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Abstract

An approach to fuzzy control based on fuzzy logic in narrow sense (fuzzy inference rules + fuzzy set of logical axioms)
is proposed. This gives an interesting theoretical framework and suggests new tools for fuzzy control. c© 2001 Elsevier
Science B.V. All rights reserved.
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0. Introduction

The aim of control theory is to de4ne a function
f :X →Y whose intended meaning is to show that f (x)
is the correct answer given the input x. Fuzzy approach
to control, as devised in [17–19,13], furnishes an ap-
proximation of such a (ideal) function f :X →Y on
the basis of pieces of fuzzy information (fuzzy gran-
ules). This approximation is achieved by a system of
fuzzy IF–THEN rules like

IF x is A THEN y is B

where A and B are labels for fuzzy subsets. Now, as it
is well known, the interpretation of such a rule as a log-
ical implication A(x)→B(y) in a formalized logic is
rather questionable (see, e.g., [9]). As an example, ob-
serve that, by generalization rule, A(x)→B(y) entails
the formula ∀x∀y(A(x)→B(y)). In turn, by the virtue
of two rewriting rules for the reduction of a formula
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in prenex form (see, e.g., [14], Lemma 2:30) such a
formula is now equivalent to ∀x(A(x)→∀yB(y)) and
therefore to (∃xA(x))→∀yB(y). Then, we can admit
the IF–THEN rule only in the cases that ∃xA(x) is false
or ∀yB(y) is true. This is obviously unsatisfactory. We
think that, as a matter of fact, the users of a IF–THEN
system of rules implicitly assumes a dependence of
y from x while such a dependence is not expressed
in a IF–THEN rule at all. In other words, they write
A(x)→B(x) to denote the formula A(x)→B(f (x))
where such a dependence is expressed.

In literature, there are several interesting attempts
to reduce fuzzy control to fuzzy logic in narrow sense.
For example, see [6,9,11]. In this paper, we propose a
diBerent reduction in which we give a logical meaning
to a fuzzy IF–THEN rule by translating it into a 4rst-
order formula (namely, a clause) like

A(x) ∧ B(y) → Good(x; y):

The intended meaning of Good(x; y) is that given x
the value y gives a correct control (see also [5]). In
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accordance, we will show that the information car-
ried on by a system of fuzzy IF–THEN rules can be
represented by a fuzzy theory in a fuzzy logic. Since
such a theory is a fuzzy program, i.e., a fuzzy set
of Horn clauses, we also show that the computation
of the fuzzy function arising from a fuzzy IF–THEN
system is equivalent to the computation of the least
fuzzy Herbrand model of a fuzzy program. This gives
an interesting theoretical framework and new tools
for fuzzy control. Finally, we explore the possibility
of giving a logical meaning to the centroid method of
defuzzi4cation.

1. Preliminaries

Denote by U the real interval [0, 1], and let S be a
set. Then a fuzzy subset of S is any map s : S→U from
S to U and it is also called fuzzy granule of S. Given
�∈U , we denote byC(s; �) the �-cut {x∈ S: s(x)¿�}
of s. The set Supp(s) = {x∈ S: s(x) �= 0} is called the
support of s. We denote by P(S) (by Pf(S)) the class
of all (4nite) subsets of S and by F(S) the class
of all fuzzy subsets of S. Given a family (si)i∈I of
elements in F(S), we de4ne the union

⋃
i∈I si and

the intersection
⋂
i∈I si as the fuzzy subsets de4ned

by setting(⋃
i∈I
si

)
(x) = Sup

i∈I
si(x);

(⋂
i∈I
si

)
(x) = Inf

i∈I
si(x)

for any x∈ S. The complement − s of a fuzzy subset s
is de4ned by setting − s(x) = 1 − s(x) for any x∈X .
If (si)i∈I is directed, i.e., for any i; j∈ I , an index h
exists such that both si and sj are contained in sh, then
the union

⋃
i∈I si is also denoted by limi∈I si. A fuzzy

function f from X to Y is any fuzzy relation, i.e.,
any fuzzy subset f of X ×Y . The domain of a fuzzy
function f is the fuzzy subset Dom(f) of X de4ned
by setting

Dom(f)(x) = Sup{f(x; y): y ∈ Y}:
We call fuzzy operator in S any map J :F(S)→
F(S) and we say that J is continuous if

lim
i∈I

D(si) = D

(
lim
i∈I
si

)

for every directed family (si)i∈I of elements in F(S).
Moreover, we say that J is a fuzzy closure operator if

(i) s⊆ s′ ⇒ J (s)⊆ J (s′) (order-preserving),
(ii) s⊆ J (s) (inclusion),

(iii) J (J (s)) = J (s) (idempotence).
A 2xed point of J is a fuzzy subset s such that

J (s) = s. Let H :F(S)→F(S) be a continuous op-
erator such that H (s)⊇ s for any fuzzy subset s and
de4ne D :F(S)→F(S) by setting

D(s) = Sup{Hn(s) | n ∈ N}:
Then it is immediate to prove that D is a continuous
closure operator, we call the closure operator gener-
ated by H.

A fuzzy closure system is any class C of fuzzy
subsets closed with respect to the 4nite and in4nite
intersections. Given a fuzzy closure system C and a
fuzzy set s, the intersections of all the elements in C
containing s is called the fuzzy subset generated by s.

A continuous T-norm, in brief a norm, is any
continuous, associative, commutative operation
� :U ×U→U , nondecreasing with respect to both
the variables such that x� 1 = x. A continuous T -co-
norm, in brief a co-norm, is an operation ⊕ obtained
from a norm � by setting x⊕y= 1−(1−x)� (1−y)
for any x; y in U . A basic example of norm is the
minimum, which we denote by � , and whose as-
sociated co-norm is the maximum, denoted by us
as �. The  Lukasiewicz norm is de4ned by setting
x�y= (x+y−1)� 0, the related co-norm is de4ned
by setting x⊕y= (x + y)� 1. Another simple norm
is the usual product whose related co-norm is de4ned
by setting x⊕y= x + y − xy.

Given two set X and Y and two fuzzy subsets
a :X →U and b :Y →U , the Cartesian product is the
fuzzy subset a× b :X ×Y →U of X ×Y de4ned by
setting

(a× b)(x; y) = a(x) � b(y)

for any x∈X and y∈Y . Given a 4nite subset X of S
we set

Incl(X; s)

=
{

1 if X = ∅;
s(x1) � · · · � s(xn) if X = {x1; : : : ; xn};

and we say that Incl(X; s) is the inclusion degree of
X in s (with respect to �).
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Fig. 1. Fuzzy granules of X .

Fig. 2. Fuzzy granules of Y .

