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A necessity measure is a function n from a Boolean algebra B to the real interval [0,1]
such that n(x /A y) = min{n(x),n(y)} for every x,y € B and n(0) = 0, n(1) = 1. Necessities
are strictly related to Shafer’s consonant belief functions and are basic tools when dealing
with imprecision and uncertainty. In this article we propose a technique to generate
necessities given a collection of items of information quantified by an initial valuation. .
The method we employ enables us to define conditional necessities in a very natural way
and the composition of two necessities by a rule analogous to Dempster’s rule. This is
obtained by skipping the condition #(0) = 0 and therefore considering necessities with
a nonzero ‘‘degree of inconsistency.” © 1992 John Wiley & Sons, Inc.

I. INTRODUCTION

In this article we examine some mathematical features of possibility and
necessity measures that, as D. Dubois and H. Prade point out,! are basic tools
to represent imprecision and to quantify uncertainty. The main result is a
technique we propose to generate a necessity (or a possibility) given an initial
valuation of the events (see Section III): this technique is more general and
substantially different from Shafer’s building of consonant belief functions upon
a probability mass distribution in that the former is of lattice theoretical kind,
while the latter employs the additive structure of the real number interval [0,1].
Because of its lattice nature, our technique could be applied even to necessities
and possibilities which eventually took values in a complete lattice.

The formulas we obtain for the necessities and possibilities generated by
an initial valuation enable us to define conditional necessities and possibilities.
The notion we arrive at is very close to what D. Dubois and H. Prade have
proposed.!

It is worth noting that we do not require the null event to be valued zero;
so, the arising class of necessities (and possibilities as well) turn out a complete
lattice, the maximum being the map constantly equal to one. In particular, the
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join of two necessities is defined also in the case of conflicting necessities and
determines a rule analogous to Dempster’s rule of composition.

II. PRELIMINARIES

In the sequel B denotes a Boolean algebra whose elements are called events,
we denote by 0 and 1 the minimum and the maximum, respectively. The class
F(B) of the maps from B to [0,1] is a complete lattice with respect to the infinitary
operations /\ and \/ defined by

(A\s)(x) = inf {s:(x)i € I} (s))x) = sup {s;(x)/i € I}

where (s;);; is any family of elements of F(B). If « € [0,1], then the subset
C(s,a) = {x € B/s(x) = a} is called the a-cut of s. We say that an element n of
F(B) is a necessity if

n(x A\ y) = n(x) A\ n(y) and n(l) =1, (E2h i)

and we denote by N(B) the set of the necessities defined on B. We call degree
of inconsistency the number n(0) and we denote it by I(n); since # is increasing,
I(n) is the minimum of n. We say that n is completely consistent if I(n) = 0 and
that n is completely inconsistent if I(n) = 1. Only the values of n greater than
I(n) are meaningful and n(x) = I(n) corresponds to lack of information about x.
In particular, the completely inconsistent necessity gives no information about
the events.
We say that an element p of F(B) is a possibility if

px\/y) =pl\/ply) and  p(0)=0. (2.2)

We denote by P(B) the class of the possibilities defined on B; we call degree of
consistence the maximum p(1), and denote it by C(p). Moreover, we say that
p is completely consistent if C(p) = 1 and completely inconsistent if C(p) = 0.
Given an element f of F(B), define ~f by ~f(x) = 1 — f(—x). The opera-
tion ~ fulfills the following properties

e =hfsgs = 8 W= ACRL =R 23)

where f, g € F(B) and (f;) is any family of elements of F(B). Now, it is immediate
to prove that

[f necessity < ~f possibility

so the concept of possibility is dual of the concept of necessity. As a conse-
quence in this article we sometimes limit ourselves to examine the necessities.

The following propositions are obvious generalizations of well-known re-
sults. !
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ProrosiTioN 2.1. If n is a necessity then, for every x, vy € B,

(a) either n(x) = I(n) or n(—x) = I(n);

(b) alx\/ y) = nlx) + n(y) — nlx N\ y).

