s x s Sup l g U N x g J C J* s , l� 4Ž . Ž . Ž .Ž . Ž .Ž .
s Sup l g U N x g C J* s , l s J* s x .� 4Ž . Ž . Ž .Ž .

Note that there are extensions of a classical closure operator that are not
canonical extensions. For example, let L be a subset of U closed with
respect to the meets and containing 0 and 1, and consider the fuzzy

Ž .Ž . � Ž .4operator H defined by H s x s Inf l g L N l G s x . Then, since the
Ž .restriction J of H to PP S is the identity map, H cannot be obtained

Ž .by 4.1 .
Given a class CC of subsets of S, we set

CC* s s g FF S N C s, l g CC for every l g U . 4.3� 4Ž . Ž . Ž .

So, in a sense, CC* coincides with the class of the continuous chains of
elements of CC. It is easily proven that CC* is an extension of CC, namely
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that CC coincides with the class of crisp elements of CC*. We say that CC* is
the canonical extension of CC.

PROPOSITION 4.2. CC* is a fuzzy closure system if and only if CC is a
closure system.

Ž .Proof. Let CC be a closure system and s be any family of elementsi ig I
Ž . Ž .of CC*, then being C F s , l s FC s , l g CC, it is also F s g CC*. Thisi i i

proves that CC* is a closure system. The converse implication is trivial.

The following proposition shows that the notions of canonical extension
of a closure system and canonical extension of a closure operator are
strictly related in accordance with the following diagrams

CC ª J J ª CCCC J
x x x x

CC* ª J J* ª CCCC* J *

PROPOSITION 4.3. Let CC be a closure system and J the closure operatorCC

associated with CC. Then

J s J *. 4.4Ž . Ž .CC* CC

Let J be a closure operator and CC the related closure system, thenJ

CC * s CC . 4.5Ž . Ž .J J *

Ž . Ž .Proof. Let s by any fuzzy subset of S, then J * s is an element ofCC

Ž .CC*. Indeed, by 4.2 ,

C J * s , m s F J C s, l N l - m g CC .� 4Ž . Ž . Ž .Ž .Ž .CC CC

Ž . Ž . Ž . Ž . Ž .As a consequence, since J * s = s, we have that J * s = J s .CC CC CC*
Conversely, for every s9 g CC* such that s : s9 and l g U we have

Ž Ž .. Ž Ž .. Ž .J C s, l : J C s9, l s C s9, l and thereforeCC CC

J * s x s Sup l g U N x g J C s, l� 4Ž . Ž . Ž . Ž .Ž .CC CC

F Sup l g U N x g C s9, l s s9 x .� 4Ž . Ž .
Ž . Ž . Ž . Ž . Ž .This proves that J * s : s* and therefore that J * s : J s .CC CC CC*

Ž . Ž .To prove 4.5 , observe that by setting in 4.4 CC s CC we obtainJ
UJ s J*.CCJ

w x w xPROPOSITION 4.4. Let a, b be an inter̈ al contained in U, f : U ª a, b
Ž . Ž Ž .. Ž .a bijectï e continuous increasing map. Then J* f (¨ s f J* ¨ j J B ,

that is

1 if x g J BŽ .
J* f (¨ x s 4.6Ž . Ž . Ž .½ f J* ¨ x otherwise.Ž . Ž .Ž .
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Proof. At first, observe that

¡ y1 w xC ¨ , f l if l g a, bŽ .Ž .~C f (¨ , l sŽ . B if l ) b¢
S if l - a.

w xIndeed, if l g a, b then

x g C f (¨ , l m f ¨ x G l m ¨ x G fy1 l m x g C ¨ , fy1 l ,Ž . Ž . Ž . Ž . Ž .Ž . Ž .
while the remaining cases are immediate.

Ž . Ž .Ž . Ž .Now, if x g J B it is immediate that J* f (¨ x s 1. If x f J B ,
then

J* f (¨ x s Sup l g U N x g J C f (¨ , l� 4Ž . Ž . Ž .Ž .
s Sup l g U N l - a, x g J C f (¨ , l� 4Ž .Ž .Ž

w xj l g U N l g a, b , x g J C f (¨ , l� 4Ž .Ž . .
w x y1s Max a, Sup l g a, b N x g J C ¨ , f lŽ .� 4� 4Ž .Ž .

s Max a, Sup f l9 N x g J C ¨ , l9� 4� 4Ž . Ž .Ž .
s Max a, f Sup l9 N x g J C ¨ , l9 s f J* ¨ x .� 4� 4Ž . Ž . Ž .Ž . Ž .Ž .

Ž .As an example, let f x s l ? x q m where l ) 0, m G 0, and l q m F 1,
then

1 if x g J BŽ .
J* l ? ¨ q m x s 4.7Ž . Ž . Ž .½ l ? J* ¨ x q m otherwise.Ž . Ž .

COROLLARY 4.5. For e¨ery subset X and l g U,

J* l n X s l n J X j J BŽ . Ž . Ž .Ž .
and, by setting X s S and sl the map constantly equal to l,

J* sl s sl j J B .Ž . Ž .

Ž .Proof. In 4.7 set ¨ equal to the characteristic function of X, and
m s 0.

w xCOROLLARY 4.6. Let f : U ª a, 1 be a continuous bijectï e increasing
Ž . Ž Ž ..map, then J* f (¨ s f J* ¨ . As a consequence, for e¨ery fixed point ¨ of

J*, f (¨ is a fixed point, too.