2. Classical fuzzy control

Let f :X →Y be the ideal function which we will
approximate, then the fuzzy control theory suggests
to “granulate” the set X of possible inputs and the
set Y of possible outputs by a 4nite number of fuzzy
subsets. As an example, assume that X = [0; 10] is the
set of possible temperatures and Y = [0; 5] the set of
possible speeds of a ventilator. Then a granulation of
X can be furnished by the fuzzy quantities “little”,
“small”, “medium”, “big”, “very big” (see Fig. 1), a
granulation of Y can be given by the fuzzy quantities
“slow”, “moderate”, “fast” , “very fast” (see Fig. 2).
As in the classical case, any pair of fuzzy quantities
de4nes a fuzzy point, i.e. a two-dimensional fuzzy
granule, obtained as the Cartesian product of these
granules. As an example, the pair (small; fast) de-
4nes the fuzzy point small × fast :X ×Y →U . The
set of two-dimensional granules obtained in such a

way gives a “granulation” of X ×Y . The basic ques-
tion is to approximate the ideal function f :X →Y by
a 4nite number of these granules. This is achieved by
a system S of fuzzy IF–THEN rules like

IF x is Little THEN y is Slow;

IF x is Small THEN y is Fast;

IF x is Medium THEN y is Moderate;
IF x is Big THEN y is Veryfast;
IF x is Verybig THEN y is Moderate;

(2.1)

where “Little”, “Slow”, “Small”, “Fast”, “Medium”,
“Moderate”, “Big”, “Veryfast”, “Verybig”, are labels
for the fuzzy granules

little :X → U; small :X → U;
medium :X → U; big :X → U;
verybig :X → U; slow :Y → U;
fast :Y → U; moderate :Y → U;
veryfast :Y → U;

respectively. In the rules an expression as “x is Small”
is intended as an abbreviation of “x is equal to the
fuzzy quantity Small”. The whole system of rules says
that the ideal function f can be approximated by the
following table:

x y

Little Slow
Small Fast
Medium Moderate
Big Veryfast
Verybig Moderate

In turn, this table represents the fuzzy func-
tion obtained by the union of the fuzzy points
Little×Slow; Small ×Fast; Medium×Moderate;
Big×Veryfast; Verybig×Moderate. In a sense,
this is the fuzzy counterpart of the discretization pro-
cess in which a function f is partially represented by
a table like

x y

x1 y1

: : : : : :
xn yn

where x1; : : : ; xn are elements of X and y1; : : : ; yn the
corresponding elements in Y . In other words, a rule
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Fig. 3. The fuzzy function and the result of the defuzzi4cation
process.

as “IF x is Small THEN y is Fast” is not intended as
a logical implication but as a reading of the ordered
pair (Small ; Fast) in the table.

De�nition 2.1. A system S of IF–THEN fuzzy rules
is a system of rules like

IF x is Ai THEN y is Bi

where i= 1; : : : ; n and where the labels Ai and Bi
are interpreted by the fuzzy granules ai :X →U and
bi :Y →U . We associate any rule with the Cartesian
product ai× bi :X ×Y →U and the whole system
with the fuzzy function f de4ned by

f =
⋃

i=1;:::; n

ai × bi:

The second step is the defuzzi2cation process en-
abling us to associate a classical function f′ with the
fuzzy function f. Usually, the defuzzi4cation process
is obtained by the centroid method by setting, for
every r ∈ X ,

f′(r) =

∫
Y f(r; y)y dy∫
Y f(r; y) dy

:

In Fig. 3 both the fuzzy function f and the result f′ of
the defuzzi4cation process are represented (the used
triangular norm is the minimum �).

The 4nal phase is the learning process in which
the rules and the fuzzy granules associated with the
labels are changed until we can accept f′ as a good
approximation of the ideal function f .

More information on fuzzy control are in Chapter 4
of Gottwald [8].

3. Fuzzy deduction systems

We denote by F a set whose elements we interpret
as sentences of a logical language and we call them
formulas. If $ is a formula and � ∈ U , the pair ($; �) is
called a signed formula. To denote the signed formula
($; �) we can also write as

$ (�):

Any fuzzy set of formulas s : F→U can be identi-
4ed with the set {($; �)∈ F×U : s($) = �} of signed
formulas. We de4ne a fuzzy Hilbert system as a pair
S= (a;R) where a is a fuzzy subset of F, the fuzzy
subset of logical axioms, and R is a set of fuzzy rules
of inference. In turn, a fuzzy inference rule is a pair
r= (r′; r′′), where
• r′ is a partial n-ary operation on F whose domain

we denote by Dom(r),
• r′′ is an n-ary operation on U preserving the least

upper bound in each variable, i.e.,

r′′
(
x1; : : : ;Sup

i∈I
yi; : : : ; xn

)
= Sup

i∈I
r′′(x1; : : : ; yi; : : : ; xn): (3.1)

In other words, an inference rule r consists of
• a syntactical component r′ that operates on formu-

las (in fact, it is a rule of inference in the usual
sense),

• a valuation component r′′ that operates on truth-
values to calculate how the truth-value of the con-
clusion depends on the truth-values of the premises
[15,19].

We indicate an application of an inference rule r by
the picture

$1; : : : ; $n
r′($1; : : : ; $n)

;
�1; : : : ; �n

r′′(�1; : : : ; �n)
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whose meaning is that:
IF

you know that $1; : : : ; $n are true (at least) to the
degree �1; : : : ; �n

THEN
r′($1; : : : ; $n) is true (at least) at level r′′(�1; : : : ;
�n).

A proof % of a formula $ is a sequence $1; : : : ; $m of
formulas such that $m = $, together with the related
“justi2cations”. We call length of % the number m.
This means that, given any formula $i, we must specify
whether

(i) $i is assumed as a logical axiom, or
(ii) $i is assumed as an hypothesis, or

(iii) $i is obtained by a rule (in this case we must
also indicate the rule and the formulas from
$1; : : : ; $i−1 used to obtain $i).

Observe that we have only two proofs of $ whose
length is equal to 1. The formula $ with the justi4-
cation that $ is assumed as a logical axiom and the
formula $ with the justi4cation that $ is assumed as
an hypothesis. Moreover, as in the classical case, for
any i6m, the initial segment $1; : : : ; $i is a proof of
$i we denote by %(i). DiBerently from the crisp case,
the justi4cations are necessary since diBerent justi4-
cations of the same formula give rise to diBerent val-
uations. Indeed, let & : F→U be any initial valuation
and % a proof. Then the valuation Val(%; &) of % with
respect to & is de4ned by induction on the length m
of % as follows. If the length of % is 1, then we set

Val(%; &) = a($m)

if $m is assumed as a logical axiom;

Val(%; &) = &($m)

if $m is assumed as an hypothesis:

Otherwise, we set

Val(%; &)

=




a($m)

if $m is assumed as a logical axiom;

&($m)

if $m is assumed as an hypothesis;

r′′(Val(%(i(1)); &); : : : ; Val(%(i(n)); &))

if $m = r′($i(1); : : : ; $i(n));

where, 16i(1)¡m; : : : ; 16i(n)¡m. If $ is the for-
mula proven by %, the meaning we assign to Val(%; &)
is that:
given the information &; % assures that $ holds at
least at level Val(%; &).

