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1. Introduction 
The possibility of considering a geometry in which the notion of point is not assumed as a primitive 
was extensively examined by A. N. Whitehead in An Inquiry Concerning the Principles of Natural 
Knowledge (1919) and in The Concept of Nature (1920) where the primitives are the regions and the 
inclusion relation between regions. As a matter of fact, as observed by Casati and Varzi in [2], these 
books can be a basis for a "mereology" i.e. an investigation about the set theoretical part-whole 
relation, rather than about a point-free geometry. So, it is not surprising the fact that, later, in Process 
and Reality (1929) Whitehead proposed a different approach, topological in nature, in which the 
primitives are the regions and the connection relation, that is the relation between two regions that 
either overlap or have at least a common boundary point. The inclusion relation is defined by setting, 
given two regions x and y, x⊆y provided that any region connected with x is necessarily connected 
with y. Also, Whitehead defines  the points, the lines and all the “abstract” geometrical entities whose 
dimension is different from the dimension of the space. The notion abstraction process is the basic tool 
to do this, where an abstraction process is a suitable sequence of nested regions.  
 The aim of this note is to show that by admitting a “graded” inclusion relation the initial inclusion-
based approach of Whitehead is possible. In fact, we will consider structures as (Re,incl) where Re is a 
set whose elements we call regions and where incl:Re×Re→[0,1] is a fuzzy relation, i.e. a two places 
function such that the number incl(x,y) represents the degree at which we can consider the region x 
contained in the region y. We call graded inclusion spaces these structures. A suitable definition of the 
abstraction processes enables us to define the points and the distance between points. So, we associate 
any graded inclusion space with a metric space (M,δ). In accordance with the results of  L. M. 
Blumenthal, we can impose suitable axioms to (Re,incl) to obtain that (M,δ) is a Euclidean metric 
space. This gives a point-free axiomatization of the Euclidean geometry based on the graded inclusion 
as in the primitive Whitehead’s program.  
 
2. Preliminaries 
The triangular norms where introduced as a basic tool for probabilistic metric space theory and as a 
basis of several multivalued logics to interpret the logical connective AND (see [7] and [3]). 
 
Definition 2.1. A continuous triangular norm is a continuous commutative and associative operation * 
in the complete lattice [0,1] such that  
 1.  x*1 = x 
 2.  * is isotone in both arguments. 
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Together with the operation * we also consider in [0,1] the lattice operations ∧ and ∨, i.e. the 
minimum and the maximum operations. Also, we associate any continuous triangular norm with the 
implication operation defined by setting 

x→y = Sup{z∈[0,1] : x*z≤y}, 
and an equivalence operation defined by  
  x↔y = (x→y)*(y→x). 
The following are the main examples of a continuous triangular norm: 
 
The minimum ∧ : in such a case we have that  
 x→y = 1  if  x≤y  and  x→y = y otherwise   
 x↔y = 1  if x = y  and  x↔y = x∧y otherwise. 
 
The product: in such a case we have that 
 x→y = 1  if  x≤y  and  x→y = y/x   otherwise  
 x↔y = 1  if x = y  and  x↔y = (x∧y)/(x∨y)  otherwise. 
 
The Lukasiewicz norm defined by setting x*y = x+y-1 if  x+y-1≥0 and x*y = 0 otherwise: in such a case  
 x→y = 1  if  x≤y  and  x→y = y-x+1 otherwise  
 x↔y = 1-|x-y|. 
 
Observe that the continuity of * does not imply the continuity of the associated operations → and ↔.  
The following proposition lists some basic properties of a continuous triangular norm (see [3] and [7]).  
 
Proposition 2.2. Let * be a continuous triangular norm, (xi)i∈I be a family of elements in [0,1] and x, y, 
z elements in [0,1]. Then 
 (i)  x→x = 1, (vii) Supi∈I (x* xi) = x*(Supi∈I xi),  
   (ii) (x→y)*(y→z)≤x→z, (viii) Supi∈I (x→ xi) ≤ x→(Supi∈I xi), 
 (iii) x→y = 1 and y→x = 1 ⇒ x = y (ix) Supi∈I (xi→x) ≤ (Infi∈I xi)→x,  
 (iv) x→y = 1 ⇔  x≤y   (x)  Infi∈I (x* xi) ≥ x*(Infi∈I xi),     
 (v) x*z ≤ y  ⇔  z≤ x→y (xi)  Infi∈I (x→xi) = x→(Infi∈I xi),  
 (vi) (z→y)*z ≤ y  (xii) Infi∈I (xi→x) = (Supi∈I xi)→x.  
Moreover, 
 (xiii)  x↔x = 1, (xv)    (x↔y)*(y↔z)≤x↔z   
 (xiv)   x↔y = 1 ⇔ x = y (xvi) x↔y = (x→y)∧(y→x). 
 
