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 STRATIFIED OPERATORS AND GRADED 
CONSEQUENCE RELATIONS 

by  
Giangiacomo Gerla 

 
(A more complete version of this technical note can be find in  Chapter 7 of my 

book in Fuzzy Logic by Kluwer Editor) 
 
1. GRADED DEDUCTIVE TOOLS FOR GRADED INFORMATION  
In accordance with Tarski’s point of view, we identify a crisp deductive apparatus 
with a “deduction operator”, i.e. a closure operator  D  : P(Å)→ P(Å) where Å is 
the set of formulas in a logic. Given a set X of formulas, we interpret D(X) as the 
set of logical consequences of X. Now, we can imagine a "stratified" deduction 
apparatus, i.e. the availability of various deductive instruments each with a related 
degree of validity. We can represent such a state of affairs assuming that, for every 
λ ∈ [0,1], a crisp deduction operator Dλ is defined. Given a set X of formulas, we 
interpret Dλ(X) as the set of formulas that we can derive from X by using 
arguments which are "reliable"  to degree λ. More generally, it is possible that the 
available information and the deduction apparatus are both stratified. In this case, 
we represent the stratified information by a fuzzy set v : Å→[0,1]. Then, if we 
denote by C(v,λ) the closed cut {α ∈Å : v(α)≥λ}, in the case α ∈ Dλ(C(v,λ)) for a 
suitable λ ∈ [0,1], we say that α is a consequence of v to degree λ. Obviously, we 
must consider the lower-constraint for the truth degree of α which is the best we 
are able to get. Then, it is natural to consider the number 
  D(v)(α) = Sup{λ ∈ [0,1] : α ∈ Dλ(C(v,λ))} (1.1) 
as the best lower-constraint for this truth degree. This suggests a way to define 
new fuzzy logics that will be useful to investigate the interesting notion of a 
graded consequence relation proposed in Chakraborty [1988]. 
 In the sequel we denote by U the interval [0,1].  

 
2.  STRATIFIED FUZZY CLOSURE OPERATORS 
The following definition enables us to associate any family of crisp operators with 
a fuzzy operator. 
 
Definition 2.1. Let (Jλ)λ∈U be a family of operators in a set S and let J be the fuzzy 
operator defined by setting, for every s ∈ F(S) and x ∈ S, 
  J(s)(x) = Sup{λ ∈ U : x ∈ Jλ(C(s,λ))}. (2.1) 
Then we say that J is the fuzzy operator associated with (Jλ)λ∈U.  
 
 We say that a family (Jλ)λ∈U of operators is a chain provided that (Jλ(X))λ∈U is a 
chain for every subset X, i.e.,  
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  (i)    J0 is the map constantly equal to S,  
  (ii)  (Jλ)λ∈U is order-reversing. 
We say that (Jλ)λ∈U is a continuous chain provided that (Jλ(X))λ∈U is a continuous 
chain for every subset X, i.e.,  
  (j)    J0 is the map constantly equal to S, 
  (jj)  Jµ(X) = …λ<µ Jλ(X) for every subset X and µ ∈ U. 
 
 Definition 2.1 extends the notion of canonical extension of an operator 
proposed in Biacino L., Gerla G., [1996]. Indeed, it is easy to prove that the 
following proposition holds true. 
 
Proposition 2.2. Let J be associated with a chain (Jλ)λ∈U and H a crisp operator. 
Then the following are equivalent:  
  (a)  J is an extension of H. 
  (b)  Jλ = H for every 0 < λ < 1. 
  (c)  J is the canonical extension of H. 
 
Of course, we are interested in families of closure operators. 
 
Theorem 2.3. Let (Jλ)λ∈U be a family of closure operators and let J be the 
associated operator. Then J is a fuzzy a-c-operator which is not, in general, a 
closure operator. Assume that (Jλ)λ∈U is a chain, then J is a fuzzy closure operator. 
 