Ž . Ž . Ž Ž .Ž ..Proof. Since f 1 s 1, for every x g J B we have that f J* ¨ x s
Ž . Ž . Ž Ž ..f 1 s 1 and this proves that J B is contained in f J* ¨ . Let ¨ be a

Ž . Ž Ž ..fixed point, then J* f (¨ s f J* ¨ s f (¨ .
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5. EXTENDING ALGEBRAIC CLOSURE OPERATORS

Ž . Ž .Recall that if J: PP S ª PP S is a closure operator, then J is called
algebraic if, for every subset X of S,

J X s D J X N X is a finite part of X .Ž . � 4Ž .f f

Moreover, a closure system CC of subsets of S is called algebraic if the
union of every chain of elements of CC belongs to CC. It is immediate to
prove that, for every closure system CC,

J is algebraic m CC is algebraic.CC

and that, for every closure operator J,

J is algebraic m CC is algebraic.J

In this section we will examine the canonical extensions of the algebraic
operators.

Ž . Ž .PROPOSITION 5.1. Let J: PP S ª PP S be algebraic then

¡1 if x g J BŽ .
~Sup s x n ??? n s x N� Ž . Ž .J* s x s 5.1Ž . Ž . Ž .1 n¢ � 4x g J x , . . . , x otherwise,4Ž .1 n

and

O J* s , m s J O s, m . 5.2Ž . Ž . Ž .Ž . Ž .

Ž . Ž .Ž .Proof. If x g J B it is immediate that J* s x s 1. Let l g U and
Ž .assume that C s, l / B, then, since J is algebraic,

� 4 � 4J C s, l s D J x , . . . , x N x , . . . , x : C s, l� 4Ž . Ž .Ž . Ž .1 n 1 n

� 4s D J x , . . . , x N s x G l, . . . , s x G l� 4Ž . Ž .Ž .1 n 1 n

� 4s D J x , . . . , x N s x n ??? n s x G l .� 4Ž . Ž .Ž .1 n 1 n

Ž .As a consequence, if x f J B , we have

J* s x s Sup l g U N x g J C s, l� 4Ž . Ž . Ž .Ž .
s Sup l g U N ' x , . . . , ' x s x n ??? n s x G l and� Ž . Ž .1 n 1 n

� 4x g J x , . . . , x 4Ž .1 n

� 4s Sup s x n ??? n s x N x g J x , . . . , x .� 4Ž . Ž . Ž .1 n 1 n
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Ž . Ž Ž ..To prove 5.2 observe that, since the family C s, l is a chainl) m

O J* s , m s J C s, l s J C s, lŽ . Ž . Ž .Ž . Ž .D Dž /
l)m l)m

s J O s, m .Ž .Ž .

6. EXAMPLES OF CANONICAL EXTENSIONS

In this section we will expose some examples of canonical extensions.

The Natural Fuzzy Topologies. A typical example of a nonalgebraic
classical closure system is furnished by the class CC of the closed sets of a

Ž .topological space. Namely, if S, t is a topological space, we denote by CC

Ž .the class of the closed subsets in S, t and therefore, for every subset X
Ž .of S, by J X the topological closure of X. It is immediate to see that theCC

canonical extension CC* of CC coincides with the class of the upper
� 4semicontinuous fuzzy subsets. Now, the class t * s s N ys g CC* is a fuzzy

w xtopology that was examined in Conrad 6 under the name of natural fuzzy
topology. So, CC* is the class of closed subsets of t * and, for every fuzzy

Ž .subset s, J s is the topological closure s of s. Proposition 4.3 enables usCC*
to find a simple formula to calculate s.

Ž .PROPOSITION 6.1. Let S, t be a Frechet topological space and s a fuzzy´
subset of S, then the topological closure s of s in the natural fuzzy topology t *
is gï en by

s x s Sup Inf s x N x is a sequence s.t. x s lim x . 6.1� 4Ž . Ž . Ž . Ž .ng N n n nngN

Ž . Ž . Ž .Proof. By 4.4 s s J * s , that is,CC

s x s Sup l g U N x is adherent to C s, l .� 4Ž . Ž .
Ž . Ž .Now, x is adherent to C s, l if and only if a sequence x existsn ng N
Ž .such that x s lim x and s x G l for every n g N. This completes then n

proof.

Ž .The natural fuzzy topologies enable us to show that in 4.2 we cannot
set equality in the place of inclusion, in general. Indeed, let t be the usual

w x w x w xtopology in the interval 0, 1 and let s: 0, 1 ª 0, 1 be the fuzzy subset
Ž . Ž .defined by setting s x s x if x / 1 and s x s 0 if x s 1. Since, for every

Ž Ž .. Žw .. w xl / 1, J C s, l s J l, 1 s l, 1 , we have thatCC CC

J * s x s Sup l g U N x g J C s, l� 4Ž . Ž . Ž . Ž .Ž .CC CC

� 4s Sup l g U N l F x , l / 1 s x ,
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Ž . Ž . Ž Ž ..and therefore J * s is the identity map. Then, while J C s, 1 sCC CC

Ž . ŽŽ . Ž . . � 4 Ž Ž ..J B s B, we have C J * s , 1 s 1 and while J O s, 0 sCC CC CC

ŽŽ x. w x ŽŽ . Ž . . Ž xJ 0, 1 s 0, 1 it is O J * s , 0 s 0, 1 . ThusCC CC

C J * s , 1 / J C s, 1 and O J * s , 0 / J O s, 0 .Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ž . Ž .CC CC CC CC

Rough Sets. Let ' be an equivalence relation in a set S, and, for
w xevery x g S, denote by x the complete class of equivalence modulo ' .