 A basic class of triangular norms is the following. As usual, for any x ∈ [0,1], xn is defined by the 
equations x1 = x and xn+1 = x*xn. 
  
Definition 2.3. A continuous triangular norm * is Archimedean if, for any x ≠ 1, limn→∞ xn = 0. 
 
The usual product and the Lukasiewicz norm are examples of Archimedean continuous triangular 
norms. The minimum is an example of continuous norm which is not Archimedean. There is a very 
interesting characterization of the Archimedean triangular norms. In the following, we consider the 
extended interval [0,∞] and we assume that x+∞ = ∞+x = ∞ and that x ≤ ∞ for any x ∈ [0,∞].  
 
Definition 2.4. A map  f : [0,1]→[0,∞] is an additive generator provided that f is a continuous strictly 
decreasing function such that f(1) = 0.  
 
The pseudoinverse f [-1] : [0,∞] → [0, 1] of an additive generator f is defined by setting, for any y∈ 
[0,∞], 
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                   f -1(y)            if y ∈ f([0, 1]), 
 f [-1](y) =  
                      0                   otherwise. 
 
It is immediate to see that f[-1] is order-reversing and that  f [-1](0) = 1 and f [-1](∞) = 0. Moreover, we 
have that, for any x∈S,   
 -   f [-1](f(x)) = x 
 -  f (f [-1](x)) = x∧f(0) . 
                          
Theorem 2.5. An operation * : [0,1]×[0,1]→[0,1] is a continuous Archimedean triangular norm if and 
only if an additive generator f : [0,1] → [0, ∞] exists such that 
 x*y = f [-1](f(x) + f(y)) (2.1) 
for all x, y in [0, 1]. In such a case  
 x→y = f[-1](f(y) - f(x)) (2.2) 
and 
 x↔y = f[-1](|f(y) - f(x)|) (2.3) 
 
 Proof. See [3].  �  
 
As an example, assume that  f(x) = -log(x) (where, as usual, we set -log(0) = ∞). Then, f[-1](y) = e-y 
(where, as usual, we set e-∞ = 0) and therefore  

x * y = e - (-log(x) - log(y)) = elog(x⋅y) = x⋅y, 
i.e. the triangular norm * generated by f is the usual product in [0,1]. Assume that f(x) = 1-x. Then, 
since f([0,1]) = [0,1], we have that f[-1](x) = f(x) if x ∈ [0,1] and f[-1](x) = 0 otherwise. Consequently, in 
the case x+y-1 ∈ [0,1] we have that x*y = 1-(1-x+1-y) = 1-1+x-1+y = x+y-1, while, if x+y-1 ∉ [0,1], 
x*y = 0. So, in such a case * coincides with the Lukasiewicz triangular norm.  
 Observe that any triangular norm * defines a first order multivalued logic in which the conjunction 
is interpreted by * and the implication and the equivalence are interpreted by the operations → and ↔, 
respectively. In such a logic 0 is interpreted as the truth-value false and 1 as the truth value true. 
Moreover, the negation is usually interpreted by the map 1-x, and the disjunction by the conorm ⊕ 
defined by setting  

x⊕y = 1-(1-x)*(1-y). 
Finally, the existential quantifier is interpreted by the least upper bound and the universal quantifier by 
the greatest lower bound. In this paper we don’t refer to multivalued logic in a formal way but we 
consider it as an euristic tool to translate a classical notion into a corresponding “graded” notion.  
 
3. Graded preorders and orders. 
 Let * be a triangular norm and ord : S × S→ [0,1] a map. Then we are interested to the following 
properties: 
 
 A1   ord(x,x) = 1, (reflexivity) 
 A2  ord(x,y)*ord(y,z) ≤ ord(x,z),  (*-transitivity) 
 A3  ord(x,y) = ord(y,x) = 1 ⇒ x = y, (antisimmetry)  
  S  ord(x,y) = ord(y,x). (simmetry)  
where, x, y, z ∈ S.  
 
These properties are suggested by corresponding ones for binary relations in classical set theory. For 
example, a relation ≤ is reflexive if it satisfies the axiom ∀x(x≤x). Interpret this sentence in a 
multivalued logic in which ≤ denotes a graded relation ord : S×S→[0,1]. Then, since the universal 
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quantifier is interpreted by the least upper bound, ∀x(x≤x) is valued 1 if and only if  Inf{ord(x,x) : 
x∈S} = 1 and therefore if and only if A1 holds for any x ∈S. Also, the relation ≤ is transitive if the 
axiom ∀x∀y∀z((x≤y)∧(y≤z)→(x≤z)) is satisfied. Taking in account the fact that λ→µ = 1 if and only if 
λ≤µ, this holds if and only if A2 holds.  
 