 Proof. Trivially, J is order-preserving. In order to prove the inclusion property, 
observe that, since C(s,λ) ⊆ Jλ(C(s,λ)), we have 

s(x) = Sup{λ ∈ U : x ∈ C(s,λ)} ≤ Sup{λ ∈ U : x ∈ Jλ(C(s,λ))} = J(s)(x). 
To show an example in which J is not a closure operator, let R be the real line and, 
for every subset X of R, denote the topological closure of X by c(X) and the 
smallest closed convex subset containing X by <X>. Then we can consider the 
order-preserving family (Jλ)λ∈U defined by setting Jλ(X) = c(X) for any λ < 0.5 and 
Jλ(X) = <X> for λ ≥ 0.5. We claim that the associated operator J is not a closure 
operator. Indeed, consider the fuzzy subset s defined by setting s(x) = | x | if −0.5< 
x < 0.5 and, otherwise, by setting s(x) = 0. Then, for every λ ≠ 0, C(s,λ) = (−0.5,λ] 
∪ [λ,0.5) if λ < 0.5 and C(s,λ) = ∅ if λ ≥ 0.5. Consequently, since 
 J(s)(x) = Sup{λ ∈ U : x ∈ Jλ(C(s,λ))} = Sup{λ < 0.5 : x ∈ c(C(s,λ))}, 
it is J(s)(x) = | x | if −0.5 ≤ x ≤ 0.5 and, otherwise, J(s)(x) = 0. On the other hand, 
since J0.5(C(J(s),0.5)) = <{−0.5, +0.5}> = [−0.5,+0.5], we have that J(J(s))(x) = 0.5 
for every x ∈ [− 0.5,+0.5]. This proves that J(J(s)) ≠ J(s). 
 Finally, assume that (Jλ)λ∈U is a chain. Then, to prove that J(J(s)) = J(s), it is 
sufficient to prove that every cut C(J(s),λ) is a fixed point for Jλ. Indeed, in this 
case 
 J(J(s))(x) = Sup{λ ∈ U : x ∈ Jλ(C(J(s),λ))}  
                      = Sup{λ ∈ U : x ∈ C(J(s),λ)} = J(s)(x). 
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Now, observe that (Jλ(C(s,λ)))λ∈U  is a chain of subsets of S. In fact, J0(C(s,0)) = S 
and if λ ≤ λ', then Jλ(C(s,λ)) ⊇ Jλ(C(s,λ')) ⊇ Jλ'(C(s,λ')). Furthermore, observe that 
if µ ≤ λ, then every fixed point for Jµ is a fixed point for Jλ. In particular, 
Jµ(C(s,µ)) is a fixed point for Jλ. By recalling that the intersection of a class of 
fixed points is a fixed point and by observing that,  
  C(J(s),λ) = …µ <λ Jµ(C(s,µ)),  
we conclude that C(J(s),λ) is a fixed point for Jλ. � 
 
 The following proposition, whose proof we omit, shows that every fuzzy 
closure operator obtained by a chain of closure operators can be obtained by a 
continuous chain of closure operators. 
 
Proposition 2.4. Let (Jλ)λ∈U be any chain of closure operators and set, for every 
λ ∈ U and X ⊆ S, 
  J"λ(X) = …µ<λ Jµ(X). (2.3) 
Then (J"λ)λ∈U is a continuous chain of closure operators. Moreover, the fuzzy 
closure operator associated with (Jλ)λ∈U coincides with the operator associated 
with (J"λ)λ∈U . 
 
Definition 2.5. Let (Jλ)λ∈U be a family of closure operators and let J' be the 
associated fuzzy operator. We define the fuzzy closure operator associated with 
(Jλ)λ∈U as the closure operator J generated by J'. In this case we say that J is 
stratified. If (Jλ)λ∈U is a chain, we say that J is well-stratified. 
 
 An example of a fuzzy operator which is stratified but not well-stratified is 
given at the end of Section 4. In Castro, Trillas, Cubillo [1994] a a fuzzy 
implication  is a fuzzy relation Imp : S × S → U  such that, for any x, y, z in S, 
  (a)  Imp(x,x) = 1                                 (reflexivity), 
  (b)  Imp(x,y) ∧ Imp(y,z) ≤ Imp(x,z)    (transitivity) 
The fuzzy operator J associated with Imp is defined by setting 
  J(s)(z) = Sup{s(x) ∧ Imp(x,z) : x ∈ S}. (2.4) 
We claim that J is well-stratified. Indeed, set, for any λ ∈ U,  
  Jλ(X) = {x ∈ S : ∃x' ∈ X such that Imp(x',x) ≥ λ}. (2.5) 
It is easy to demonstrate that (Jλ)λ∈U is a chain of closure operators and that J is the 
fuzzy closure operator J associated with this chain. Note that if Imp is not crisp, J 
is not an extension of a crisp operator and therefore, by Proposition 2.2, J is not a 
canonical extension of a crisp operator.  