Proof. If n is a necessity, n(x) A n(—x) = n(x A\ —x) = n(0) = I(n) and

this proves (a). Inequality (b) is obvious.

Recall that a filter of B is a subset F of B such thatx, vE F=>x/ A\ y E F;
x€Fandy=x=y &€ F. Fis properif F # B, F is principal if there exists ¢
€ B such that F = {x € B/x = ¢}. The following proposition gives some obvious
characterizations of the necessities.

ProrosiTioN 2.2,  Let n be an element of F(B) such that n(l) = 1, then

the following propositions are equivalent:
(a) nis a necessity,
(b) n is increasing and n(x /\ y) = n(x) /\ n(y);
(€) n(x N\ y) = n(x) /\ n(y) and n(x \/ y) = n(x) \/ n(y);
(d) nis closed with respect io Modus Ponens, that is, n(y) = n(x — y) /\
n(x).

Proof. That (a), (b), and (c) are equivalent is obvious.

(2 = (d) If n is a necessity, then n(y) = nlx A yp =
nllx — y) A x) = nlx— y) N\ n(x).

(d) = (a) We have that a(y) = n((x A y)— y) A n(x A y) = n(1) /A n(x A\
¥) = n(x /\ y). Likewise, n(x) = n(x /\ y) and therefore n(x) /\ n(y) =
n(x /\ y). In particular, this entails that » is increasing. On the other
hand, it is also n(x A\ y) = n(x — (x A y)) A n(x) = n(—x\/ (x A\ ) A
n(x) = n(—x\/ y) /\ n(x) = n(y) N\ n(x).

The following proposition relates the necessities with the filters; the links
between necessity measures and filters where first pointed out by U. Hohle.?

ProPOSITION 2.3. A map n:B — [0,1] is a necessity if and only if every

cut of n is a filter of B. Moreover, the necessities can be identified with
the families (C,),e; of filters of B with I complete subset of (0,1] and

e =y 2.4)

for every family (e;) of elements of 1.

Proof. It is immediate that every cut of a necessity is a filter. Conversely,
assume that C(n, «) is a filter for every « € [0, 1] and let & = n(x) A
n(y). Then, since x and y belong to C(n,«), C(n, ) contains also x /A
y and therefore n(x /\ y) = n(x) /\ n(y). To prove that » is increasing,
let x = y and a = n(y). Since y belongs to C(n, a), also x belongs to '
C(n, o) and we have n(x) = a = n(y); this proves that n is a necessity.

We associate to every necessity n the family (C(n, a)),e(,y of filters; then
it is easy to prove that (2.4) is satisfied. Conversely, let (C,),<; be a
family of filters of B satisfying (2.4) and define the map n:B — [0, 1]
by

_[ViBelxecy ifx#1 o
s {1 e i



448 BIACINO AND GERLA

We have that, for every « € I, C(n, @) = C,; indeed, if x € C, then
n(x) = a, that is C, C C(n, a). If x € C(n, «) and x # 1 then \/{B € I/
x € Cg} = a. Since (2.4) implies that the family (C,).e; is decreasing,
we have C, gepec; € C, and, by (2.4), N{Cy/x € Cp} C C,.. Thus x €
C,and C(n, o) €.C,.

If € I and {8 € I/B = a} is nonempty, then C(n, a) = C(n, a') = C,, where
o' =NBEIB =ca} f{B € I/ = a} is empty then C(n, o) = {1}.
Thus the cuts of n are filters and therefore » is a necessity.