Definition 3.1. A map ord : S×S→[0,1] is called: 
 - a *-preorder if it satisfies A1 and A2,  
 - a *-order, provided that it satisfies A1, A2 and A3,  
 - a *-similarity, provided that it satisfies A1, A2 and S.  
 - a strict *-similarity, provided that it satisfies A1, A2, A3 and S.  
 
We say that ord is crisp provided that it assumes values only in the Boolean set {0,1}. Trivially, the 
crisp *-preorders (*-orders, *-similarities, strict *-similarities) coincide with the characteristic 
functions of the preorders (orders, equivalence relations, identity, respectively). Then, the proposed 
notions extend the classical ones.   
  
Proposition 3.2. Given a *-preorder (*-order) (S, ord), the relation ≤ defined by setting  
  x≤y ⇔ ord(x,y) = 1 (3.1) 
is a preorder (order) we call the preorder (order) relation associated with ord. Conversely, let ≤ be a 
pre-order (order) relation, then its characteristic function is a *-preorder (*-order).   
 
If ord is a (strict) *-similarity, then the induced order is an equivalence relation (the identity relation). 
 
Proposition 3.3. Any *-preorder ord : S×S→[0,1] is order-reversing with respect to the first variable 
and order-preserving with respect to the second variable.  
 
 Proof. Assume that x'≤x, then ord(x',y) ≥ ord(x',x)*ord(x,y) = ord(x,y). Assume that y'≤y, then   
ord(x,y)≥ ord(x,y')*ord(y',y) = ord(x,y').    � 
 
It is well known that any preorder ≤ in a set S induces an equivalence relation ≡ defined by setting x≡ y 
provided that x≤y and y≤ x. Also, in the quotient S/≡ we define an order relation by setting [x]≤[y] if 
x≤y. We can extend this to the *-orders by the following proposition where ∧ denotes the minimum 
operation. 
 
Proposition 3.4. Let ord : S×S→[0,1] be a *-preorder and define the graded relation eq : S×S→[0,1] 
by setting 
  eq(x,y) = ord(x,y)∧ord(y,x) (3.2) 
for any x,y ∈S. Then eq is a *-similarity relation. Let ≡ be the equivalence relation associated with eq 
and set, in the quotient S/≡, ord([x],[y]) = ord(x,y). Then (S/≡, ord) is a *-order we call the quotient of 
(S,ord).   
 
 Proof. It is immediate that eq(x,x) = 1 and eq(x,y) = eq(y,x). Also, from the trivial inequalities  

ord(y,z) ≥  ord(z,y)∧ord(y,z) ;  ord(z,x) ≥ ord(x,z)∧ord(z,x) 
and the fact that * is order-preserving, we have that 

ord(y,z)*ord(z,x) ≥ [ord(z,y)∧ord(y,z)]*[ord(x,z)∧ord(z,x)]. 
In a similar way we prove that 

ord(x,z)*ord(z,y) ≥ [ord(x,z)∧ord(z,x)]*[ord(z,y)∧ord(y,z)]. 
Then, since ord is transitive, 
 eq(x,y) = ord(x,y)∧ord(y,x) ≥ [ord(x,z)*ord(z,y)]∧[ord(y,z)*ord(z,x)] 
                  ≥ [ord(x,z)∧ord(z,x)]*[ord(z,y)∧ord(y,z)] = eq(x,z)*eq(z,y).  
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The remaining part of the proposition is obvious.  � 
 
4. Abstraction processes 
The aim of this note is to represent the notion of region and graded inclusion between two regions in a 
geometrical space. In accordance, in the following we prefer the notation (Re,incl) to denote a 
*−preorder structure, we call regions the elements in Re and graded inclusion the function incl. 
Whitehead defined the points by the "abstraction processs" i.e. by suitable order-reversing sequences 
of regions. Then, in order to simulate Whitehead's approach, we have to define an analogous of the 
abstractions processes.  
 
Definition 4.1. The degree of pointlikeness of an element x ∈ Re is the number 
  pl(x) = Inf{eq(x’,x) : x’≤x}. (4.1)  
 
We can interpret pl(x) as the degree of validity of the claim “any subregion of x coincides with x” by 
which we can define the notion of minimal element in an ordered set. This in accordance with the fact 
that, if ord is a *-order, then pl(x) = 1 if and only if x is a minimal element with respect to the order 
relation induced by incl. If ord is a *-similarity, then pl(x) = 1 for any region x. The following aree  
equivalent definitions of the degree of pointlikeness. 
  