 
3. STRATIFIED CLOSURE SYSTEMS 
 Now, we define a notion of stratified closure system which is well related to the 
notion of stratified closure operator.  
 
Definition 3.1. Let (Cλ)λ∈U be a family whose elements are classes of subsets of a 
given set S. Then the class of fuzzy subsets of S  
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  C = {s ∈ F(S) : C(s,λ) ∈ Cλ for every λ ≠ 0} (3.1) 
is said to be the class of fuzzy subsets associated with (Cλ)λ∈U.  
 
Proposition 3.2. Let C be the class of fuzzy subsets associated with the family 
(Cλ)λ∈U. Then X is a crisp element of C iff, for any λ ≠ 0, X is a crisp element of Cλ. 
In other words, …λ≠0Cλ is the class of crisp elements of C. 
 
 Proof. If s is a crisp fuzzy set and X = Supp(s), then s ∈ C iff X = C(s,λ) ∈ Cλ 
for every λ ≠ 0.  � 
 
 Obviously, we are interested in families of closure systems, obviously. We say 
that a family of closure systems (Cλ)λ∈U is a chain if  
 (i)   C0 = {S}, 
     (ii)  (Cλ)λ∈U is order-preserving.  
Such a family is called a continuous chain if, for every λ ∈ U,  
 (j)   C0 = {S}, 
     (jj)   Cλ = Sup{Cµ : µ < λ}. 
Here the operator Sup is the join in the lattice of closure systems and hence (jj) 
means that Cλ is the closure system generated by »µ < λ Cµ . This notion is well 
related to the notion of continuous chain for closure operators.  
 (3.1) generalizes the formula for the canonical extension of a class of subsets. 
More precisely: 
 
Proposition 3.3. Let C be the fuzzy system associated with a chain (Cλ)λ∈U of 
classes of subsets. Then C is the canonical extension of a crisp class H iff every 
Cλ , with λ ≠ 0, coincides with H. 
 
 Proof. Suppose C = H* where H is a class of subsets. Then, by Proposition 3.2, 

H = …λ≠0 Cλ. Assume that λ ≠ 0 exists such that Cλ ≠ H and let X  be an element 
of Cλ such that X ∉ H. Now, if s = λ ∨ X, then C(s,µ) = S if µ < λ, otherwise 
C(s,µ) = X. As a consequence, since (Cλ)λ∈U is a chain, C(s,µ) ∈ Cµ for every µ ∈ 
U. This demonstrates that s ∈ C while it is obvious that s ∉ H*. This contradiction 
proves that Cλ = H. The converse implication is trivial. �  
 
Theorem 3.4. Let (Cλ)λ∈U be a family of closure systems. Then the class C 
associated with (Cλ)λ∈U is a fuzzy closure system. 
  
 Proof. Let (si)i∈I be a family of elements of C. Then, since for every λ ∈ U,  
  C(…i∈I si,λ) = … i∈I C(si,λ) ∈ Cλ ,  
we have that … i∈I si ∈ C and this proves that C is a closure system.  � 
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 Note that, differently from the closure operators, a fuzzy closure system C 
associated with a family of closure systems (Cλ)λ∈U is always an extension of a 
classical closure system, namely the system …λ≠0 Cλ.  
 
Definition 3.5. Let C be the fuzzy closure system associated with a family (Cλ)λ∈U 
of closure systems, then C is said to be stratified. If (Cλ)λ∈U is a chain, then we say 
that C is well-stratified. 
 