De�nition 3.1. Given a fuzzy Hilbert’s system S; we
call deduction operator associated with S the opera-
tor D : F(F)→F(F) de4ned by setting

D(&)($) = Sup{Val(%; &): % is a proof of $}; (3.2)

for every initial valuation & and every formula $.

The meaning of D(&)($) is still
given the information &; we may prove that $ holds
at least at level D(&)($),

but we also have the statement that
D(&)($) is the best possible valuation we can draw
from the information &.

We say that a proof %= $1; : : : ; $n is normalized if the
formulas in % are pairwise diBerent and two integers
h and k exist such that 16h6k6n and
• $1; : : : ; $h are the formulas assumed as hypothesis,
• $h+1; : : : ; $k the formulas justi4ed as logical

axiom,
• $k+1; : : : ; $n are obtained by an inference rule.
obviously, in computing D(&)($) we can limit our-
selves only to normalized proofs.

We are interested in a very simple logic, in which
F is the set of formulas of a 4rst-order logic, a the
characteristic function of the set Tau of all logically
true formulas and R contains the two rules:
Generalization

$
∀xi($) ;

�
�
:

Fuzzy Modus Ponens

$; $→ ,
,

;
�; -
�� - :

We call canonical extension of a 2rst-order logic
by a continuous triangular norm � such a kind of
fuzzy logic. Also, we can consider some derived rule.
As an example, if Q($) denotes the universal clo-
sure of the formula $, we can consider the Extended
Generalization

$
Q($)

;
�
�
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that we can obtain by an iterate application of Gen-
eralization Rule. We have also the Extended fuzzy
Modus Ponens
$1; : : : ; $n; $1 ∧ · · · ∧ $n → $

$
;

�1; : : : ; �n; �
�1 � · · · � �n � �

we can obtain by observing that the formula

($1 ∧ · · · ∧ $n → $) → ($1 → (· · · ($n → $) · · ·))

is logically true. Finally, we have the Particulariza-
tion Rule
$(x1; : : : ; xn)
$(t1; : : : ; tn)

;
�
�

where t1; : : : ; tn are ground terms. Such a rule
can be obtained by observing that the formula
$(x1; : : : ; xn)→ $(t1; : : : ; tn) is logically true.

Theorem 3.2. Let D be the deduction operator of a
canonical extension of a 2rst-order logic. Then;

D(&)($)

= Sup{Incl(X; &): X ∈ Pf(F) and X � $}: (3.3)

Proof. Assume that $∈Tau. Then, D(&)($) = 1 and,
since ∅ � $ and Incl(∅; &) = 1, (3.3) is proved. Other-
wise, set

d = Sup{&(x1) � · · · � &(xn): x1; : : : ; xn � $}
and let $1; : : : ; $n formulas such that $1; : : : ; $n � $.
We claim that a proof % of $ exists such that
Val(%; &) = &($1)� · · ·� &($n). In fact, one can recall
that, in a 4rst-order calculus a weak form of Deduc-
tion Theorem holds and therefore that $1; : : : ; $n � $
entails that Q($1)→ (· · · (Q($n)→ $)) is logically
true where Q($) denotes the universal closure of $.
Then, if $1; : : : ; $n � $, we obtain the following proof
together with the related valuation:

$1; &($1);
: : : : : :
$n; &($n);
Q($1); &($1);
: : : : : :
Q($n); &($n);
Q($1) → (· · · (Q($n) → $)); 1;
Q($2) → (· · · (Q($n) → $)); &($1);
: : : : : :
$ &($1) � · · · � &($n):

Since Val(%; &) = &($1)� · · ·� &($n), this proves that
d6D(&)($).

Conversely, to prove that d¿D(&)($), observe that,
for any x∈U , it is x � x6x � 16x and therefore
xn6x for any integer n. Let % = $1; : : : ; $m be any
normalized proof of $ and assume that $1; : : : ; $h are
the formulas assumed as an hypothesis. Then it is im-
mediate that n(1); : : : ; n(h) exists such that

Val(%; &) = &($1)n(1) � · · · � &($n)n(h):
By observing that $1; : : : ; $k � $ and that

&($1)n(1) � · · · � &($h)n(h)6&($1) � · · · � &($h);
we can conclude that Val(%; &)6d. Thus D(x)6d.

Proposition 3.3. Let D be the deduction operator of
the canonical extension of a 2rst-order logic by the
minimum �. Then
D(&)($) = Sup{� ∈ U : C(&; �) � $}: (3.4)

Proof. In the case that $ is logically true, i.e., ∅ � $,
both the sides of (3.3) are equal to 1. Otherwise, ob-
serve that if X is a 4nite set such that Incl(X; &) = �,
then X ⊆C(&; �) and therefore C(&; �)� $. Con-
versely, if C(&; �)� $, then a 4nite subset X of
C(&; �) exist such that X � $. It is immediate that
Incl(X; &)¿ �.

Observe that (3.3) is based on a multivalued inter-
pretation of the metalogic claim

“a proof % of $ exists whose hypotheses are
contained in &”:

This in accordance with the fact that in a 4rst-order
multivalued logics and in fuzzy logic the existen-
tial quanti4er is usually interpreted by the operator
Sup :P(U )→U . Now, this is rather questionable
everywhere as for why the logical connective “and”
is interpreted by a triangular norm diBerent from the
minimum. In fact, the operator used to interpret ∃
must extend the interpretation of the binary connec-
tive “or”, to the in4nitary case i.e., the co-norm ⊕
associated with �. Obviously, Sup satis4es such a
condition only in the case that � is the minimum and
therefore ⊕ is the maximum. Then a natural candidate
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for the general case is the operator ⊕ : P(U )→U
de4ned by setting, for any subset X of U ,⊕

(X ) = Sup{x1 ⊕ · · · ⊕ xn: x1; : : : ; xn ∈ X }:
In accordance, it should be interesting to examine a
fuzzy logic whose deduction operator is de4ned by

D(&)($) =
⊕

({Incl(X; &): X ∈Pf(F) and X � $}):

(3.5)

Obviously, such a proposal requires further investiga-
tion. For example, it is not clear whether D is a closure
operator or not.