Proposition 4.2. For any x∈Re, we have that 
  pl(x) = Inf{incl(x,x') : x'≤x}. (4.2) 
  pl(x) = Inf{incl(x1,x2) : x1≤x, x2≤x}. (4.3)  
  pl(x) = Inf{eq(x1 ,x2) : x1≤x, x2≤x}. (4.4) 
 
 Proof. Equation (4.2) is immediate. To prove (4.3) observe that 

pl(x) = Inf{incl(x,x2) : x2≤x} ≥ Inf{incl(x1,x2) : x1≤x, x2≤x} 
and that, since by the *-transitivity, 

incl(x1,x2) ≥ incl(x1,x)*incl(x,x2) = 1*incl(x,x2) = incl(x,x2), 
it is 

Inf{incl(x1,x2) : x1≤x, x2≤x} ≥ Inf{incl(x,x2) : x2≤x} = pl(x). 
It is evident that (4.4) is equivalent to (4.3).  � 
 
Definition 4.3. A sequence of regions <pn>n∈N of (Re,incl) is called an abstraction process if  
 a)  limn→∞ pl(pn) = 1 ; 
 b) ∀ε <1  ∃m : h≥k≥m ⇒ ord(ph,pk) >ε .  
We denote by Pr the class of abstraction processes. 
 
The following axiom says that if the regions x and y are (approximately) points, then the graded 
inclusion is (approximately) symmetric.  
 
 A4)  pl(x)*pl(y) ≤ (incl(x,y)↔incl(y,x)). 
 
If ord is a *-similarity, then such an axiom is satisfied in a trivial way. Observe that we can rewrite 
A4) as follows: 

 pl(x)*pl(y)*incl(x,y)≤incl(y,x). 
 
Proposition 4.4. Assume A4, and let <pn>n∈N be a sequence of regions such that limn→∞ pl(pn) = 1. 
Then the following are equivalent: 
 i)    <pn>n∈N is an abstraction process 
 ii)   ∀ε <1  ∃m : h≥m, k≥m ⇒ incl(ph,pk) >ε .  
 iii)  ∀ε <1  ∃m : h≥m, k≥m ⇒ eq(ph,pk) >ε .  
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 Proof. Let <pn>n∈N be an abstraction process, and let ε <1. Also, let δ be such that δ3≥ ε. Then a 
natural number m exists such that incl(ph,pk) ≥ δ, pl(ph) ≥ δ and  pl(pk) ≥ δ for any h≥ k ≥ m. Since 

incl(pk,ph) ≥ pl(pk)*pl(ph)*incl(ph,pk) ≥ δ3 ≥ ε, 
ii) follows. The remaining part of the proposition is trivial. �  
 
5. Graded inclusion spaces and associated metric spaces. 
We are now able to define the graded inclusion spaces. In the next sections we assume that * is an 
Archimedean triangular norm whose generator is f. 
 
Definition 5.1. We call graded inclusion space any model (Re,incl) of A1, A2, A3, A4 such that 
 A5) Pr ≠ ∅, 
i.e. such that an abstraction process exists.  
 
Trivial examples of graded inclusion spaces are given by the strict *-similarities. In fact, in such a case 
any constant sequence <pn>n∈N of regions is an abstraction process. These spaces are not interesting 
from our point of view since all the regions are points, in a sense. In any graded inclusion space we 
can define a *-similarity in the set Pr of abstraction processes. 
 
Proposition 5.2. Define the map sim : Pr×Pr→[0,1] by setting 
  sim(<pn>n∈N ,<qn>n∈N) = limn→∞ incl(pn,qn). (5.1) 
for any <pn>n∈N  and  <qn>n∈N  in Pr. Then the structure (Pr,sim) is a *-similarity.  
 
 Proof. To prove that for any pair <pn>n∈N and <qn>n∈N of elements in Pr the sequence 
<incl(pn,qn)>n∈N is convergent, we at first prove that 
  ∀δ s.t. 1>δ >0,, ∃m(h≥m and k≥m ⇒ incl(ph,qh) ↔ incl(pk,qk) ≥ δ). (5.2) 
Indeed, since 

incl(ph,qh) ≥ incl(ph,pk)*incl(pk,qk)*incl(qk,qh) 
by v) of Proposition 2.2 and by A4, we have that 

incl(pk,qk)→incl(ph,qh) ≥ incl(ph,pk)*incl(qk,qh) ≥ incl(pk,ph)*incl(qk,qh)*pl(pk)*pl(ph) 
≥ incl(pk,ph)*incl(qk,qh)*pl(pk)*pl(ph)*pl(qk)*pl(qh) 

