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Fuzzy subgroups and similarities
F. Formato, G. Gerla, L. Scarpati

Abstract Given a set S, we show that there is a strict relation
between the notion of similarity on S and the one of fuzzy
subgroup of transformations in S . Such a relation enables us to
extablish a connection between fuzzy subgroups and distances.
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1
Introduction
Just as the notion of fuzzy subset generalizes that of the
classical subset, the concept of similarity can be considered as
a many-valued generalization of the classical notion of
equivalence. The definition of fuzzy relation from X to Y as
a fuzzy subset of X]Y was first proposed by Zadeh (see for
example [14]). Subsequently, many authors, such as
Chakraborty and Das [2] Valverde, Trillas and Jacas [5, 12,
13], Ovchinikov [8, 9] have widely studied the similarities in
various contexts. Another basic notion is the one of fuzzy
subgroups proposed by Rosenfeld in [10].

In this paper we study the link existing between the notion
of fuzzy subgroup and the one of similarity. In fact, given a set
S, we will show that any fuzzy subgroup of transformations in
S is associated with a similarity on S and, conversely, any
similarity on S is associated with a fuzzy subgroup of
transformations on S. More precisely, in Sect. 2, we give some
preliminary notions. In Sect. 3, we show how it is possible to
define an equivalence relation starting from a group of
transformations and conversely how to define a group of
transformations starting from an equivalence relation. In Sects.
4 and 5, the results of the previous paragraph are extended to
the fuzzy case, i.e. to the case in which we have similarities and
fuzzy subgroups. In Sect. 6 we recall the well-known
relationship between the notion of similarity and that of
distance (see for examples Ruspini [11] and Valverde [13]).

Finally, in Sect. 7 we use this to state a connection between
fuzzy subgroups and distances. For the sake of simplicity, we
refer to the lattice [0, 1], but most of our results can be
extended to every complete and completely distributive lattice.

2
Preliminaries
Let S be a set, then a fuzzy subset of S is any map s from S to
[0, 1]. We denote by F(S) the class of fuzzy subsets of S. The
fuzzy subsets of S]S are also called fuzzy relations. Given
x3S, the value s(x)3[0, 1] is understood as the degree or
truth value of x being an element of the subset s. The basic
notions of set theory are extended to the fuzzy subsets as
follows. The inclusion relation is defined by setting, for every
pair s and s@ of fuzzy subsets

s-s@ 8 s(x)Os@(x) for every x3S. (1)

Denote by s and ' the maximum and the minimum operator
in [0, 1] and, by 2 the map defined by setting 2(x)\1[x.
Then, the union sXs@ and the intersection sWs@ of s and s@
are defined by setting for every x3S

(sXs@)(x)\s(x)ss@(x) and (sWs@)(x)\s(x)'s@(x). (2)

In a similar way, one defines the union and the intersection
of a family of fuzzy subsets. Finally, we define the complement
\s of s by setting

(\s)(x)\2s(x). (3)

In this way, F(S) becomes an algebraic structure (F(S),
X, W , \) that is a complete lattice with an involution. As
a matter of fact, such a structure is the direct power of the
structure ([0, 1], s, ', 2) with index set S. We say that
a fuzzy subset s is ‘‘crisp’’ provided that s(x)3M0, 1N for every
x3S. We can identify the class of subsets of S with the class of
crisp subsets of S in an obvious way. Given a fuzzy subset s of S,
for every j3[0, 1] the subsets

C(s, j)\Mx3S Ds(x)PjN and O(s, j)\Mx3S Ds(x)[jN (4)

are called the closed j-cut and the open j-cut of s, respectively.
The main properties of the cuts are given in the following
proposition.

Proposition 1 Let s and s@ be fuzzy subsets, then for every
j3[0, 1]

(a) C(s, 0)\S,
(b) jOj@ N C(s, j).C(s, j@)

1



Table 1.