As an example, any finite chain of filters

B D0 08, ~wmith s blise, S =]

defines a necessity; in particular, the (characteristic functions of the) filters of
B are necessities. Since the filters in a Lindenbaum Boolean algebra coincide
with the theories, the necessities can be viewed as a generalization of the notion
of a theory in the first order logic. This suggests the following considerations.
Let T be a theory and « a formula, then a« € T does not mean that « is false but,
in a sense, that we have not sufficient informations in order to prove a. The
theory T expresses the falsity of « only if the negation —a of a belongs to T.
Analogously, if n is a necessity, then n(a) = 0 [more generally n(e) = I(n)] does
not mean that, in our opinion, « is false but that we have not enough information
in order to support our belief in @. As a matter of fact, informations about the
falsity of « are given by n(—ea).

. GENERATED NECESSITIES AND POSSIBILITIES

In the sequel an initial valuation is any map f from B into [0,1]. The ele-
ments of the support D, = {x € B/f(x) # 0} are called focal events of f. In this
section we examine the question of generating a necessity and a possibility in
accordance with an initial valuation.

PrOPOSITION 2.1.  The meet /\n; of a family (n;) of necessities is a neces-

sity. If fis an initial valuation then the necessity f = g € N(B)lg =
[} can be obtained by

O 1 ifz=1
e {vmm Ao AFOIIA. . Aye=gitz=l. GD
Proof. To prove that fis a necessity, let z;, z, be elements in
B — {1}, then f(z)) \f(z) = DVAF) A . .  AFIM AL . . Ay,
=g ANMFWD AL o AFw ) AL A w, = )] = \AFG)
No o s NFRYNFWI N Lo AFw Iy N . . oAy, = z,and w,
PNits o N Wy = B = NARWN I O L AN Nt =i
2} = f(z, /\ z5). Since f(1) = 1 and f'is increasing, by (b) of Proposition
2.2 f'is a necessity. Moreover, if n is a necessity and n = f then, for
every yy, . . . y,suchthaty, A. . .y, =z, we have n(z) = n(y, /\
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A=y L ARly) =) AL . Af(y,)and therefore

n(z) = f(z). So fis the smallest necessity greater than f.
_ We say that fis the necessity generated by the initial valuation f: in a sense
fcan be viewed as the *‘theory’’ generated by the ‘‘system of axioms”’ f. Notice
that in the class of completely consistent necessities the operator  is not always
defined; indeed it is possible that no completely consistent necessity is greater
than f. This is the main reason for which we have skipped the condition n(0) =
0 in defining the necessities. We call degree of inconsistency I(f) of fthe degree
of inconsistency I(f) of f, and, obviously,

1) =\AfOONA. . AfOIA. . Ay, =0} (3.2)

Notice that the events x such that f(x) = 0 have no influence in determining
the necessity f. This is in accordance with the fact that f(x) = 0 means that we
have no opinion about the event x; not that we think that x is false. Obvicusly,
also the events x for which f(x) = I(f) give no useful informations in the
construction of f. Indeed, the initial valuation f carries on an amount of informa-
tion but it is possible that some informations are inconsistent. The number I(f)
computed by (3.2) measures this inconsistency and indicates what values of f
are meaningful in the construction of f.

It is natural to assume that the initial valuation f is finite, that is, it is
addressed only to a finite number of focal events, D, = {e;,. . . , e,}. In this
case (3.1) defines fin a constructive simple way, obviously.

The following are simple examples.

Example 3.1. (Only an element is focal). Assume D, = {e} and f(e) = a,

then f generates the necessity n;, defined by

| ifx=1;
ni(x) =4« fx=e¢e
0 otherwise.

In the case a = 1, nf is the characteristic function of the principal filter
generated by e and will be denoted by »*.

Example 3.2. (There are only two focal events). Let D, = {e|, e,}, f(e,)
= !/ and f(e,) = 1. Then

l i = e
fx)=<0 if xze e,
b if x=eAeyandx e,

and I(f) = '~ if e, /\ e; = 0 while I(f) = 0 otherwise.
We say that an initial valuation is consonant if D, is a finite chain ¢, <
e, <...<eg,andf(e) = fle) =. . .= f(e) = 1. In this case flx) = sup
{f(e)le; = x} and, if e, # 0, fis completely consistent.
ProposiTiON 3.2.  For every necessity n the following are equivalent:
(a) nis generated by a finite initial valuation;
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(b) nis generated by a consonant initial valuation.