Likewise, we prove that 
 incl(ph,qh)→incl(pk,qk) ≥ incl(pk,ph)*incl(qk,qh)*pl(qk)*pl(qh)*pl(pk)*pl(ph). 
Consequently,  

incl(ph,qh) ↔ incl(pk,qk) ≥ incl(pk,ph)*incl(qk,qh)*pl(pk)*pl(ph)*pl(qk)*pl(qh). 
Given 1>δ>0, since limγ→1 γ6 = 1, γ <1 exists such that δ ≤ γ6 . Let m be such that for any i≥m and j≥m,  

incl(pi,pj)≥γ, pl(pj)≥γ, incl(qi,qj)≥γ, pl(qj)≥γ. 
 Then incl(ph,qh) ↔ incl(pk,qk) ≥ γ6 ≥ δ  for any h≥m, k≥m and this proves (5.2). 
 Now, by (2.3), (5.2) is equivalent with 

∀δ>0, 1>δ, ∃m h≥m and k≥m ⇒ f[-1](|f(incl(ph,qh)) – f(incl(pk,qk))|) ≥ δ. 
and, since |f(incl(ph,qh)) – f(incl(pk,qk))| is an element of the interval f([0,1]), this entails that  

∀δ>0, 1>δ ∃m h≥m and k≥m ⇒ |f(incl(ph,qh)) – f(incl(pk,qk))| ≤ f(δ). 
Then, since for any ε>0 there is δ <1 such that f(δ)≤ε, we have that 

∀ε>0 ∃m h≥m and k≥m ⇒ |f(incl(ph,qh)) – f(incl(pk,qk))| ≤ ε. 
This proves that <f(incl(pn,qn))>n∈N is convergent. Since f-1 is continuous in the interval f([0,1]), we can 
conclude that <incl(pn,qn)>n∈N is convergent, too. 
  It is immediate that sim is reflexive. To prove the *-transitivity, observe that  
 sim(<pn>,<rn>) = limn→∞ incl(pn,qn) ≥ limn→∞ incl(pn ,qn)*(incl(qn,rn))  
                                = limn→∞ incl(pn ,qn)*limn→∞ (incl(qn,rn)) = sim(<pn>,<qn>)*sim(<qn>,<rn>).   
To prove that sim is symmetric, observe that 
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sim(<pn>,<qn>) = limn→∞ incl(pn,qn) ≥ limn→∞ incl(qn,pn)*pl(pn)*pl(qn)). 
Then, since limn→∞pl(pn) = limn→∞pl(qn)) = 1, 
  sim(<pn>,<qn>) ≥ limn→∞ d(qn,pn) = sim(<qn>,<pn>).  �  
 
In the case of the strict *-similarities the space (Pr,sim) is an extension of (Re,ord). As an immediate 
consequence of Proposition 5.2, we have the following proposition. 
 
Proposition 5.3. Let (Re,ord) be a *-graded inclusion space and let f : [0,1]→[0,∞] be an additive 
generator of *. Then the map d : Pr×Pr→R+ obtained by setting 
  d(<pn>n∈N ,<qn>n∈N) = f(sim(<pn>n∈N ,<qn>n∈N)), (5.3) 
defines a pseudo-metric space (Pr,d). 
  
Proof. Trivially, d is symmetric. Moreover, 
 d(<pn>n∈N ,<qn>n∈N)  = f(sim(<pn>n∈N ,<qn>n∈N))  
                                        ≤ f(sim(<pn>n∈N ,<rn>n∈N)*sim(<rn>n∈N ,<qn>n∈N))  
                                   = f(f[-1](f(sim(<pn>n∈N ,<rn>n∈N))+f(sim(<rn>n∈N ,<qn>n∈N))) 
                                   ≤ f(sim(<pn>n∈N ,<rn>n∈N))+f(sim(<rn>n∈N ,<qn>n∈N)) 
                                   = d(<pn>n∈N ,<rn>n∈N)+ d(<rn>n∈N ,<qn>n∈N). �  
 
Definition 5.4. We call metric space associated with a graded inclusion space (Re,incl) the quotient 
(M,δ) of the pseudo-metric space (Pr,d). We call point any element in M. 
 
Then, the metric space (M,δ) associated with an inclusion space (Re,incl) is obtained  
 - by starting from the class Pr of point-representing sequences ; 
 - by setting  M  equal to the quotient of Pr modulo the equivalence relation ≡ defined by  

<pn>n∈N  ≡ <qn>n∈N  ⇔  limn→∞ incl(pn,qn) = 1 ; 
 - by defining δ : M × M →R+ by the equation, 
  δ(P,Q) = limn→∞ f(incl(pn,qn)). (5.4) 

where P = [<pn>n∈N] and Q = [<qn>n∈N] are elements in M. 
Notice that if D(M) is the diameter of this space, then, in accordance with (5.4), D(M) ≤ f(0). 
 We conclude this section by noticing that we can also consider a different notion of abstraction 
process which is closer to Whitehead's definition. Indeed, given a graded inclusion space (Re,incl), we 
call nested-representing sequence any order-reversing sequence <pn>n∈N of regions such that 

limn→ pl(pn) = 1. 
We denote by Nr the class of the nested-representing sequences. In the case of a strict *-similarity, Nr 
coincides with Re. Obviously, any nested-representing sequence is an abstraction process. These 
sequences define a metric space (M',δ') where M' = {[<pn>n∈N] ∈M : <pn>n∈N ∈Nr} and δ' is the 
restriction of δ  to M'. We call small metric space associated with (Re,incl) such a metric space.  
  