T(a, b) maxMa]b[1, 0N minMa, bN a ' b

a]b minM1[a]b, 1N G
1

b
if aOb,

otherwise, G
1

b
a

if aOb,

otherwise,

a%b 1[Da[bD G
1

minMa, bN
if a\b,

otherwise, G
1

.*/ Ma,bN

.!9 Ma,bN

if a\b,

otherwise,

2a 1[a

G
1

0

if a\0,

otherwise, G
1

0

if a\0,

otherwise.

(c) s-s@ N C(s, j)-C(s@, j)
(d) C(s, j)\WkWjO(s, k)
(e) C(sXs@, j)\C(s, j)XC(s@, j),
(f ) C(sWs@, j)\C(s, j)WC(s@, j).

We can interpret the connective ‘‘and’’ by a suitable binary
operation on [0, 1]. Usually, one refers to the class of
continuous t-norms defined as follows.

Definition 2 Let T : [0, 1]2][0, 1] be a binary operation. Then
T is called a triangular norm, in brief a t-norm, if the following
properties hold:

(i) T is associative,
(ii) T is commutative,

(iii) T is nondecreasing in both variables,
(iv) T(x, 1)\x ∀x3[0, 1].

A t-norm T is called continuous provided that it preserves
the least upper bounds. T is called Archimedean if T(x, x)\x
for any x3[0, 1].

Given a continuous triangular norm T, we can define the
implication and the equivalence, respectively, as follows:

x ]
T

y\maxMz D T(x, z)O yN, (5)

x%
T

y\T((x]
T

y), (y ]
T
x)). (6)

Table 1 provides examples of t-norm with the related
implication and equivalence. In particular, in the first column
we indicate the Lukasiewicz logical connectives.

In the following, * always denotes a continuous t-norm and
we write x*y instead of *(x, y).

The notion of similarity or fuzzy equivalence is on the basis
of fuzzy set theory and the whole theory of fuzzy sets can be
based on such a notion. In fact, we can define the degree with
which an element x belongs to a fuzzy set as the degree of
similarity of x to a suitable ‘‘prototype’’ in a given set of
prototypes (see for example [13, 12]).

Definition 3 A*-similarity, in brief similarity, on a domain S is
a fuzzy relation R : S]S][0, 1] of S such that the following
properties hold:

(i) R(x, x)\1 for every x3S (reflexivity)
(ii) R(x, y)PR(y, x) for every x, y3S (symmetry)

(iii) R(x, z)PR(x, y)*R(y, z) for every x, y, z3S
(*-transitivity).

The set E(S) of similarities is ordered by the inclusion
relation. Moreover, we have the following proposition.

Proposition 4 Let E(S) be the set of all similarities on S. Then
(E(S), -) is a complete lattice.

If * corresponds to the minimum we can characterize the
just given notion in terms of cuts. Indeed, one proves that only
R is a similarity on a set S if and only if every closed cut
C(R, j) is an equivalence relation on S.

3
A natural correspondence between equivalences and
subgroups
Let S be a set and denote by &

S
the group of transformations of

S. We will show that, given a subgroup of &
S

, we can define an
equivalence on S and, conversely, that, given an equivalence on
S, we can define a subgroup of &

S
. Indeed, let G-&

S
. Then we

can set:

{
G
\M(x, y)3S]S D &g3G : g(x)\yN. (7)

In other words, x is related with y provided that
a transformation in G exists such that y is the image of
x through it. The proof of the following proposition is a matter
of routine.

Proposition 5 Let G-&
S

be a subgroup of &
S

. Then {
G

is an
equivalence relation.

The complete classes of equivalence module {
G

are called
‘‘orbits’’. Then the orbit of x is [x]

G
\Mg(x) Dg3GN.

Conversely, given a binary relation { in S, we can define the
set of transformations

G{\M f3&
S
Dx{f (x) for any x3SN. (8)

Then a transformation f belongs to G{ provided that every
element x is related with its image f (x). The proof of the
following proposition is a matter of routine.