4. Fuzzy programs and fuzzy Herbrand models

We recall some basic notions in logic programming
(see, e.g., [12]). Let L be a 4rst-order language with
some constants and denote the related set of formulas
by F. A ground term of L is a term not containing
variables, the set UL of ground terms of L is called
the Herbrand universe for L. If L is function free,
then UL is the set of constants. A ground atom is
an atomic formula not containing variables and the
set BL of ground atoms is called the Herbrand base
for L. We call any subset M of BL an Herbrand
interpretation. The name is justi4ed by the fact that
M de4nes an interpretation of L in which
• the domain is the Herbrand universe UL,
• every constant in L is assigned with themselves,
• any n-ary function symbol f in L is interpreted

as the map associating any t1; : : : ; tn in UL with the
element f(t1; : : : ; tn) of UL,

• any n-ary predicate symbol r is interpreted by the
n-ary relation r′ de4ned by setting

(t1; : : : ; tn) ∈ r′ ⇔ r(t1; : : : ; tn) ∈ M:
A ground instance of a formula $ is a closed formula
, obtained from $ by suitable substitutions of the free
variables with closed terms. Given a set X of formulas,
we set

Ground(X ) = {$ ∈ F: , ∈ X exists s:t: $ is a
ground instance of ,}:

A de2nite program clause is either an atomic for-
mula or a formula of the form ,1∧· · ·∧,n→ ,, where

,, ,1; : : : ; ,n are atomic formulas. We denote by PC
the set of program clauses. A de2nite program is a set
P of de4nite program clauses. We associate P with
the operator JP : P(BL)→P(BL) de4ned by setting,
for any subset X of BL,

JP(X ) = {$ ∈ BL: $1 ∧ · · · ∧ $n → $ ∈ Ground(P);

$1; : : : ; $n ∈ X }
∪{$ ∈ BL: $ ∈ Ground(P)} ∪ X:

JP is called the immediate consequence operator. We
denote by HP the closure operator generated by JP,
i.e., for any set X of ground atoms

HP(X ) =
⋃
n∈N

(JP)n(X ): (4.1)

De�nition 4.1. We call Herbrand model of P any
4xed point of JP (equivalently, of HP). Given a
set X of ground atoms, we say that HP(X ) is the
least Herbrand model for P containing X. We de-
note the model HP(∅) by MP and we call it the least
Herbrand model for P.

Let D denote the deduction operator of a 4rst-
order calculus and � the associate consequence rela-
tion. Then the following theorem shows that the least
Herbrand model for P is the set of ground atoms that
we can derive from P.

Theorem 4.2. For every program P;

MP = {$ ∈ BL: P � $}: (4.2)

The above de4nitions can be extended in an obvious
way to many-sorted languages.

To extend the above de4nitions to the fuzzy frame-
work, observe that there is no adequate semantics for
the proposed fuzzy logic (see also observation (d) at
the end of the paper). So, we de4ne a fuzzy Herbrand
interpretation ofL as the restriction m of a fuzzy the-
ory to BL. Like the classical case, m de4nes a multi-
valued interpretation of L in the Herbrand universe
in which any n-ary predicate symbol r is interpreted
by the fuzzy n-ary relation r′ on UL de4ned by setting

r′(t1; : : : ; tn) = m(r(t1; : : : ; tn)):

We call fuzzy program any fuzzy subset p : PC→U
of program clauses. We de4ne the least-fuzzy
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Herbrand model of p as the fuzzy subset of ground
atoms that can be proved from p.

De�nition 4.3. Let D be the deduction operator of a
canonical extension of a predicate calculus by a norm
and let p be a fuzzy program. Then, the least-fuzzy
Herbrand model for p is the fuzzy set mp : BL →U
de4ned by setting

mp($) = D(p)($) (4.3)

for any $ ∈ BL.

Then, if $ is a ground atom, in accordance with (3.3)

mp($) = Sup{Incl(P; p): P ∈ Pf(Supp(p))

s:t: $ ∈ MP}: (4.4)

Assume that the triangular norm under consideration is
the minimum and denote byP(�) the program C(p; �).
Then, in accordance with Proposition 3.3,

mp($) = Sup{� ∈ U : $ ∈ MP(�)}:
In the case that Supp(p) is 4nite, in the co-domain
of p there are only a 4nite number of elements
�(1)¿�(2)¿ · · ·¿�(n) diBerent from zero. As a con-
sequence, to calculate mp($) it is suPcient to calculate
the least Herbrand models MP(�(1)) ⊆ · · ·⊆MP(�(n))

by a parallel process.

5. Fuzzy control and logic programming

Consider a fuzzy system S of IF–THEN rules like

IF x is A1 THEN y is B1;

· · · (5.1)

IF x is An THEN y is Bn:

To give a logical interpretation of such a system, we
consider Ai and Bi as names for fuzzy predicates and
not labels for fuzzy granules. In accordance, we inter-
pret “x is Ai” and “y is Bi” as “x satis2es Ai” and “y
satis2es Bi”, respectively. Moreover, we associate the
IF–THEN fuzzy system (5.1) with the set

A1(x) ∧ B1(y) → Good(x; y) (�1);
· · ·
An(x) ∧ Bn(y) → Good(x; y) (�n)

of signed clauses, where �1 = · · · = �n = 1 and
Good(x; y) is a new predicate whose intended mean-
ing is

“given x; y is a good value for the control variable”:

The meaning of the value �i is that the i-rule is ac-
cepted at level �i. In the general case, �1; : : : ; �n can
be diBerent from 1 and are the result of a learning
process. Also, by assuming that Ai and Bj are inter-
preted by the fuzzy subsets ai and bj, we consider,
for i; j= 1; : : : ; n; r ∈X and t ∈Y , the signed ground
atoms

Ai(r) (ai(r));

Bj(t) (bj(t)):

In other words, we associate system (5.1) with the
fuzzy program p :PC→U de4ned by setting

p($) =




�i if $ is the clause Ai(x) ∧ Bi(y)
→ Good(x; y);

ai(r) if $ is the ground atom Ai(r);
bi(t) if $ is the ground atom Bi(t);
0 otherwise: (5.2)

Each element in X or in Y is considered as a constant.
Therefore, the Herbrand universe of p is X ∪Y .

Theorem 5.1. De2ne the fuzzy relation good :X ×Y
→U; by setting; for any r ∈X and t ∈Y

good(r; t) = D(p)(Good(r; t)):

Then good coincides with the fuzzy function associ-
ated with the fuzzy control system (5:1).