6. Examples of graded inclusion structures. 
Any continuous triangular norm * defines a very simple *-graded inclusion structure in [0,1]. Indeed,  
let → be the implication associated with *. Then from Proposition 2.2 we have that ([0,1],→) is a *-
order whose induced order is the usual one in [0,1]. Moreover, 

pl(x) = Inf{x→x' : x'≤x} = x→Infx'≤xx' = x→0 
i.e. pl coincides with the strong negation. Also, since x→0 ≤ x→y, we have that  

pl(x)*pl(y)*(y→x) ≤ x→y 
and therefore A4 is satisfied. Finally, the sequence constantly equal to 0 is an abstraction process and 
A5 is satisfied, too. Thus, ([0,1],→) is a *-graded inclusion structure. Now, observe that in the case of 
the minimum and the usual product, we have that pl(x) = 1 if x = 0 and pl(x) = 0 otherwise. This means 
that the only abstraction process is the sequence constantly equal to 0. In the case of the Lukasiewicz 
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norm we have that pl(x) = 1-x and therefore any sequence converging to 0 is an abstraction process. In 
all the cases in the associated metric space there is only a point.  
 Let (S,≤) be an ordered set with at least a minimal element and let incl be the characteristic 
function of ≤, i.e., incl(x,y) = 1 if x≤y and incl(x,y) = 0 otherwise. Then (S,incl) is a *-graded inclusion 
with respect to any triangular norm * whose induced order coincides with ≤. Also, pl(x) = 1 if x is a 
minimal element and pl(x) = 0 otherwise. It is immediate to see that both the metric spaces (M,δ) and 
(M',δ') associated with (S,incl) coincide with the discrete metric in the set of minimal elements of 
(S,≤). In particular, the class of nonempty subsets of a given set S ordered with respect to the inclusion 
relation defines a *-graded inclusion whose associated metric space is the discrete metric in S. 
 
 
 The notion of excess enables us to obtain examples of graded inclusion structures that are more 
interesting from a geometrical point of view. As usual, given a metric space (M,δ), P∈M  and x, y 
nonempty subsets of M, we set 
  δ(P,x) = Inf{δ(P,Q) : Q ∈ x}. (6.1) 
  m(x,y) = Inf{δ(P,Q) : P∈x, Q∈y} (6.2) 
  D(x) = Sup{δ(P,P') : P∈x, P'∈x}. (6.3) 
It is immediate to prove that, for any P, Q ∈ M and x nonempty subset, 
  δ(P,x) ≤ δ(P,Q) +δ(Q,x). (6.4) 
Also, we define the excess function eδ by setting,  
    eδ(x,y) = Sup{δ(P,y) : P∈x}. (6.5) 
Recall that by setting δH(x,y) = eδ(x,y)∨eδ(y,x) we obtain the famous Hausdorff distance δH.  
 
Proposition 6.1. Let x, y be nonempty subsets of M. Then 
   |eδ(x,y) - eδ(y,x)| ≤  Max{D(x), D(y)}. (6.6) 
  eδ(x,z) ≤ eδ(x,y) + eδ(y,z). (6.7) 
 
 Proof. To prove (6.6) observe that, for any P, P' ∈ x,  

δ(P,y) ≤ δ(P,P')+δ(P',y) ≤ D(x) + δ(P',y) 
and therefore  
  eδ(x,y) = Sup{δ(P,y) : P∈x} ≤ D(x)+ Inf{δ(P',y) : P'∈x} = D(x) + m(x,y) ≤ D(x) + eδ(y,x). 
Then  eδ(x,y)-eδ(y,x) ≤ D(x) ≤ Max{D(x), D(y)}. In the same way we prove that eδ(y,x)-eδ(x,y) ≤ D(y) ≤ 
Max{D(x),D(y)}. Thus, (6.6) follows. To prove (6.7), observe that, given P∈x and Q∈z, 

δ(P,y) ≤ δ(P,Q) +δ(Q,y) ≤ δ(P,Q) +eδ(z,y) 
and therefore  

δ(P,y) ≤ InfQ∈z δ(P,Q) + eδ(z,y) = δ(P,z) + eδ(z,y). 
Consequently, 
 eδ(x,y) = Sup{δ(P,y) : P∈x}≤ Sup{δ(P,z) + eδ(z,y) : P∈x}  
                  = Sup{δ(P,z) : P∈x} + eδ(z,y) = eδ(x,z)+ eδ(z,y). �   
 