Proof. (a) = (b) Let n be generated by the finite initial valuation f, and
set n(B) = {ey, . . . , x}withex, =1> .. .> a . We claim that
every cut C(n,q;) is a principal filter generated by the meet ¢; = /\{x
€ Blf(x) = a;}. Indeed, n(x) = ;> 3a;. . .G EB, g /. . ./\
ap=x, (@) = o, .« 5 fla,) =a,=x =e;. Conversely, since there
exist a;, . . . , @y € Dysuch that f(a;) = =, . . . , f(a) = =; and
e;=a, /\.../\a., we have that n(e;) = «; and therefore x = ¢; =
n(x) = n(e;) = a;. We have e; < ¢, | because C(n,x;,,) is strictly con-
tained in C(n,e;). On the other hand, for every x € B there exists
i€ {l,. .. ,j}suchthat n(x) = a; = n(e;) and this proves that n(x)
= \/n(e;)le; = x}. Thus n is a necessity generated by a consonant
initial valuation, namely the restriction of n to {e;, . . . , ¢}

The implication (b) = (a) is immediate.

In particular, if B is a finite Boolean algebra, then every necessity can be
generated by a consonant valuation while, if B is infinite, then this is not true.
Indeed, in this case a nonprincipal filter exists in B and its characteristic function
is a necessity that is not generated by a finite valuation (otherwise, as observed
in proving Proposition 3.2, its cuts should be all principal).

The dual of Proposition 3.1 holds.

ProrosiTIiON 3.3.  The join \/p; of a family (p;) quosgibflities is a possibil-

ity. In particular, szzlg an initial valuation then f = \/{g € P(B)/g =
f}is a possibility and f can be obtained by

o 0 if z=0
1z = {/\{f(y]) Ve NVFOIMV . =g i z=0. O

We say that;‘is the possibility generated by f, we set C(f) = C(;"") and we
say that C(f) is the degree of consistence of f. Obviously, initial valuations
should be taken keeping in mind if we want to evaluate the possibility or the
necessity of the events under consideration. For instance, while generating the
necessity measure we consider only the values of f'that are different from zero,
if we are interested in generating the possibility measure the events x such that
f(x) = 1have no influence. Indeed, f(x) = 1 expresses lack of information about
the event x in that we do not know reasons to disbelieve in x.

In particular, if B is finite, then fis completely determined by the associated
possibility distribution, that is its restriction 7 to the atoms of B. Now, if z is
an atom (3.3) gives w(z) = /\,..f(y), so we have the following very simple
formula

jo"(x) = \/{m(z)/z atom z = x} = \/{/\,=.f(y)/z atom, z = x}.
ProposiTION 3.4,  The nec‘essr’fy}"is completely consistent if and

only if Dy satisfies the “‘finite intersection property’’ that is every finite
meet of elements of Dy is different from 0.
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Proof. I(f) = 0= \{f(w) A o o FlE R As . N x, =0 =0&
Vx;,...,x,€Bsuchthatx; A. . ./ x,=0anindex i exists such
that f(x) =0 Vx,. .. ,x, E Dywe have x; A . . . Ax, #0.
The following proposition shows that the operators ~ and ° have properties
very like to the closure and interior operators in topology theory.
ProprosiTION 3.5. The following hold:

frecessity S f=Ff, (3.4)
fpossibility & f = f; (3.5)
FO=f@)=Ffx) foreveryx€ B:; (3.6)
~f= s ~F= (NP =P =F (3.7
f=g=>f=gif=g>F=g. (3.8)