Then, the upper approximation of a subset X of S is the set

w xU X s x g S N x l X / B .� 4Ž .

The lower approximation is defined by setting

w xL X s x g S N x : X .� 4Ž .

Ž . Ž .It is immediate that L X s yU yX and that U is a closure operator.
Ž .Also, by setting, for every X, Y g PP S ,

X ' Y m U X s U Y and L X s L YŽ . Ž . Ž . Ž .

Ž .we are able to extend ' to PP S . We call rough set any equivalence class
Ž w x.modulo ' see Pawlak 13 . Now it is immediate to prove that the

canonical extension of U can be obtained by the formula

U* s x s Sup s y N y ' x .� 4Ž . Ž . Ž .

Ž .On the other hand, it is natural to define L* by setting L* s equal to the
Ž .complement of the fuzzy subset U* ys and therefore to set

L* s x s Inf s y N y ' x .� 4Ž . Ž . Ž .

Such definitions suggest the possibility of defining a theory of the fuzzy
Ž .rough subsets. Indeed, we define in FF S an equivalence relation by

setting

s ' s m U* s s U* s and L* s s L* sŽ . Ž . Ž . Ž .1 2 1 2 1 2

Ž .for every s , s g FF S and we call rough fuzzy subset any class of equiva-1 2
lence.

Con¨ex fuzzy subsets. Assume that CC is the class of convex subsets of a
Ž .Euclidean space E and therefore that, for every subset X of E, J X isCC

the convex envelope of X. Then, CC* is the class of con¨ex fuzzy subsets as
w x Ž .defined in Zadeh 16 and, for every fuzzy subset s of E, J s is theCC*

convex envelope of s.
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PROPOSITION 6.2. For e¨ery fuzzy subset s of a Euclidean space, the
Ž .con¨ex en¨elope J s of s is gï en byCC*

J s x s Sup s x n ??? n s x N x s l x q ??? ql x ,�Ž . Ž . Ž . Ž .CC* 1 n 1 1 n n

l , . . . , l g U, l q ??? ql s 1 . 6.24 Ž .1 n 1 n

Ž . Ž . Ž .Proof. By Proposition 4.3 J s s J * s and therefore, since J isCC* CC CC

Ž . Ž .algebraic, we may apply Proposition 5.1 to compute J s . Thus 6.2 is anCC*
Ž .immediate consequence of equality J B s B and of the fact that x gCC

Ž� 4.J x , . . . , x if and only if l , . . . , l g U exist such that l q ??? qCC 1 n 1 n 1
l s 1 and x s x l q ??? ql x .n 1 1 n n

If E is the real line, the convex fuzzy subsets are known under the name
of con¨ex fuzzy numbers. Simple calculations enable us to prove that the

Ž .convex fuzzy number J s generated by s is given byCC*

J s x s Sup s x n s x N x F x F x� 4Ž . Ž . Ž . Ž .CC* 1 2 1 2

s Sup s x N x F x n Sup s x N x F x .� 4 � 4Ž . Ž .Ž . Ž .1 1 2 2

Ž U Ž . . Ž Ž .. Ž U Ž . .Note that, J being algebraic, O J ¨ , l s J O ¨ , l , but C J ¨ , l /CC CC CC CC

Ž Ž ..J C ¨ , l , in general. Indeed, define a fuzzy subset s of the real lineCC

Ž . < < w x � 4 Ž .by setting s x s y x q 1 if x g y1, 1 y 0 and s x s 0 otherwise.
Ž . w x � 4Then, for every l / 0, C s, l s l y 1, 1 y l y 0 and therefore

Ž Ž .. w xJ C s, l s l y 1, 1 y l . SinceCC

U � 4C J s , 1 s J C s, l s 0 andŽ . Ž .Ž .Ž . FCC CC

l-1

J C s, 1 s J B s BŽ . Ž .Ž .CC CC

Ž U Ž . . Ž Ž ..we may conclude that C J ¨ , 1 / J C ¨ , 1 .CC CC

Generalized Necessities. Let B be a Boolean algebra with minimum 0
and maximum 1 and assume that CC is the class of filters B and therefore,

Ž .for every X : B, that J X is the filter generated by X. It is well knownCC

that CC is an algebraic closure system and therefore that J is an algebraicCC

closure operator. We call fuzzy filters the elements of CC* and therefore,
Ž .for every fuzzy subset s of B, J s is the fuzzy filter generated by s. Now,CC*

recall that a generalized necessity is any map n: B ª U such that

n 1 s 1; n x n y s n x n n y ,Ž . Ž . Ž . Ž .
Ž w x.for every x, y g B see Biacino and Gerla 3 . The name ‘‘generalized

necessity’’ is justified by the fact that the generalized necessities n for
Ž . Žwhich n 0 s 0 are known in literature under the name of necessities see

w x.Dubois and Prade 8 .
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PROPOSITION 6.3. The fuzzy filters coincide with the generalized necessities.