Proposition 6 Let { be an equivalence relation. Then G{ is
a subgroup of &

S
.

Given a subgroup G of &
S

, we can consider the equivalence
{

G
and successively the subgroup G{

G
. Also, given an

equivalence relation { on S we can define the subgroup
G{ and therefore the equivalence {

G{
. The following

proposition shows the connection between G and G{
G

and
between { and {

G{
.
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Proposition 7 For every subgroup G of &
S

, we have that
G{

G

.G. For every equivalence relation { on S, the relation
{

G{
coincides with {.

Proof. We have

{
G
\M(x, y) D&g3G : g(x)\yN

and therefore

G{
G

\M f3&
S
D ∀x x{

G
f (x)N\M f3&

S
D∀x &g3G : g(x)

\f (x)N.G.

Also, given an equivalence relation {, we have

x{
G{

y8&g3G{ : g(x)\y8&g : ∀z z{g(z)

and g(x)\yNx{y .

Nx{y.

Conversely, let x{y and let’s define the following
transformation:

g(z)\G
x if z\y,
y if z\x,
z otherwise.

Then we have that g3G{ and g(x)\y. Thus x{
G{

y.

Observe that G{
G
OG, in general. For example, if we assume

that S is the set of points of the Euclidean plane and G is the
group of the translations, then it is immediate that G{

G
is the

whole group &
S

.

4
Any fuzzy group defines a similarity
In this section and in the next one we extend the just given
definitions and results to the fuzzy subgroups and similarities.

The notion of fuzzy subgroups is defined as a many valued
extension of the classical notion of subgroups (as an example
see [1, 10]).

Definition 8 Let (G, ' , ~1, e) be a group. Then a *-fuzzy
subgroup, in brief a fuzzy subgroup, of G is a fuzzy subset GI of
G such that the following properties hold:

(i) GI (e)\1,
(ii) GI (x~1)PGI (x) for every x3G,

(iii) GI (x 'y)PGI (x)*GI (y) for every x, y3G.

As in the classical case, the following proposition holds.

Proposition 9 Let F(G) be the class of fuzzy subgroups of G.
Then (F(G), -) is a complete lattice.

Given a fuzzy subset GI : &
S
] [0, 1] of &

S
, we define a fuzzy

relation RGI in the following way:

RGI (x, y)\sup
g|&

S

MGI (g) D g(x)\yN. (9)

We can consider RGI (x, y) as a multivalued valuation of the
claim that a transformation g in GI exists such that g(x)\y.

Proposition 10 Let GI be a fuzzy subset of &
S

. If the identity
is belongs to GI , i.e., GI (is)\1, then RGI is reflexive. If

GI (g~1)PGI (g) for every g3&
S

, then RGI is symmetric. If
GI (h ° g)PGI (g) * GI (h), then RGI is *-transitive.

Proof. Assume GI (i
s
)\1. Then

RGI (x, x)\sup
g|&S

MGI (g) D g(x)\xN\GI (i
s
)\1.

Assume GI (g~1)PGI (g) for every g3&
S

. Then

RGI (x, y)\sup
g|&S

MGI (g) D g(x)\yN

Osup
g|&S

MGI (g~1) D g~1(y)\xN\RGI (y, x)

for every x, y3S. Finally, assume that GI (h ° g)PGI (g)*GI (h),
then

RGI (x, y)*RGI (y, z)\sup
g|&S

MGI (g) D g(x)\yN*sup
h|&S

MGI (h) D h(y)\zN

\ sup
g,h|&S

MGI (g) *GI (h) D g(x)\y and h(y)\zN

O sup
g,h|&S

MGI (h ° g) D h(g(x))\zN\RGI (x, z).

From Proposition (10), we have the following theorem.

Theorem 11 Let GI be a *-fuzzy subgroup of &
S

, then RGI is
a *-similarity in S.