Denote by cl : P(M)→ P(M) and by int : P(M)→ P(M) the closure operator and the interior operator, 
respectively, and define reg : P(M)→ P(M) by setting reg(x) = cl(int(x)). Then we call regularly 
closed set, in brief regular set, any fixed point of reg. It is easy to prove that in the class of the closed 
subsets, the operator reg satisfies the following properties 
 i)     reg(∅) = ∅    ;    ii)    x ⊆ y  ⇒ reg(x) ⊆ reg(y)  ;   
 iii)   reg(x) ⊆ x      ;    iv)   reg(reg(x)) = reg(x).  
The class of regular subsets is an interesting complete Boolean algebra. Basic examples of regular sets 
are obtained by setting, for any P∈M and n∈N,  
  Bn(P) = cl({P'∈M : δ(P',P)<1/n}). (6.8) 
Since any point in a regular set x is limit of a sequence of point in int(x), it is D(x) = D(int(x)) and, 
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given a point P, δ(P,x) = δ(P,int(x)). 
 
Theorem 6.2. Let Re be the class of all nonempty bounded closed regular subsets of (M,δ) and let f : 
[0,1]→[0,∞] be an additive generator of a triangular norm *. Also, define incl : Re×Re by setting 
  incl(x,y) = f[-1](eδ(x,y)). (6.9) 
Then (Re,incl) is a *-graded inclusion space whose associated order is the inclusion relation. If (M,δ) 
is complete and D(M)≤f(0), then the metric space associate with (Re,incl) is isometric with (M,δ). 
 
 Proof. A1 is trivial. To prove A2, at first we observe that, for x, y and z positive real numbers, 
   (x+y)∧z ≤ x∧z+y∧z. (6.10) 
Indeed, if z ≤ x, then since it is also z ≤ x+y we have that (x+y)∧z = z ≤ z+(y∧z) = x∧z+y∧z.  The 
same holds in the case z ≤ y. If z > x and z > y, then (x+y)∧z ≤ x+y = x∧z+y∧z. 
Now, by (6.7) and (6.10) 
  eδ(x,z)∧f(0) ≤ (eδ(x,y) + eδ(y,z))∧ f(0) ≤ eδ(x,y)∧f(0) + eδ(y,z)∧f(0) 
and therefore 

f(f[-1](eδ(x,z))) ≤ f(f[-1](eδ(x,y))) + f(f[-1](eδ(y,z))), 
i.e., 

f(incl(x,z)) ≤ f(incl(x,y)) + f(incl(y,z)). 
Since f[-1] is order-reversing 

incl(x,z) = f[-1](f(incl(x,z))) ≥ f[-1](f(incl(x,y)) + f(incl(y,z))) = incl(x,y)*incl(y,z). 
 To prove A3, assume that incl(x,y) = 1 and therefore that f[-1](eδ(x,y)) = 1, then f(f[-1](eδ(x,y))) = 
f(0)∧eδ(x,y) = 0 and therefore eδ(x,y) = 0. Since y is a closed sets, this entails that x⊆y. This proves 
both that A3 is satisfied and that the associated order is the inclusion relation.  
 To prove A4, observe that, for x, y and z positive real numbers,  
 |x-y|∧z ≥ |x∧z - y∧z|. (6.11) 
In fact, assume that and x ≥ y. Then in the case z ≤ x-y, 

|x-y|∧z = (x-y)∧z = z ≥ x∧z ≥ x∧z - y∧z = |x∧z - y∧z|. 
 In the case z > x-y we have that  z ≥ x, and therefore z≥y. So,  

|x-y|∧z = (x-y)∧z = x – y = x∧z - y∧z = |x∧z - y∧z|.  
Also, we have 
   f(pl(x)) ≥ D(x)∧f(0). (6.12) 
Indeed, for any P and P'  in int(x), and for any n such that Bn(P’) ≤ x, 