Proof. We limit ourselves to prove the first equality of (3.7). Indeed, if z
=0, ~ (D=1 = =2 =1 = e Wi . N Ve R
Ne, = =zt=NA - fx)v. ..\ = flm =2 N . . N
=z} = MEAOIV - o NV ENOIN - - Y, =2 = (=)
An initial valuation £:B — [0,1] is called n-stable if f(x) = f(x) for every x
€ D;. The following is an immediate consequence of Proposition 3.1 (see also
Zhang Guangquan®).
ProrosITION 3.6.  An initial valuation fwith f{1) = 1 is n-stable if and only
if, for every x,, . . . ,x, € Dy and z € D;

XN NS 2SN, AN = flz)

A simple consequence of Proposition 3.6 is that if Dyis a chain, then fis n-
stable if and only if it is increasing.

IV. THE LATTICES OF THE NECESSITIES
AND THE POSSIBILITIES

Proposition 3.1 shows that N(B) is a complete lattice and that the meets in
N(B) coincide with the meets in F(B). The maximum of N(B) is the map
constantly equal to 1, the minimum is the map a such that #(1) = 1 and n(x) =
0if x # 1; in N(B) there is no atom or co-atom. N(B) is not a sublattice of F(B)
since given a family (n,),., of necessities, the Join in N(B) is equal to (\/n;)~ and
it is, in general, different from the join \/n; in F(B). Let n; and n, be two
necessities, we call sum n, + n, of n, and n, its join (n, \/ n,)~ in N(B). If the
condition

VaVyViVj3hn(x) A ni(y) = n,(x) A ny(y) (4.1)
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is satisfied, then it is easily proven that the joins in F(B) coincide with the joins
in N(B). In particular this happens for directed families of necessities.

Likewise, Proposition 3.4 shows that the class P(B) of the possibilities is
a complete lattice and that the joins in P(B) coincide with the joins in F(B). The
meet in P(B) of a family (p,) of possibilities is the possibility (/A\p,)°. If p, and
P, are two possibilities, we define the product Py * p> as the meet (p, /\ p,)° in
P(B).

PROPOSITION 4.1.  If n, and n, are two necessities and p and p, are two

possibilities then, for every z € B

~(ry + M) = (~ny) « (~n); ~(p; - p2) = (~py) + (~py), (4.2)

50, the map ~ is a dual isomorphism between the lattices N(B) and
P(B).

Proof. Obvious.

ProPOSITION 4.2.  If ny and n, are two necessities and P> and p, are two
possibilities then, for every z € B

(ny + 1,)(2) = \An,(xX) A\ ny(y)ix Ay = z}; (4.3)
(P1*P2)(2) = Npy(x) \/ p2(¥)x \/ y = 2}

I(n; + ny) =\/An,(x) N\ ny(—x)/x € B}; (4.4)
C(py - p2) = Nn(x)\/ ny(—x)/x € B,

Proof. Wehave (A\n;\/ ny)™(z) = \A(n, \/ mo)(x) A\ . . LA (ny \/ no)(x,, )/
A Nxy=2zt= Nt ) AL Bt KMo N AN,
zand iy, . . ., i, €{0,1}} = \An(x) A ny(3)ix Ay = 2.
The remaining part of the proposition is obvious. ol N
We point out that if f; and f; are valuations then ( HAVA) =f + f,and
(/i Nfa)™ =1 - f». As a consequence, if fis a finite initial valuation then it is
possible to decompose f as follows.

F=n 4+, o o ne (4.5)

nm

where D= {e;, . . . , e,}, f(e;) = a;, and ng, is defined as in Example 3.1,

In the case B finite the second formula of (4.3) enables us to write the
possibility distribution 7, of the product P1 * Py in a very simple way. Indeed
if z is an atom, since p,(x) V Poy) = p(2) /\ ps(z) for every x, y such that x N7
y = z, we have

m2(2) = my(2) /\ ma(z2),

where 7 and m, are the distributions of p, and p», respectively.
The number I(n; + n,) given by (4.4) represents a measure of the conflict
between two necessities n, and n, . If the conflict of opinion about an event x is
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complete, that is n,(x) = 1 and ny(—x) = 1, then I(n, + ny) = 1 and n, + nyis
completely inconsistent.