Ž . Ž .Proof. Let n be a fuzzy filter, then, since C n, 1 is a filter, 1 g C n, 1
Ž . Ž . Ž .and therefore n 1 s 1. Also, given x, y g B, set l s n x n n y , then,

Ž . Ž .since x and y are elements of the filter C n, l , x n y g C n, l and
Ž . Ž . Ž .therefore n x n y G l s n x n n y . On the other hand, if we set l s

Ž . Ž . Ž .n x n y , since x G x n y and x n y g C n, l , x g C n, l , and therefore
Ž . Ž . Ž . Ž .n x G l s n x n y . Likewise one proves that n y G n x n y and

Ž . Ž . Ž .therefore n x n n y G n x n y .
Ž .Conversely, assume that n is a generalized necessity, then, since n 1 s 1,

Ž . Ž . Ž .1 g C n, l for every l g U. Also, if x, y g C n, l , then n x n y s
Ž . Ž . Ž . Ž .n x n n y G l and therefore x n y g C n, l . Finally, if x g C n, l

Ž . Ž . Ž . Ž . Ž .and y G x, then n x s n x n y s n x n n y and therefore n y G
Ž . Ž . Ž .n x . Then y g C n, l and therefore C n, l is a filter. This proves that n

is a fuzzy filter.

ŽPROPOSITION 6.4. For e¨ery fuzzy subset s the fuzzy filter that is, the
. Ž .generalized necessity J s generated by s is gï en byCC*

Sup s x n ??? n s x N x n ??? n x F x if z / 1� 4Ž . Ž .1 m 1 mJ s x sŽ . Ž .CC* ½ 1 if z s 1.
6.3Ž .

If s is consistent, that is, a necessity containing s exists, then the abo¨e formula
gï es the necessity generated by s.

Ž . � 4Proof. Note that J is algebraic, that J B s 1 , and that x gCC CC

Ž� 4. Ž .J x , . . . , x if and only if x n ??? n x F x. Then, on account of 4.4 ,CC 1 m 1 m
Ž .6.3 is a consequence of Proposition 5.1. Let n be a necessity containing s,

Ž .Ž . Ž . Ž .then it is immediate that J s 0 F n 0 s 0 and therefore that J s isCC* CC*
a necessity.

Other interesting applications can be obtained by applying the extension
principle to the deduction operators of the classical deductive systems. The

w xresulting fuzzy logics are extensively examined in 10 .

7. ANOTHER EXAMPLE: THE FUZZY SUBALGEBRAS

Ž .In the following AA s A, H, C denotes an algebraic structure, where A

is the domain, H is the set of operations on A, and C : A is the set of
constants. Assume that CC is the class of subalgebras of AA, where, if there
is no constant the empty subset is considered as a subalgebra, then CC is an

Ž .algebraic closure system and, for every subset X of A, J X is theCC

subalgebra of AA generated by X. In accordance with the literature, we
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² : Ž .write X instead of J X . Then, the elements of CC* are the fuzzyCC

subsets whose closed cuts are subalgebras of AA and are well known in
Ž w xliterature under the name of fuzzy subalgebras Rosenfeld 14 and Di Nola

w x. Ž .and Gerla 7 . Moreover, for every fuzzy subset s of A, J s is the fuzzyCC*
² :subalgebra generated by s and we denote it by s .

Ž .PROPOSITION 7.1. Denote by Pol AA the set of polynomial functions of AA,
then, for e¨ery fuzzy subset s of A, the fuzzy subalgebra generated by s is gï en
by

¡Sup s x n ??? n s x N� Ž . Ž .1 n~² : ² :s x s 7.1Ž . Ž .p x , . . . , x s x , p g Pol AA if x f C4Ž . Ž .1 n¢ ² :1 if x g C .

Ž . ² :Proof. J is algebraic and J B s C . Moreover, recall that x gCC CC

Ž� 4. Ž .J x , . . . , x if and only if an nary p g Pol AA exists such that x sCC 1 n
Ž .p x , . . . , x .1 n

Ž .Formula 7.1 becomes very simple if we consider classes of algebraic
structures in which the polynomial function can be reduced to a canonical

² :form. As an example, if AA is a semigroup then the fuzzy subsemigroup s
generated by s is obtained by

Sup s x n ??? n s x N x . . . x s x if x / 1� 4Ž . Ž .1 n 1 n² :s x sŽ . ½ 1 if x s 1.

² :If AA is a group then the fuzzy subgroup s generated by s is given by

¡Sup s x n ??? n s x N� Ž . Ž .1 n~ i i² : 1 ns x sŽ . � 4x ??? x s x , i , . . . , i g 1, y1 if x / 141 n 1 n¢
1 if x s 1.

Ž w x.see Biacino and Gerla 2 . Given a free semigroup AA, we obtain further
examples of fuzzy closure operators by considering the classes of the free,
pure, very pure, left unitary, right unitary, unitary fuzzy subsemigroups of

Ž w x.AA see Gerla 9 .

8. FUZZY CLOSURE SYSTEM ASSOCIATED WITH A
FAMILY OF CLOSURE SYSTEMS

Ž .Very simple examples of closure systems in PP S are obtained by
Ž .considering the principal filters in the lattice PP S , that is, classes such as

CC s X g PP S N X = A� 4Ž .A
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where A is any fixed subset of S. Likewise, examples of fuzzy closure
Ž .systems are furnished by the principal filters in the lattice FF S , that is

classes as
CC s s g FF S N s = ¨� 4Ž .¨

where ¨ is any fixed fuzzy subset of S. Now, are such fuzzy closure systems
canonical extensions of a classical one? As a matter of fact, the answer is
negative everywhere ¨ is not crisp. Indeed, the class of crisp elements of

� Ž . Ž .4 Ž .CC coincides with CC s X g PP S N X = Supp ¨ and since Supp ¨ is not¨
Ž .contained in C ¨ , 1 , ¨ f CC*. In spite of that, it is possible to obtain CC by¨

Ž . � Ž .4a formula very like to formula 4.3 . In fact, if we set CC s X N X = C ¨ , ll

Ž . Ž .then CC is an order-preserving family of closure systems such thatl lgU

CC s s g FF S N C s, l g CC for every l g U .� 4Ž . Ž .¨ l

This suggests the following definition.