Proof. Consider the fuzzy program p associated with
system (5.1)

A1(x) ∧ B1(y) → Good(x; y) [�1]
· · ·
An(x) ∧ Bn(y) → Good(x; y) [�n]

Ai(r) [ai(r)]
· · ·
Bj(t) [bj(t)]
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where �1; : : : ; �n are elements in U; r varies in X and t
varies in Y . Then, given the constants r and t; we can
try to prove the ground atom Good(r; t). Consider the
ground instance of the 4rst rule,

A1(r) ∧ B1(r) → Good(r; t)

and the ground atoms

A1(r);

B1(t):

Then, by the extended fuzzy Modus Ponens rule, we
can prove Good(r; t) at level �1 �a1(r)�b1(t). Like-
wise, from the second fuzzy clause we obtain a proof
of Good(r; t) able to prove Good(r; t) at level �2 �
a2(r)� b2(t) and so on. It is immediate that these are
the only possible proofs of Good(r; t) and therefore
that

good(r; t) = D(p)(Good(r; t))

=Max{�1 � a1(r) � b1(t);

: : : ; �n � an(r) � bn(t)}:

By using the notion of Cartesian product, and assum-
ing that �1 = · · · = �n = 1, we can conclude that

good = (a1 × b1) ∪ · · · ∪ (an × bn)

in accordance with De4nition 2.1.

Theorem 5.1 gives a well-based theoretical frame-
work to fuzzy control. It shows that we can look at
the calculus of the fuzzy function associated with a
IF–THEN system as at the calculus of the least
Herbrand model of a suitable program. More precisely,
in account of the fact that “Good” is the only predi-
cate occurring in the head of a rule, we have complete
information about all the predicates diBerent from
“Good”, and the only calculus we have to do is related
to ground atoms like “Good(r; t)”. In other words,
while Figs. 1 and 2 are given, Fig. 3 is calculated.
These three 4gures represent the least-fuzzy Herbrand
model of the fuzzy program p.

As we will show in the following, such a logical
approach gives the possibility of expressing the infor-
mation of an expert in a more complete way.

6. Logic as a new tool for fuzzy control

The interpretation of a IF–THEN system of fuzzy
rules as a fuzzy system of axioms enables us to de4ne
several notions in a natural way which (perhaps) will
be useful for fuzzy control. In the following, we will
list some possibilities.

6.1. Degree of completeness

The completeness of a fuzzy system of rules S is
represented by the fact that whatever is the situation
r a good control t exists. Provided in other words that
the following formula:

∀x∃yGood(x; y)

is satis4ed. Now, on account of the fact that in a multi-
valued logic the quanti4ers ∀ and ∃ are interpreted
by the operators Inf and Sup, respectively, we can
propose the following de4nition.

De�nition 6.1. The degree of completeness of a fuzzy
system of IF–THEN rules S is the number

Compl(S) = Inf
x∈X

Sup
y∈Y

good(x; y):

Equivalently, by denoting by Dom(good) the domain
of good,

Compl(S) = Inf
x∈X

Dom(good)(x):

If each predicate bi is normal, i.e., bi(y) = 1 for a
suitable y∈Y , then

Dom(good) = a1 ∪ · · · ∪ an:
In fact, for any x∈X ,

a1(x) � · · · � an(x)
¿a1(x) � b1(y) � · · · � an(x) � bn(y)

and therefore a1(x) � · · · � an(x)¿good(x; y). More-
over, assume that a1(x) � · · · � an(x) = ai(x) and that
y is an element in Y such that bi(y) = 1. Then a1(x)�
· · ·�an(x) = ai(x)�bi(y)6Sup{a1(x)�b1(y)�· · · �
an(x) � bn(y) : y∈Y}. Thus,

Compl(S) = Inf
x∈X

(a1(x) ∨ · · · ∨ an(x))
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and, consequently,

Compl(S) = 1 ⇔ the set of fuzzy predicates

in X is a covering of X:

6.2. Linguistic modi2ers

Another possibility is to de4ne some linguis-
tic modi4ers that are well-known tools in fuzzy
logic. As an example, we can de4ne the modi4ers
“Clearly” and “Vaguely” by associating the functions
clearly :U→U and vaguely :U→U de4ned by set-
ting clearly(x) = x2 and vaguely(x) = x0:5 for any
x∈U to these predicates. In accordance, the predicate
“Vaguely(Good)” is interpreted by the fuzzy subset

vaguelygood(x; y) = vaguely(good(x; y))

= good(x; y)0:5:

The predicate Clearly(Good) is interpreted by the
fuzzy subset

clearlygood(x; y) = clearly(good(x; y))

= good(x; y)2:

The predicates “Clearly(Good)” and “Vaguely
(Good)” are represented in Figs. 4 and 5, respectively.
These linguistic modi4ers can be applied to predi-
cates that are also premises in a rule. As an example,
we can consider rules as

Vaguely(Little)(x) ∧ Fast(y) → Good(x; y);

Little(x) ∧ Vaguely(Slow)(y) → Good(x; y):

6.3. Negative information for a safe control

The use of “negative” information is very delicate
in classical logic programming. This is obtained by the
closed-world rule, for example (see, e.g., [12]). It says
that if a ground atom A is not a logical consequence of
a program P, then we are entitled to infer@A. Such a
rule is useful in several cases but rather questionable
both from a semantical and computational viewpoint.
We can try to extend it to fuzzy logic programming
by assuming that the negation @A of a ground atom
A is true at level 1 − D(p)(A). As in the classical
case, this “rule” originates several diPculties. As an
example, if a proof % gives a lower bound Val(%; p)

Fig. 4. The predicate Clearly(Good).

Fig. 5. The predicate Vaguely(Good).

for the truth value of A, then 1 − Val(%; p) gives an
upper bound for the truth value of@A. Unfortunately,
the fuzzy logic deduction machinery as proposed in
literature is not able to manage these upper bounds.
Some suggestions for an approach to fuzzy logic in
which this is possible can be found in [4].
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In any case, in the simple fuzzy programs we as-
sociate with a fuzzy IF–THEN system, no diPculty
arises since we have a complete description of all
the predicates diBerent from Good. Consequently, the
negation of such predicates is at semantical level, in a
sense, and it can be achieved directly by the comple-
ment operator.

As an example, suppose that we need to take into
account that there are some control actions we have
to avoid. For instance, assume that we consider dan-
gerous a “too fast” control y. Then, we can express
this by adding the following rule:

Clearly(Veryfast)(y) → Dangerous(y):

In accordance, we can de4ne the predicate “Safe” by
adding the rule

Good(x; y) ∧@(Dangerous(y)) → Safe(x; y):

Denote by dangerous :Y →U and safe :X ×Y →U
the interpretations of Dangerous and Safe, respec-
tively. Then, given r ∈X and t ∈Y , the 4rst clause
enables us to calculate

dangerous(t) = D(p)(Dangerous(t))

= clearly(veryfast(t)):

By the closed world rule

D(p)(@Dangerous(t)) = 1 −D(p)(Dangerous(t))

= 1 − clearly(veryfast(t)):

Then, by the second clause

safe(r; t) = D(p)(Safe(r; t))

= (good(r; t) � (1 − clearly(veryfast(t)):

Obviously in such a case we have to refer to the pred-
icate “Safe” and not “Good ” in the successive de-
fuzzi4cation process. In Fig. 6 such a new predicate is
represented.