In accordance with the classical case, given a3S we call
orbits of a through GI the fuzzy set [a] GI : S ] [0, 1] defined by
setting

[a] GI (x)\sup
g|&S

MGI (g) D g(a)\xN. (10)

Following [8], given a similarity R, we define an R-class of an
element a3S as the fuzzy subset [a] R of S whose membership
function is

[a] R(x)\R(a, x). (11)

In the case R is determined by a fuzzy subgroup GI , an R-class
coincides with an orbit.

5
Any similarity defines a fuzzy group
Given a fuzzy relation R, we can define a fuzzy subset GI R of
&
S

by setting, for any f3&
S

GI R( f )\inf
x|S

R(x, f (x)). (12)

We can consider GI R( f ) as a multivalued valuation of the
claim that every f (x) is related with x. In a geometrical
interpretation, if R(x, y) is a valuation of the claim that x is
‘‘near’’ to y, then GI R is the class of transformations f such that
f (x) is ‘‘near’’ to x for any point x.

The following proposition gives the conditions under which
GI R can be considered as a fuzzy subgroup.

Proposition 12 Let R be a fuzzy relation on S and f, g3&
S

. If
R is reflexive, then GI R(is)\1. If R is symmetric, then GI R( f )O
GI R(f ~1). If R is *-transitive, then GI R( f )*GI R(g)OGI R(g ° f ).
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Proof. If R is reflexive, we have GI R(i
s
)\inf

x|S
R(x, x)\1.

Assume that R is symmetric, then

GI
R

( f )\inf
x|S

R(x, f (x))\inf
y|S

R( f ~1(y), f ( f~1(y)))

\inf
y|S

R( f ~1(y), y)Oinf
y|S

R(y, f~1(y))\GI R( f ~1).

Finally, assume that R is transitive, then

GI R ( f )* GI R(g)\(inf
x|S

R(x, f (x))) * (inf
y|S

R(y, g(y)))

\inf
x|S

R(x, f (x)) * inf
x{|S

R( f (x@), g( f (x@)))

\ inf
x,x{|S

(R(x, f (x))*R( f (x@), g( f (x@))))

Oinf
x|S

(R(x, f (x))*R( f (x), g( f (x))))

Oinf
x|S

R(x, g( f (x)))\GI R(g ° f )

As an immediate consequence, we have the following theorem.

Theorem 13 Let R be a *-similarity in S. Then GI R is a *-fuzzy
subgroup of &

S
.

Theorems 11 and 13 show that there is a strict connection
between the fuzzy subgroups of &

S
and the similarities on S.

Notice that it is not necessary to refer to &
S

and that also
a fuzzy subgroup of any (abstract) group defines a similarity.
This is because any group G is isomorphic to a suitable group
of transformations in G. Indeed, denote by SaT the element of
&
G

defined by setting SaT(x)\ax for every x in G. Then, it
immediately follows that the map h : G]&

G
defined by setting

h(a)\SaT is an embedding of G in &
G

. Let GI : G ] [0, 1] be
any fuzzy subgroup of G. Then GI defines also a fuzzy subgroup
GI @: &

G
] [0, 1] of &

G
by setting GI @( f )\GI (a) if f coincides with

SaT and GI @( f )\0 otherwise. It immediately proves that the
similarity R in G associated with GI @ in accordance with
Theorem 11 satisfies the simple equality R(x, y)\GI (xy~1).
Then, if GI is crisp R is the well-known equivalence associated
with a subgroup.