Ž .DEFINITION 8.1. Let CC be a family of closure systems and setl lgU

CC s s g FF S N C s, l g CC for every l g U 8.1� 4Ž . Ž . Ž .l

Ž .then we say that CC is the fuzzy closure system associated to CC .l lgU

This terminology is justified by the following proposition showing that CC

is a closure system.

PROPOSITION 8.2. The class CC of fuzzy subsets associated with a family
Ž .CC of closure systems is a fuzzy closure system.l lgU

Ž . Ž .Proof. Let s be a family of elements of CC, then, since C F s , l si ig I i
Ž .FC s , l g CC for every l g U, we have F s g CC.i l i

Ž .Obviously, 8.1 generalizes the formula for the canonical extension of a
classical closure system.

PROPOSITION 8.3. Let CC be a fuzzy closure system, and set, for e¨ery
l g U,

HH CC , l s C s, l N s g CC . 8.2� 4Ž . Ž . Ž .
Ž Ž ..Then HH CC, l is a family of closure systems.lgU

Ž . Ž .Proof. Let X be a family of elements of HH CC, l , then a familyi ig I
Ž . Ž .s of elements of CC exists such that X s C s , l . Since F X si ig I i i i
Ž . Ž .C F s , l , F X belongs to HH CC, l .i i

DEFINITION 8.4. Given a fuzzy closure system CC, we denote by CC* the
Ž .fuzzy closure system associated with the family CC s HH CC, l and we sayl

that CC* is the fuzzy closure system associated with CC. In other words,

CC* s s g FF S N C s, l g HH CC , l for every l g U . 8.3� 4Ž . Ž . Ž . Ž .
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The following obvious proposition shows that such a notation is in
Ž .accordance with formula 4.3 .

PROPOSITION 8.5. If CC is a classical closure system then the fuzzy closure
Ž .system associated with CC by 8.3 coincides with the canonical extension of CC

Ž .defined by 4.3 .

PROPOSITION 8.6. Let CC, CC , and CC be fuzzy closure systems; then1 2

i CC : CC*; ii CC : CC « CC
U : CC

U ; iii CC* * s CC*.Ž . Ž . Ž . Ž .1 2 1 2

Moreo¨er,

CC s CC* m CC is associated with a family of closure systems.

Ž . Ž . Ž .Proof. Properties i , ii , and iii are obvious. Assume that CC is
Ž .associated with the family CC of closure systems, then if s g CC*, forl lgU

Ž . Ž .every l g U an element s of CC exists such that C s, l s C s , l . Onl l

Ž .the other hand, since s g CC, C s , l g CC and this proves that s g CC.l l l

Ž .Thus CC* : CC and by i we may conclude that CC* s CC. The converse part
is immediate.

In the following, given any class DD of fuzzy subsets, we denote by DD the
fuzzy closure system generated by DD, that is,

� 4DD s F CC N CC is a fuzzy closure system containing DD

s s g FF S N s s F s where s is a family of elements of DD .� 4Ž . Ž .i i igI

Also, we define the operator Q by setting

Q CC s l k C s, l N s g CC , l g U . 8.4� 4Ž . Ž . Ž .

PROPOSITION 8.7. Let CC be a fuzzy closure system, then CC* : Q CCŽ .
Ž Ž ..and, if HH CC, l is an order-preser̈ ing family, we ha¨e CC* s Q CC ,Ž .lgU

Ž .that is, CC* is equal to the fuzzy closure system generated by Q CC .

Proof. Recall that

CC* s s g FF S N for every l g U, C s, l s C s , l� Ž . Ž . Ž .l

for a suitable s g CC .4l

Ž . Ž .Then, for every s g CC*, since by formula 2.4 s s F l k C s, l s
Ž .F l k C s , l , s g CC, we have that s g Q CC . Assume thatŽ .l l

Ž Ž ..HH CC, l is an order-preserving family, then sincelgU

S if m F l
C l k x , m sŽ .CŽ s , l. ½ C s, l if m ) l.Ž .

Ž . Ž . Ž .and C s, l g HH CC, l : HH CC, m for every m ) l, we may conclude that
Ž .Q CC : CC*.
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PROPOSITION 8.8. If CC is any fuzzy closure system then

CC s Q CC « CC s CC*.Ž .

Ž Ž ..If HH CC, l is an order-preser̈ ing family, thenlgU

CC s Q CC m CC s CC*.Ž .

Ž .Proof. Assume CC s Q CC , then, by Propositions 8.6 and 8.7, CC :
Ž Ž ..CC* : Q CC s CC and therefore CC s CC*. Assume that HH CC, l isŽ . lgU

order-preserving and that CC s CC*, then by Proposition 8.7 CC s Q CC .Ž .
PROPOSITION 8.9. Assume that the closure system, CC, is associated with

Ž .an order-preser̈ ing family CC of classical closure systems. Then,l lgU

HH CC , l s CC 8.5Ž . Ž .l

for e¨ery l g U.