6.4. Negative information for a default rule

Another interesting use of the negation is the pos-
sibility of de4ning a “default” rule, i.e., to suggest
the control we have to choose in the case in which

Fig. 6. The predicate Safe.

no condition “Little”, “Medium”, “Big”, “Verybig”,
“Small” is satis4ed. As an example, assume that in
this case an expert suggests to choose a slow y. Then,
by assuming that Domain(x) is the formula

Little(x) ∨ Small(x) ∨Medium(x)

∨ Big(x) ∨ Verybig(x);

we can add the rule

@Domain(x) ∧ Slow(y) → Good(x; y):

In such a case the predicate “Good” is represented by
Fig. 7 and the degree of completeness of the system
increases.

Note that the fuzzy relation safe is contained in the
fuzzy relation goodwhile the default rule increases the
fuzzy relation interpreting the predicated Good. This
shows that, by adding a new information, it is possible:
• to increase the area of the fuzzy upper covering of

the ideal function f , in order to obtain completeness,
i.e., to be sure that the whole set of points of f is
covered,

• to decrease such an area, in order to obtain a more
precise representation of f .
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Fig. 7. Adding the default rule.

6.5. Recursion

The power of classical logic programming is mainly
based on the recursion. This is possible, for example,
by setting a predicate name for both in the head and
in the body of a rule. Then, we would not be sur-
prised if recursion showed all its potentialities in fuzzy
programming and, whence, in our logical approach to
fuzzy control. However, no investigation was made
in this promising direction. Obviously, recursion can
originate some computational diPculties. These dif-
4culties can be roughly bypassed by substituting the
recursion with strati4ed de4nitions of new predicates.
As an example, instead of a rule like

(· · · ∧ Good(x′; y′) ∧ · · ·) → Good(x; y);

we can consider the new predicates Good∗∗ and
Good∗ and the rules

(· · · ∧ Good(x′′; y′′) ∧ · · ·) → Good∗(x′; y′);

(· · · ∧ Good∗(x′; y′) ∧ · · ·) → Good∗∗(x; y):

In general, the interpretation of Good∗∗ represents a
good approximation of the fuzzy predicate Good def-
inite by recursion.

7. Control by similarity and prototypes

Recall that a similarity or fuzzy equivalence in a set
S is a fuzzy relation near : S × S→U that is a model
of the clauses

Near(x; y) ∧ Near(y; z) → Near(x; z);

Near(x; x); (7.1)

Near(x; y) → Near(y; x):

This is equivalent to saying that

near(x; y) � near(y; z)6near(x; z);
near(x; x) = 1;

near(x; y)6near(y; x):

Let P be a set of elements of S we call prototypes and
let near be a similarity in S. Then we de4ne the fuzzy
subset of elements that are similar to some prototype
by setting

s(x) = Sup{near(x; x′): x′ ∈ P}:
We can use such a notion to propose a system of

rules that emphasizes the geometrical nature of fuzzy
control. Consider a 4rst-order language with two rela-
tion names “Near” and “Sim” to denote a similarity in
X and Y , respectively. Assume that the ideal function
f as been scheduled in the following table:

x y

x1 y1

: : : : : :
xn yn

where x1; : : : ; xn are elements in X and y1; : : : ; yn the
related images. Then we can consider the fuzzy pro-
gram obtained by considering the rules saying that
“Near” and “Sim” are similarities and the rules

Near(x; x1) ∧ Sim(y; y1) → Good(x; y)

: : : (7.2)

Near(x; xn) ∧ Sim(y; yn) → Good(x; y):

This fuzzy program de4nes the fuzzy relation
good as an union of n fuzzy points centered in
(x1; y1); : : : ; (xn; yn), respectively. It is immediate that
good(xi; yi) = 1 for any i∈{1; : : : ; n}.



G. Gerla / Fuzzy Sets and Systems 121 (2001) 409–425 421

Fig. 8. Control by similarity.

As an example, we can consider the fuzzy program
obtained by the rules saying that “Near” and “Sim”
are similarities and the rules

Near(x; 0) ∧ Sim(y; 0) → Good(x; y);

Near(x; 1) ∧ Sim(y; 3) → Good(x; y);

Near(x; 2) ∧ Sim(y; 3) → Good(x; y);

Near(x; 4) ∧ Sim(y; 4) → Good(x; y);

Near(x; 6) ∧ Sim(y; 4) → Good(x; y);

Near(x; 8) ∧ Sim(y; 5) → Good(x; y);

Near(x; 10) ∧ Sim(y; 1) → Good(x; y):

In Fig. 8 we represent the resulting fuzzy relation
good. Such a relation is an union of 7 fuzzy points
centered in (0; 0); (1; 3); (2; 3); (4; 4); (6; 4); (8; 5) and
(10; 1), respectively. More precisely, we assume that:
• X and Y are the intervals [0; 10] and [0; 5],

respectively,
• the points 1, 2, 4, 5, 6, 8, 9, 10 are prototypes in X ,
• the points 0, 1, 3, 4, 5 are prototypes in Y ,
• the similarities are de4ned by setting

Near(x; x′) = Min{1 − (|x − x′|=2); 1};
Sim(y; y′) = Min{1 − |y − y′|; 1}:
Note. In general, the defuzzi4cation process by

the centroid method gives a function f′ such that
f′(xj) �=yi. In fact, the value f′(xi) depends on all the

rules in which an xj occurs such that near(xi; xj) �= 0.
Only in the case that near(xi; xj) = 0 for any j �= i, and
under the rather natural hypothesis that the centroid
of sim(yi; y) is yi, we have that f′(xi) =yi. Instead,
the choice of the maximum in the defuzzi4cation
process gives always the property f′(xi) = xi. In the
proposed example, in spite of the fact that we start
from the point (0; 0); f′(0) = 1:5833 �= 0. Indeed, 0
is near to 1 to a degree diBerent from zero.

Also, we can use the predicates “Near” and “Sim”
to improve the predicate “Good” de4ned in the pre-
vious sections. As an example, we can add to the re-
cursive rule

Good(x; y′) ∧ Sim(y; y′) → Good(x; y)

whose meaning is obvious.

8. Logic interpretation of defuzzi�cation: an open
question

It is rather hard to give a logical meaning to centroid
method. Indeed, in the logical approach we propose
to interpret good(r; y) as a degree of preference on y
given r ∈Y . Then, it should be better to take a value
y that maximizes good(r; y). Now, observe that, as a
matter of fact, the centroid method does not work well
in several cases. The following is an example.