6
Distances and similarities
In this section we recall some well-known results establishing
a close relation between the notion of similarity and that of
distance (see for examples [13, 12]). More specifically, we call
extended real-valued pseudometric or simply extended
pseudometric, on a set S, a map d : S]S ] [0, ]R] such that

(i) d(x, x)\0,
(ii) d(x, y)\d(y, x),

(iii) d(x, y)Od(x, z)]d(z, y) for any x, y, z3S,

where we assume that x](]R)\(]R)]x\]R for any
x3[0, ]R]. In order to explicit such a relation, at first we
recall the basic representation theorem for continuous
Archimedean t-norms (see for example [6]). In the following,
given an injective map f : [0, 1] ] [0, ]R] we denote by

f *~1+ the pseudoinverse of f, i.e.

f *~1+(x)\G
f~1(x)

0

if x3f ([0, 1]),

otherwise.
(13)

Theorem 14 Let * be a function from [0, 1]2 into [0, 1]. Then

* is a continuous Archimedean t-norm if and only if there
exists a continuous strictly decreasing function
f : [0, 1] ] [0, ]R] with f (1)\0 such that for all x, y in [0, 1]

x * y\f *~1+( f (x)]f (y)). (14)

If the conditions of Theorem 14 hold then we say that f is an
additive generator of *.

For example, the functions f (x)\[ln x and f (x)\1[x are
additive generators for the product and Lukasiewitz t-norms,
respectively.

The duality between pseudometrics and similarities, in the
case of continuous Archimedean t-norms, has been established
by Valverde in [13].

Theorem 15 Let d be an extended pseudometric on S and
f a continuous and strictly decreasing function f : [0, 1] ]

[0, ]R] with f (1)\0. Then the fuzzy relation R
$

defined by
setting

R
$

(x, y)\f *~1+(d(x, y)) (15)

is a *-similarity on S, where * is the continuous, Archimedean
t-norm generated by f.

The converse also holds.

Theorem 16 Let * be a continuous Archimedean t-norm, f an
additive generator of * and R a *-similarity on S. Then the
function dR defined by setting

dR(x, y)\f (R(x, y)) (16)

is an extended pseudometric on S.
For example, if d is an extended pseudometric on S and

f (x)\[ln(x), then the t-norm * generated by f is the usual
product and a similarity R

$
is obtained by setting

R
$

(x, y)\e~d(x, y), ∀x, y3S. (17)

Conversely, if R is a similarity with respect to the product and
we set

dR(x, y)\[ln(R(x, y)), (18)

then dR is an extended pseudometric.
Furthermore, if d : S]S ] [0, 1] is a pseudometric and

f (x)\1[x, then the t-norm * generated by f is the t-norm of
Lukasiewicz and a similarity R

$
is obtained by setting

R
$

(x, y)\1[d(x, y), ∀x, y3S. (19)

Conversely, if R is a similarity with respect to the t-norm of
Lukasiewicz and we set dR(x, y)\1[R(x, y), then dR is
a pseudometric.

The minimum is not Archimedean, obviously, so we cannot
apply the just proven theorems. Nevertheless, the following
proposition holds where we call ultrapseudometric
a pseudometric such that, for any x, y, z3S,
d(x, y)Od(x, z)sd(z, y).

Theorem 17 Let * be the t-norm of the minimum,
d : S]S][0, 1] a map and set

R(x, y)\1[d(x, y), ∀x, y3S. (20)
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Then R is a *-similarity if and only if d is an
ultrapseudometric.

Proof. We confirm ourselves to observe that, if R is

* -transitive, then

1[d(x, z)P(1[d(x, y))'(1[d(y, z))

\1[(d(x, y)sd(y, z))

and therefore

d(x, z)Od(x, y)sd(y, z) for all x, y, z in S.

7
Distances and fuzzy subgroups
In account of the results exposed in the previous sections, we
can establish a relation between the notions of fuzzy subgroup
of &

S
and distance in S.

Consider at first the case of continuous Archimedean t-
norms.

Theorem 18 Let d be an extended pseudometric on
S, f : [0, 1] ] [0, ]R] a continuous and strictly decreasing
function and * the t-norm generated by f. Then the fuzzy subset
GI

d
of &

s
defined by setting, for any g3&

S

GI
d
(g)\f *~1+ Asup

x|S
d(x, g(x))B (21)

is a *-fuzzy subgroup.