� Ž . Ž . 4Proof. By hypothesis CC s s g FF S N C s, l g CC . It is immediatel

Ž .that HH CC, l : CC , to prove the converse inclusion, let X be an elementl

of CC and consider the fuzzy subsets s s l k x . We have thatl X X

S if m F l
C s , m sŽ .X ½ X if m ) l

Ž . Ž .and, since CC is order-preserving, C s , m g CC for every m g U.l lgU X m

Ž .So, s belongs to CC and this proves 8.5 .X

Ž .Observe that 8.5 does not hold, in general. As a matter of fact such an
equality is equivalent to saying that

;l g U ;X g CC a continuous chain X existsŽ .l m mgU

such that X g CC , X s X .m m l

EXAMPLES. Let S be an Euclidean space, SS the class of closed subsets,
and RR the class of closed convex subsets of S. Since RR : SS , we obtain an

Ž .order-preserving family CC by settingl lgU

RR if l F 0.5
CC sl ½ SS otherwise.

If CC is the fuzzy closure system associated with this family then s g CC if
Ž . Ž .and only if C s, l is closed and convex if l F 0.5 and C s, l is closed

otherwise. In accordance with Proposition 8.6 and 8.7, CC s CC* s Q CC .Ž .
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Note that CC extends the class of the closed and convex subsets of S. Now,
Ž .let us change RR with SS in defining CC , that is, setl lgU

SS if l F 0.5
CC sl ½ RR otherwise.

Ž .Such a family is order-reversing and s g CC if and only if C s, l is closed
if l F 0.5 and closed and convex otherwise. Also in this case CC is an
extension of the class of the closed and convex subsets of E. Obviously,
CC s CC*. We claim that

Q CC  CC , HH CC , l s CC .Ž . Ž . l

Indeed, let X and Y be two disjoint closed subsets such that Y is convex
and define s by

1 if x g Y
s x sŽ . 0.5 if x g X½ 0 otherwise.

Ž .Then it is immediate that s g CC and that, if l F 0.5, l k C s, l s l k
Ž . Ž .X j Y . Now, C l k X j Y, m s X j Y for every m ) l, and therefore
Ž . Ž .C l k X j Y, m f CC for every m ) 0.5. Thus, l k C s, l f CC andm

Ž .therefore Q CC  CC.
Ž .To prove that CC s HH CC, l , let X be an element of CC . Now if l ) 0.5l l

Ž .then X is closed and convex and therefore X g CC and X g HH CC, l . If
l F 0.5, it is immediate that l n X is an element of CC such that

Ž . Ž .X s C l n X, l and therefore X g HH CC, l .
w xSet S s 0, 1 and let, for every l g U, CC equal the closure systeml

� w x 4B, l, 1 , S and denote by CC the related fuzzy closure system. The family
Ž .CC is neither order-preserving nor order-reversing and we claim thatl lgU

Q CC  CC and HH CC , l s CC .Ž . Ž . l

Indeed, at first observe that the empty set and the identity map id: U ª U
Ž .are elements of CC. Then, the fuzzy subset s s C id, l k l belongs to

Ž . Ž . w xQ CC but, since C s, m s l, 1 f CC for every m ) l, s f CC. Also, sincem

w xB is the l-cut of the empty set and l, 1 the l-cut of the identity map,
Ž . Ž .CC : HH CC, l and therefore HH CC, l s CC .l l

Ž Ž ..This example shows that in Proposition 8.7 the hypothesis HH CC, l lgU
order-preserving is essential to prove the equality. Also, it proves that in

Ž Ž ..Proposition 8.8 the hypothesis HH CC, l order-preserving is not nec-lgU
1� � 4 w x 4essary. If we modify such an example by setting CC s B, 0 , , 1 , S ,1r2 2

Ž .then it is immediate that no continuous chain X exists such thatb b gU
� 4X s 0 and X g CC .1r2 b b
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9. FUZZY CLOSURE OPERATOR ASSOCIATED WITH A
FAMILY OF CLOSURE OPERATORS

We have early observed that there is a strict connection between the
closure systems and the closure operators. So, the question arises of giving
definitions and results like the ones in Section 8 but with reference to the
closure operators. At first we have to introduce a new concept. We say that
a fuzzy operator J is an almost closure operator, in brief a-c-operator, if it
satisfies only the first two conditions for a closure operator, that is

i s : s « J s : J s ; ii J s = sŽ . Ž . Ž . Ž . Ž .1 2 1 2

Ž .for s , s , s in FF S . Every a-c-operator is associated with a closure1 2
operator J defined by J s J . In other words, for every fuzzy subset s,CCJ
Ž .J s is the least fixed point of J greater or equal to s. If J is a closure

operator then J s J. It is immediate that CC s CC , that is, J and J haveJ J
the same fixed points.

Ž .PROPOSITION 9.1. Let J be a family of a-c-operators and define thel lgU
fuzzy operator J by

J s x s Sup l g U N x g J C s, l , 9.1� 4Ž . Ž . Ž . Ž .Ž .l

then J is an a-c-operator.

Ž . Ž .Proof. It is immediate that J satisfies i . To prove ii , observe that,
Ž . Ž Ž ..since C s, l ; J C s, l , we havel

s x s Sup l g U N x g C s, l� 4Ž . Ž .
F Sup l g U N x g J C s, l s J s x .� 4Ž . Ž . Ž .Ž .l

Ž .DEFINITION 9.2. Let J be a family of closure operators, then wel lgU
Ž .say that the operator J defined by 9.1 is the a-c-operator associated with

Ž . Ž .J and that J is the closure operator associated to J .l lgU l lgU

Ž .The following proposition shows that if J is order-reversing then Jl lgU
is a closure operator and therefore J s J.

Ž .PROPOSITION 9.3. If J is an order-rë ersing family of closurel lgU
operators then its associated a-c-operator is a closure operator, that is, J s J.