Example. Assume that a driver looks at a yellow traf-
4c light. Then, the suitable way to adjust the speed de-
pends on the distance from the traPc light and the car
speed. On the other hand, sometimes both rapidly in-
creasing the speed and rough braking are good choices
(in a sense that the choice between the two diBerent
behaviors depends only on the driver’s temperament).
In accordance, both the following rules seem to be
valid:

High(x) ∧ Little(y) ∧ Big positive(z)

→ Good(x; y; z);

High(x) ∧ Little(y) ∧ Big negative(z)

→ Good(x; y; z);

where x is the speed, y the distance between the car
and the traPc light and z the (positive or negative)
acceleration. Let x and y be such that high(x) = 1 and
little(y) = 1, then, due to the symmetry of the fuzzy
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predicates big positive and big negative, the centroid
method suggests an acceleration equal to zero. This
means that the driver does not modify his speed and
this leads to a probable disaster.

Then, an important question is how to make explicit
(by a suitable set of 4rst-order formulas) the condi-
tions under which the centroid method is correct. In
accordance with these considerations we try to formu-
late the following conjecture.

Conjecture. The conditions under which the centroid
method is correct can be expressed by a fuzzy subset
p′ of formulas. By adding to the fuzzy program p
the information p′ a new Herbrand model mp∪p′ is
de2ned. Let good′ be the fuzzy predicate de2ned by
setting

good′(r; t) = mp∪p′(Good(r; t)):

Then;
(i) good ′(r; y) has a unique maximum (with respect

to y);
(ii) such a maximum coincides with the centroid of

good(r; y).

We are not able to prove this conjecture. We ex-
pose only some considerations and results as a hint
for further investigations. Now, the considered exam-
ple suggests that the centroid method can be applied
only in the case in which if two control y′ and y′′ are
acceptable then all the intermediate controls are ac-
ceptable (we assume that Y is a set of real numbers).
We can express such a property by adding the rule

Good(x; y′) ∧ Good(x; y′′) ∧ (y′6y6y′′)

→ Good(x; y):

In order to avoid the recursion, we can also add a new
predicate name Good ′ and the rule

Good(x; y′) ∧ Good(x; y′′) ∧ (y′6y6y′′)

→ Good′(x; y): (∗)

The corresponding fuzzy relation good ′ is de4ned by
setting

good′(x; y) = Sup{good(x; y′) � good(x; y′′) |
y′6y6y′′}:

Recall that a convex fuzzy subset of the real line, is a
fuzzy subset s :R→U such that, for every x; x1; x2,

x16x6x2 ⇒ s(x)¿s(x1) � s(x2):

It is immediate to prove that the class of the convex
fuzzy subsets is a closure system. The proof of the
following proposition is immediate.

Proposition 8.1. Assume that � is the minimum and
that r ∈X . Then good ′(r; y) is the convex closure of
good(r; y).

Unfortunately, this is not suPcient. For example, if
good ′(r; y) is constant with respect to y (and therefore
convex), then good ′(r; y) coincides with good(r; y)
and such a function has not a unique maximum as re-
quired. A better result can be obtained by interpret-
ing the rule (∗) by the usual product as a triangular
norm and by substituting the operator Sup with the
 Lukasiewicz disjunction, i.e., by setting

good′(r; y) =
⊕

y′6y6y′′
good(x; y′) · good(x; y′′):

In the case that the values assumed by good are suP-
ciently small, a numerical simulation shows that such
a method is suPciently satisfactory. In fact, the maxi-
mum of good ′(r; y) is approximately equal to the cen-
troid of good(r; y).

Another attempt to give a logical meaning to
the centroid method is suggested by the following
proposition.

Proposition 8.2. Assume that Y = [a; b]; de2ne far :
[a; b]×[a; b]→U by setting far(x; y)= |x−y|=(a−b)2

and good ′ :X ×Y →U by setting; for any x∈X and
y∈Y;

good′(x; y) =
(∫ y

a
far(y; y′) good(x; y′) dy′

)

∧
(∫ b

y
far(y; y′) good(x; y′) dy′

)
:

Then; for every r ∈X; the fuzzy subset good ′(r; y)
is a fuzzy interval of Y with only a maximum.
Moreover; such a maximum is the centroid of
good(r; y).
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Fig. 9.

Proof. Set

h(y) =
∫ y

a
far(y; y′) good(r; y′) dy′;

k(y) =
∫ b

y
far(y; y′) good(r; y′) dy′:

Then it is immediate that h : [a; b]→U is a strictly
increasing continuous function such that h(a) = 0 and
that k : [a; b]→U is a strictly decreasing continuous
function such that k(b) = 0 (see Fig. 9 where r= 8).
Moreover, the maximum of good∗(r; y) is the unique
point y0 such that h(y0) = k(y0), i.e., satisfying the
equation∫ y

a
far(y; y′) good(r; y′) dy′

=
∫ b

y
far(y; y′) good(r; y′) dy′:

Now, since

(h(y) − k(y))(b− a)2

=
∫ y

a
|y − y′| good(r; y′) dy′

−
∫ b

y
|y − y′| good(r; y′) dy′

=
∫ y

a
(y − y′) good(r; y′) dy′

−
∫ b

y
(y′ − y) good(r; y′) dy′

= y
∫ b

a
good(r; y′) dy′ −

∫ b

a
good(r; y′)y′ dy′;

the zero of such an equation is the centroid of
good(r; y).

We can try to translate Proposition 8.2 in logical
terms by noticing that the integral operator

∫
co-

incides with the sum operator
∑

under 4niteness
hypothesis for Y . In turn,

∑
coincides with the op-

erator
⊕

associated with  Lukasiewicz disjunction
under the hypothesis that the values of good and far
are not too big. In such a case, let Good1;Good2 and
Good ′ be two place predicates and add to the fuzzy
program de4ning Good the rules

(y′6y) &Far(y′; y) &Good(x; y′) → Good1(x; y);

(y′¿y) &Far(y′; y) &Good(x; y′) → Good2(x; y);

Good1(x; y) ∧ Good2(x; y) → Good′(x; y):

Moreover, interpret the resulting program in a multi-
valued logic in which ∃ is interpreted by the operator⊕

associated with  Lukasiewicz disjunction, & is in-
terpreted by the product and ∧ by the minimum �.
Then, a simple calculation shows that the resulting in-
terpretation of Good ′ coincides with the fuzzy pred-
icate good ′ de4ned in Proposition 8.2, i.e., that has
only a maximum and such a maximum is the centroid
of good(r; y).

This answer to the conjecture is rather unsatisfac-
tory. In fact, the meaning of the proposed formulas
is not clear and the logic we need is rather obscure.
Then, the question whether a logical interpretation of
the centroid method is possible remains open.

9. The predicate MAMD and some observations

We conclude the paper with a list of observa-
tion emphasizing the diBerences with the “granular
approach”.