V. CONDITIONAL NECESSITIES

Let n be a necessity, a € B an event and consider the necessity n“ defined
in Example 3.1, thatis n(x) = 1 if x=a, n(x) = 0 otherwise. We call conditional
necessity given the event a the necessity n -+ n“ and we set

nixta) = (n + n“)(x). (5.1)

In other words the conditional necessity given the event a is obtained by
adding to n the information “‘a is true.”
PRGPOSITION 5.1.  Given a necessity n and an event a,
(i) n(xla) = n(a— x); n(ala) = 1, n(x/1) = n(x);
(i) n(x A yla) = n(xla) /\ n(yla); n(xla \/ b) = n(xla) /\ n(x/b);
(i) nla) N n(x/a) = n(x /\ a); n(x) = n(x/a) /\ n(x/—a);
(iv) n(a) /\ n(x/a) = n(x) /\ n(alx); n(xlalb) = n(xla /\ b).
Proof. In order to prove the first equality in (i), since n is increasing and
—a\/ z is the maximum of the set {x € B/x N a = z}, we have

(n + n%)z) = \ ) A nty)x Ny =z} =\Anx)xNy=z and y = a}
— \/{H(“y\/z)fy Za} = n(_,a\/:).

The second equality in (ii) follows from

n(xlay/ b) = nla\/ b—x) = n((—a/\ —b)\/x) = n((—a\/ x)N\(=b\/x)
= n(a—> x) N\ nlb— x).

The remaining part of the proposition is obvious.

The first equality in (i) shows the link between our definition of conditional
necessity and the notion given by D. Dubois and H. Prade (Ref. 1, Chap. 4).
Namely they proposed

_ Jnla— x) if n(—a)<n(a— x)
n(xla) = {0 otherwise.

Thus, if n(—a) = 0, the two conditional necessities coincide; but in general the
conditional necessity we define has degree of inconsistency I(n{-/a)) equal to
n(—a). This means that in the case n(—a) > I(n) the additional information *“‘a
is true’” originates a conflict with the previous belief. This conflict requires to
raise the threshold of validity of the necessity degrees. Observe that n(—ala)
= n(—a): this is not surprising in our approach since only values greater that
n(—a) can be interpreted as effective truth assertions.

Equality (iv) is analogous to Bayes formula but unfortunately it is not
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possible to obtain n(a/x) as a function of n(x/a), n(x) and n(a) as in the probabilis-
tic case. Indeed, assume that £ is such a function, that is, n(x/a) = h(n(a), n(x),
n(alx)) for every pair of events x, a. In particular, if n is the necessity generated
by an event e # 0, then

n(x) = h(n®(a), n°(x), n**(q)).

Now, if e, a, and x satisfy e N\ x $ a, 4= % e $ x, then, since e £ a and
e /\ a = x, we have /(0,0,0) = 1. On the other hand, ife A a £ xand e A\ x £
a, then, since e £ a, e £ x, we have £(0,0,0) = 0, an absurdity.

VI. CONCLUDING REMARKS

We summarize some features of the proposed approach.

First of all it furnishes a uniform treatment of the composition of necessities
and the conditioning necessities. This treatment is achieved by the very elegant
and simple tools of the lattice theory. R

Moreover, as a consequence of the implication f; = f = f; = f,, we have
the monotonicity of the composition and conditioning. This is not true for the
analogous concepts known in literature but it is in accordance with the idea that
a measure of necessity summarizes a corpus of imprecise informations and
therefore it increases when the informations increase.

Finally, the degree of inconsistency we have introduced seems to be a
useful control tool to dominate conflicting informations.
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