Ž Ž .. Ž .Proof. To prove that J J s s J s it is sufficient to prove that every
Ž Ž . .cut C J s , l is a fixed point for J . Indeed, in this casel

J J s x s Sup l g U N x g J C J s , l� 4Ž . Ž . Ž .Ž . Ž .Ž .l

s Sup l g U N x g C J s , l s J s x .� 4Ž . Ž . Ž .Ž .
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Ž Ž Ž ...Now, observe that J C s, l is an order-reversing family of subsetsl lgU
Ž Ž .. Ž Ž .. Ž Ž ..of S. In fact, if l F l9 then J C s, l = J C s, l9 = J C s, l9 . Also,l l l9

observe that if m F l, then every fixed point for J is a fixed point for J .m l

Ž Ž ..In particular, J C s, m is a fixed point for J . By recalling that them l

intersection of a class of fixed points for J is a fixed point for J and that,l l

Ž Ž . . Ž Ž .. Ž Ž . .by Lemma 2.1, C J s , l s F J C s, m , we conclude that C J s , lm- l m

is a fixed point for J .l

Ž .Obviously, 9.1 generalizes the formula for the canonical extension of a
Ž .classical closure operator. From Lemma 2.1 we may derive that, if Jl lgU

is order-reversing then, for every m g U

O J s , m s J C s, l : J O s, m : J C s, mŽ . Ž . Ž . Ž .Ž . Ž . Ž . Ž .D l m m
l)m

: C J s, m s J C s, l .Ž . Ž .Ž . Ž .F l
l-m

Ž .Remark. The fuzzy operator J defined by 9.1 is not an extension of a
Ž .classical closure operator, in general. As a matter of fact, if J isl lgU

order-reversing, then

J extension of a classical operator

m J s J for every m / 0, 1 and n / 0, 1.m n

To prove this, assume that J is an extension of a classical closure
operator and let n and m be two elements of U different from 1 and
assume, for example, that 0 - n - m. Then, given any subset X of S, by

Ž . Ž . Ž . Ž .Ž .hypothesis J X = J X . Assume that x g J X , then J X x sn m n

� Ž .4 � Ž .4Sup l g U N x g J X / 0 and therefore Sup l g U N x g J X s 1.l l

Ž .Since m / 1, this entails that l g U exists such that x g J X and l G m.l

Ž . Ž . Ž .Since J X : J X , it is also x g J X and we may conclude thatl m m

Ž . Ž . Ž . Ž .J X : J X and therefore that J X s J X . The converse implica-n m n m

tion is immediate.

Ž .PROPOSITION 9.4. Let J be any family of closure operators and Jl lgU
Ž .the associated fuzzy closure operator. Besides, let CC be the correspond-J lgUl

ing family of closure systems and CC the associated fuzzy closure system. Then,
J s J , that isCC

J ª CCŽ . Ž .l JlgU l lgU

.x x
J ¤ CC
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Proof. To prove that J s J is equivalent to proving that CC s CC andCC J
therefore that CC s CC . Let s be an element of CC, then every cutJ
Ž .C s, l g CC and therefore is a fixed point for J . Then it is immediateJ ll

Ž . Ž .that J s s s and therefore that s g CC . Conversely, assume J s s s,J
� Ž Ž ..4 Ž .then, for every x g S, Sup l g U N x g J C s, l s s x . In other words,l

Ž Ž .. Ž . Ž .x g J C s, l implies l F s x and therefore x g C s, l . Thenl

Ž Ž .. Ž . Ž .J C s, l is contained in C s, l and therefore C s, l is a fixed point forl

J . Thus s g CC.l

Ž .PROPOSITION 9.5. Let CC be a family of closure systems and CC thel lgU
associated fuzzy closure system. Moreo¨er, consider the corresponding family
Ž .J of closure operators and denote by J the associated fuzzy closureCC lgUl

operator. then, CC s CC , that is,J

CC ª JŽ . Ž .l CClgU l lgU

x x
CC ¤ J .

Ž .Proof. Recall that by 3.3 of Proposition 3.1 the closure system corre-
sponding to closure operator J is CC . As a consequence, by applyingCC ll

Ž .Proposition 9.4 to the family J , we obtain that J s J and there-CC lgU CCl

fore that CC s CC .J

Ž Ž ..Given a fuzzy closure operator J, we may define a family K J, l lgU
of operators by setting

K J , l X s C J l n X , l 9.2Ž . Ž . Ž . Ž .Ž .

Ž .Ž .for every l g U. If we interpret J as a deduction operator, then K J, l X
is the set of formulas that are consequences at degree l of the formulas in
X assumed at degree l. The following proposition shows that K and HH are
related in accordance with the following diagrams.

J ª CC CC ª JJ CC

x x x x .
K J , l ¤ HH CC , l HH CC , l ¤ K J , lŽ . Ž . Ž . Ž .J CC

Ž w x.PROPOSITION 9.6. Castro 5 . Gï en a fuzzy closure operator J,
Ž Ž ..K J, l is a family of closure operators. Namely, we ha¨elgU

K J , l s J . 9.3Ž . Ž .HH ŽCC , l.J
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Gï en a fuzzy closure system CC, we ha¨e

HH CC , l s CC . 9.4Ž . Ž .K Ž J , l.CC

Ž .Proof. Let X be a subset of S and assume that x g J X . ThenHH ŽCC , l.J
Ž . Ž . Ž .x g C s, l for every s g CC such that X : C s, l . Taking s s J l n X ,J

since s g CC andJ

X : C l n X , l : C J l n X , l s C s, l ,Ž . Ž . Ž .Ž .