Proof. Let R
$

(x, y)\f *~1+(d(x, y)). By Theorem 15, R
$

is
a *-similarity.
By Proposition 12, we have that the fuzzy subset GI

$
(g)

GI
$

(g)\inf
x|S

R
$

(x, g(x))\inf
x|S

f *~1+(d(x, g(x)))

\f *~1+ Asup
x|S

d(x, g(x))B
is a *-fuzzy subgroup.

As an example, if d is the usual euclidean distance and
f (x)\[ln x , then the equality

GI
$
(g)\e[sup

x|S
d(x,g(x))\inf

x|S
e~d(x, g(x)) (22)

defines a fuzzy subgroup with respect to the t-norm of the
product. For such a fuzzy subgroup, if g is a translation of
length h, then GI

$
(g)\e~h, if g is a rotation GI

$
(g)\e~=\0. In

the same manner, if d is a bounded pseudometric and
f (x)\1[x, then the equality

GI
$

(g)\1[sup
x|S

(x, g(x)) (23)

is a fuzzy subgroup with respect to the t-norm of Lukasiewitz.
Notice that the cuts of the so-defined fuzzy subgroups are

related with the notion of e-translation introduced in [4].
Indeed, given an extended pseudometric d and an additive
generator f of a t-norm, a transformation g3&

S
is an e-

translation if and only if GI
$

(g)Pd, with f (d)\e and d3[0, 1].
Conversely, any fuzzy subgroup defines an extended

pseudometric.

Theorem 19 Let GI be a *-fuzzy subgroup of &
S

where * is
a strict continuous and Archimedean t-norm. Then, given an
additive generator f for *,

d(x, y)\f Asup
g|&S

MGI (g) D g(x)\yNB (24)

is an extended pseudometric on S.

Proof. By Theorem 11,

RGI (x, y)\sup
g|&S

MGI (g) D g(x)\yN

is a *-similarity. Since * is a continuous and Archimedean
t-norm, by Valverde’s theorem, f (RGI (x, y)) is a pseudometric
on S, where f is an additive generator of * .

As an example, if * is the t-norm of the product and GI is
a *-fuzzy subgroup, then the function d defined by setting for
any x, y3S

d(x, y)\[lnAsup
g|&S

MGI (g) D g(x)\yNB (25)

is an extended pseudometric. If * is the t-norm of Lukasiewitz
and GI is a *-fuzzy subgroup, then by setting

d(x, y)\1[Asup
g|&S

MGI (g) D g(x)\yNB , (26)

we obtain a pseudometric.

In the case that * is the t-norm of the minimum, *-fuzzy
subgroups give rise to ultra-pseudometrics, and conversely, as
stated in the following propositions.

Proposition 20 Let * be the t-norm of the minimum and let
GI be a fuzzy *-subgroup. Then the following function
d : S]S ] [0, 1]

d(x, y)\1[sup
g|&S

MGI (g) D g(x)\yN (27)

is an ultra-pseudometric.

Proof. By Theorem 11

RGK (x, y)\sup
g|&S

MGI (g) D g(x)\yN

is a *-similarity. Since * is the t-norm of the minimum, the
thesis follows by Theorem 17.

Proposition 21 Let d : S]S][0, 1] be an ultra-pseudometric
and let * be the t-norm of the minimum. Then the fuzzy subset
GI defined by setting

GI ( f )\1[sup
x|S

d(x, f (x)) (28)

for any f3&
S

, is a fuzzy *-subgroup of &
S

.

Proof. By Theorem 17 the relation R(x, y)\1[d(x, y) is
a *-similarity and therefore, by Theorem 13 GI R is a fuzzy

*-subgroup. Moreover,

GI R( f )\inf
x|S

R(x, f (x))\inf
x|S

(1[d(x, f (x)))

\1[sup
x|S

d(x, f (x)).
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