δ(P,Bn(P’)) = Inf{δ(P,X) : δ(X,P')<1/n} ≥ Inf{δ(P,P')-δ(X,P') : δ(X,P')<1/n} ≥ δ(P,P')-1/n 
and therefore 
  f(pl(x)) = f(Inf{incl(x,x’) : x’≤x}) 
                    = Sup{f(incl(x,x’)) : x’≤x}  
              = Sup{eδ(x,x’)∧f(0) : x’≤x}  
              = Sup{eδ(x,x’) : x’≤x}∧f(0)  
                    ≥ δ(P,Bn(P’))∧f(0) 
                   ≥ (δ(P,P’)-1/n)∧f(0). 
This entail,   
             f(pl(x)) ≥ limn→∞  (δ(P,P’)-1/n)∧f(0) = δ(P,P’)∧f(0). 
Moreover, in accordance with (6.6), (6.10) and (6.12), 

|f(incl(x,y)) - f(incl(y,x))| = |eδ(x,y)∧f(0) - eδ(y,x)∧f(0)| ≤ |eδ(x,y) – eδ(y,x)|∧f(0) 
                                           ≤ (D(x)∨D(y))∧f(0) = D(x)∧f(0)∨D(y)∧f(0)  
                                           ≤ f(pl(x))∨ f(pl(y)) ≤ f(pl(x)) + f(pl(y)), 
and, since f[-1] is order-reversing,  

f[-1](|f(incl(x,y)-f(incl(y,x))|) ≥  f[-1](f(pl(x)) + f(pl(y))). 
This inequality, by Theorem 2.5, coincides with A4. 
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 To prove A5, given any point P in M, observe that,   
limn→∞ pl(Bn(P)) = limn→∞ f[-1](D(Bn(P))) = f[-1](limn→∞ D(pn)) = f[-1](0) = 1, 

so, since (Bn(P))n∈N  is order reversing, (Bn(P))n∈N  is an abstraction process. This complete the proof 
that (Re,incl) is a *-graded inclusion space. 
 Assume that D(M)≤f(0) and let (M’,δ’) be the metric space associated with (Re,incl). We denote 
by i : M → M’ the map defined by the equation 

i(P) = [<Bn(P)>]. 
Then, since it is easy to prove that δ(P,P') + 1/n ≥ eδ(Bn(P),Bn(P')) ≥  δ(P,P') - 1/n and therefore that  
limn→∞  eδ(Bn(P),Bn(Q)) = δ(P,Q), we have that for any P and Q in M, 
 δ’(i(P),i(Q)) = limn→∞  f(incl(Bn(P), Bn(Q)))  
                            = limn→∞  f(f[-1](eδ(Bn(P),Bn(Q))))  
                      = limn→∞  eδ(Bn(P),Bn(Q)) 
                      = δ(P,Q). 
This proves that i is an isometry. To prove that i is surjective, assume that (M,δ) is complete and let P 
be any point in M’, i.e. P = [<pn>] where <pn> is an abstraction process. Let, for any n∈N, Pn be a 
point in the set pn, we claim that <Pn> is a Cauchy sequence. Indeed, observe that,  

δ(Ph,Pk) ≤ eδ(ph,pk) + D(pk) 
and that  

limk→∞ D(pk) = limk→∞ f(pl(pk)) = f(limk→∞ pl(pk)) = f(1) = 0. 
Moreover, given ε > 0, let ε’ be such that f(ε’) = ε. Then m∈N exists such that, incl(ph,pk) =  
f[-1](eδ(ph,pk)) > ε’ and therefore eδ(ph,pk) ≤ ε for any h≥m, k≥m. Let P’ ∈M be the limit of the sequence 
<Pn>. Then, since 

eδ(Bn(P’),pn) ≤ eδ(Bn(P’),Pn) ≤ 1/n + δ(P’,Pn), 
we have that limn→∞ eδ(Bn(P’),pn) = 0 and therefore that i(P’) = P. �  
 
7. Final remarks 
As was proved by L. M. Blumenthal in [1], given an integer n∈N, it is possible to add to the theory of 
metric spaces MS a suitable set of axioms ES to obtain a theory T = MS∪ES for the Euclidean n-
dimensional metric space. Obviously, the axioms in T refer to the points and the distance between 
points as primitives. Now, assume as primitives the regions and the graded inclusion between regions. 
Then, in account of the proposed definitions of point and distance between points, we can interpret the 
axioms in ES as properties of the regions and of the graded inclusion. Consequently, we can consider 
the theory T* = {A1, A2, A3, A4, A5}∪ES. The models of T* are the graded inclusion spaces whose 
associated metric space (M,δ) is an Euclidean metric space. Then T* gives a point-free approach to 
Euclidean geometry in which, in accordance with Whitehead's ideas, all the notions in the Euclidean 
geometry can be expressed in terms of regions and graded inclusion between regions. Observe that in 
accordance with Theorem 6.2 such a theory is consistent. In fact, a model of T*  is obtained from the 
class Re of the nonempty regular bounded subsets of (M,δ) and from any additive generator such that 
f(0) = ∞ (as an example the function –log). Obviously, the so obtained theory is not satisfactory. In 
fact, it should be more interesting to find some "natural" and more direct system of axioms for the 
Euclidean graded inclusion spaces of regions in which the characteristic properties of the regions in an 
Euclidean space are emphasized. 
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