Ž Ž . . Ž .Ž .we have x g C J l n X , l s K J, l X . Conversely, assume that x g
Ž .Ž . Ž .Ž .K J, l X , then J l n X x G l and therefore, for any s g CC such thatJ

Ž .s = l n X, we have x g C s, l . Thus, since s = l n X if and only if
Ž . Ž . Ž .C s, l = X, for every s g CC such that C s, l = X, we have x g C s, l .J

Ž .This proves that x g J X .HH ŽCC , l.J
Ž . Ž .To prove 9.4 , we apply 9.3 to the fuzzy closure operator J byCC

obtaining

K J , l s JŽ .CC HH ŽCC , l.

Ž .that is equivalent to 9.4 .

We conclude this section by noting that, like the fuzzy closure systems,
given a fuzzy closure operator J it is possible to build up a new fuzzy

Ž Ž ..closure operator J* by applying Definition 9.2 to the family K J, l .lgU

10. TWO EXAMPLES: FUZZY PREORDERS AND FUZZY
HERBRAND MODELS

Ž .Fuzzy Preorder. As observed by Trillas and Alsina, if S, F is any
preorder then the equality

F � 4J X s z g S N ' x g X , x F z 10.1Ž . Ž .
F Ž . Ž .defines a closure operator J : PP S ª PP S . The idea is that x F z

means that x entails z. Now, we can extend the notion of preorder as
Ž . w xfollows. A fuzzy preorder relative to n is a fuzzy relation I: S = S ª 0, 1

in S such that

Ž . Ž . Ž .a I x, x s 1 reflexivity
Ž . Ž . Ž . Ž . Ž .b I x, y n I y, z F I x, z transitivity .

Ž .If I x, y s l we say that x implies y at degree l. This definition
immediately suggests the question of defining the fuzzy closure operator

Ž .associated with a fuzzy preorder as in 10.1 .
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�Ž .PROPOSITION 10.1. Gï en a fuzzy preorder I, e¨ery cut R s x, y Nl

Ž . 4I x, y G l is a preorder and therefore defines a closure operator J . The fuzzyl

Ž .closure operator associated with the family J can be defined by settingl lgw0, 1x

J s z s Sup s x n I x , z N x g S 10.2� 4Ž . Ž . Ž . Ž . Ž .

Ž .for e¨ery s g FF S and x g S.

Herbrand Models. Recall that if LL is a first order language with some
constants, then a ground term of LL is a term not containing variables and
the Herbrand unï erse U for LL is the set of ground terms of LL . Similarly,LL

a ground atom is an atomic formula not containing variables and the set
B of ground atoms is called the Herbrand base for LL . An HerbrandLL

interpretation for LL is any subset M of B and the name is justified by theLL

fact that M defines an interpretation of LL in which:

}the domain is the Herbrand universe
}constants in LL are assigned themselves
}any nary function symbol f in LL is interpreted as the map from

Ž .nU into U defined by associating to terms t , . . . , t the termLL LL 1 n
Ž .f t , . . . , t1 n

�Ž .}any nary predicate symbol p is interpreted by t , . . . , t N1 n
Ž . 4p t , . . . , t g M .1 n

A definite program clause is either an atom or a formula of the form
b n ??? n b ª b where b is an atom and each b is an atom or a1 n i
negation of an atom. A ground instance of a program clause is a closed
formula obtained from this clause by suitable substitutions of the free
variables by closed terms. A definite program is a finite set P of definite
program clauses. It is well known that the class CC of Herbrand models forP
P is a closure system in B and that, if J is the associated closureLL P

Ž .operator, then for every X g PP BLL

� 4J X s a g B N P j X & a .Ž .P LL

Ž . Ž .J X is named the least Herbrand model for P containing X and J 0P P
the least Herbrand model for P; we denote it by M . The Herbrand modelsP
of P coincide with the fixed points of J , obviously.P

Passing to the fuzzy framework, we call fuzzy program any fuzzy subset p
Ž .of definite program clauses. Now, for every l g U the cut C p, l is a

classical program and we may consider the closure operator J s Jl C Ž p, l.
defined by this program and the related class CC of Herbrand models.l

Ž . Ž .Then, it is natural to consider the fuzzy closure operator J : FF B ª FF BP l l



BIACINO AND GERLA24

Ž .defined by the order-reversing family J and, in correspondence, thel lgU
Ž .closure system CC associated with the order-preserving family CC . Wep l lgU

call fuzzy Herbrand model for p every fixed point of J or, equivalently,p
every element of CC . In other words, a fuzzy subset s is a fuzzy Herbrandp

Ž .model for p if and only if every cut C s, l is an Herbrand model for
Ž . Ž .C p, l . Also we say that J s is the minimal fuzzy Herbrand modelp

containing s and, in particular, we call the least fuzzy Herbrand model M ofp
Ž .p the fuzzy subset J 0 . It is immediate thatp

J* s a s Sup l g U N C s j p , l & a . 10.3� 4Ž . Ž . Ž . Ž .

From the point of view of expert systems theory, we may interpret the
Ž .Ž .number J* s a as a valuation of the truth degree of a , given the

‘‘general theory’’ p and the available fuzzy information s. In this case it is
very natural to assume that both s and p are finite, and therefore if
l ) l ) ??? ) l are the elements of the codomain of s j p different1 2 n

Ž . Žfrom zero, in 10.3 we have to consider only the programs C s j
. Ž .p, l , . . . , C s j p, l .1 n
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