(a) The fuzzy relation “good” is not a fuzzy func-
tion de2ned by cases. As a matter of fact, “good” is a
fuzzy predicate enabling to say, given r, if a control t
is good or not. Indeed, the aim of the fuzzy program
p is not to calculate the ideal function f :X →Y rep-
resenting the correct answer t= f(r) given the input
r, but to de4ne vague predicates as “Good”, “Stable”,
“Dangerous” expressing our graded opinion (degree
of preference, taste) on a possible control t, given an
input r. Consequently, it is very natural to admit that
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two diBerent elements t and t′ exist in Y such that
good(r; t) = good(r; t′) (see the example in Section
8). If we admit this, then we have to admit the fol-
lowing claim, too.

(b) The set of fuzzy granules in X is not necessarily
a partition. By referring to our example, this means
that it is not necessary for the class

C = {little; small ;medium; big; verybig}
of fuzzy predicates de4ned in X to be a partition.
In particular, it is not necessary that these predicates
are pairwise disjoint. In the considered example, the
predicate “Small ” is a synonymous of the predicate
“Little” and therefore the related interpretations small
and little almost completely overlap. Also, it is not
necessary that C is a covering of X . In fact, it is possi-
ble that the available information is not complete and
therefore that there is an element r such that

little(r) = small(r) = medium(r) = big(r)
= verybig(r) = 0

(see also the possibility of de4ning a default rule in
Section 6).

(c) The number good(r; t) is not a true value but
a constraint. Indeed, good(r; t) is the degree at which
Good(r; t) can be proved and not the truth degree of
Good(r; t). As a matter of fact, as it is usual in fuzzy
logic, good(r; t) represents the information

“given r; we can prove that the control t is good
at least at level good(r; t)”:

Consequently, the number good(r; t) represents only
the value we can derive from the available informa-
tion. By adding new information, as an example a new
clause A(x)∧B(y)→Good(x; y), it is possible that
good(r; t) assumes a new value. Only by referring to
the least-fuzzy Herbrand model of the program p we
can claim that good(r; t) is a truth value.

(d)The elements in U can be interpreted as degrees
of preference rather that truth values. Indeed, as a
matter of fact, the number good(r; t) can represent the
information

“given r; t is preferred at least at level good(r; t)”:

This leads to the question as for whether the fuzzy
logic can be considered as a basis for a logic of

the judgement values (subjective in nature) while
usually one propose the logics of the truth values
(whose purpose is an objective description of the
world).

(e) A second-order logical approach to fuzzy con-
trol is perhaps reasonable. As an example, we can
consider rules like:

“If x is small then the function f is lightly
increasing”;

“The function f has only a maximum”;
“If x is medium then f is almost constant”:

A system of rules of such a kind de4nes a fuzzy pred-
icate Good(f) in the class YX of possible functions
from X to Y .

We conclude this section by emphasizing that

“The reduction of fuzzy control to logic proposed

in this chapter does not coincide with the

one proposed in [9]”:

Recall that in [9] one de4nes the predicate
MAMD(x; y) by the axiom

MAMD(x; y) ↔ ((A1(x) ∧ B1(y))

∨ · · · ∨ (An(x) ∧ Bn(y))): (H)

It is immediate that in a Herbrand model of such an
axiom the predicate MAMD is interpreted in the same
way as Good, i.e., by the fuzzy relation good. So, from
an extensional point of view the two approaches look
to be equivalent. Nevertheless, they are diBerent in
nature. As an example, as we have earlier observed,
the number good(r; t) represents only the information
(a lower constraint) we can derive from the available
information. By adding new information it is possible
that good(r; t) assumes a new value. Since in our ap-
proach good(r; t) is only a lower bound for an exact
value, this is not contradictory: we have only more
complete information. Instead, we cannot add this new
information to Axiom (H) in which one can establish
the exact truth value of MAMD(x; y). Because any
new information on the predicate MAMD contradicts
Axiom (H).



G. Gerla / Fuzzy Sets and Systems 121 (2001) 409–425 425

References

[1] L. Biacino, G. Gerla, Logics with approximate premises,
Internat. J. Intelligent Systems 13 (1998) 1–10.

[2] D. Dubois, H. Prade, Necessity measures and the resolution
principle, IEEE Trans. Systems Man Cybernet. 17 (1987)
474–478.

[3] G. Gerla, An extension principle for fuzzy logics, Math. Logic
Quart. 40 (1994) 357–380.

[4] G. Gerla, Closure operators, fuzzy logic and constraints,
in: D. Dubois, H. Prade, E.P. Klement (Eds.), Fuzzy Sets,
Logics and Reasoning About Knowledge, Applied Logic
Series, vol. 15, Kluwer Academic Publishers, Dordrecht,
1999, pp. 101–120.

[5] G. Gerla, Fuzzy Logic: Mathematical Tools for Approximate
Reasoning, Kluwer Academic Publishers, Dordrecht, to
appear.

[6] L. Godo, P. HTajek, Fuzzy inference as deduction, J. Appl.
Non-Classical Logics 9 (1999) 37–60.

[7] J.A. Goguen, The logic of inexact concepts, Synthese 19
(1968=69) 325–373.

[8] S. Gottwald, Fuzzy Sets and Fuzzy Logic, Vieweg,
Wiesbaden, 1993.

[9] P. HTajek, Metamathematics of Fuzzy Logic, Kluwer
Academic Publishers, Dordrecht, 1998.

[10] P. HTajek, On the metamathematics of fuzzy logic, in: V.
NovTak, I. Per4lieva (Eds.), Discovering World with Fuzzy
Logic: Perspectives and Approaches to Formalization of
Human-Consistent Logical Systems, Springer, Heidelberg,
1999.

[11] F. Klawonn, V. NovTak, The relation between inference and
interpolation in the framework of fuzzy systems, Fuzzy Sets
and Systems 81 (1996) 331–354.

[12] J.W. Lloyd, Foundations of Logic Programming, Springer,
Berlin, 1987.

[13] E.H. Mamdani, B.R. Gaines, Fuzzy Reasoning and its
Applications, Academic Press, London, 1981.

[14] E. Mendelson, Introduction to Mathematical Logic, D. Van
Nostrand Company, Princeton, 1964.

[15] J. Pavelka, On fuzzy logic I: Many-valued rules of inference,
Z. Math. Logik Grundlagen Math. 25 (1979) 45–52.

[16] M.S. Ying, A logic for approximate reasoning, J. Symbolic
Logic 59 (1994) 830–837.

[17] L.A. Zadeh, Fuzzy sets, Inform. and Control 12 (1965)
338–353.

[18] L.A. Zadeh, Fuzzy logic and approximate reasoning, Synthese
30 (1965) 407–428.

[19] L.A. Zadeh, The concept of a linguistic variable and its
application to approximate reasoning I, II, III, Inform. Sci. 8
(1975) 199–275, 301–357; 9 (1975) 43–80.