 Notice that the class of stratified closure systems is closed under finite and 
infinite intersections and therefore is a closure system.  
 Any family (Jλ)λ∈U of closure operators defines a corresponding family 
(Cs(Jλ))λ∈U of closure systems and any family (Cλ)λ∈U of closure systems defines a 
corresponding family (Co(Cλ))λ∈U of closure operators. Indeed, we have the 
following natural equivalences: 
 
Proposition 3.6. Let (Jλ)λ∈U  be a family of closure operators. Then 
  (Jλ)λ∈U is a chain  ⇔   (Cs(Jλ))λ∈U is a chain 
  (Jλ)λ∈U is a continuous chain   ⇔   (Cs(Jλ))λ∈U is a continuous chain. 
 
 Proof.  The first equivalence is trivial. Assume that (Jλ)λ∈U is a continuous 
chain. We claim that Cs(Jµ) is the closure system generated by »λ<µCs(Jλ). In fact, 
it is obvious that Cs(Jµ) is a closure system containing »λ<µCs(Jλ). Let C be a 
closure system containing the class »λ<µCs(Jλ) and let X be an element of Cs(Jµ). 
Then, since X = Jµ(X) = …λ<µ Jλ(X) and Jλ(X) is an element of Cs(Jλ), X is an 
intersection of elements of »λ<µCs(Jλ). Hence X ∈ C and this proves that 
C ⊇ Cs(Jµ).  
 Suppose (Cs(Jλ))λ∈U is a continuous chain. Then (Jλ)λ∈U is a chain and Cs(Jµ) is 
the closure system generated by »λ<µ Cs(Jλ). Consequently, since Jµ(X) is an 
element of Cs(Jµ), a family (Xλ(i))i∈I of subsets of S exists such that λ(i) < µ, Xλ(i) is 
a fixed point of Jλ(i) and Jµ(X) = …i∈IXλ(i). Furthermore, since Xλ(i) ⊇ X entails 
Xλ(i) ⊇ Jλ(i)(X), we have 

Jµ(X) = …i∈IJλ(i)(X) ⊇ …λ<µJλ(X). 
Now, (Jλ)λ∈U is order-reversing and therefore Jµ(X) ⊆ …λ<µJλ(X). Thus, Jµ(X) = 
…λ<µ Jλ(X) and this proves the continuity of (Jλ)λ∈U . � 
 
The next theorem says that Definitions 2.1 and 3.1 are related in a natural way: 
 
Theorem 3.7. Let J be the closure operator associated with a family (Jλ)λ∈U of 
closure operators and C the closure system associated with the family (Cs(Jλ))λ∈U 
of closure systems. Then, J = Co(C), that is 
 
                                         (Jλ)λ∈U                     (Cs(Jλ))λ∈U 
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                                           J                                 C . 
 
 Proof. Let J' be the operator associated with (Jλ)λ∈U. In order to prove J = 
Co(C) we can prove that Cs(J) = C, i.e., that C = Cs(J'). Let s be an element of C, 
then every cut C(s,λ) belongs to Cs(Jλ) and therefore it is a fixed point for Jλ. Then  

J'(s)(x) = Sup{λ ∈  U : x ∈ Jλ(C(s,λ))} = Sup{λ ∈  U : x ∈ C(s,λ)} = s(x) 
and this proves that s ∈ Cs(J'). Conversely, if J'(s) = s, then, for every x ∈ S, 

Sup{λ∈ U : x ∈ Jλ(C(s,λ))} = s(x). 
In other words, x ∈ Jλ(C(s,λ)) implies λ ≤ s(x) and this proves that x ∈ C(s,λ). 
Then, since Jλ(C(s,λ)) is contained in C(s,λ), C(s,λ) is a fixed point for Jλ. Thus s 
is an element of C.  � 
 
 In a similar way one demonstrates the next theorem: 
 
Theorem 3.8. Let C be the fuzzy closure system associated with a family (Cλ)λ∈U  
of closure systems and J the closure operator associated with the family 
(Co(Cλ))λ∈U of closure operators. Then, C = Cs(J), that is 
  
                                            (Cλ)λ∈U                   (Co(Cλ))λ∈U 
 
 
                                               C                               J . 
  
Corollary 3.9.  If J is a closure operator, then 
  J stratified  ⇔  Cs(J) stratified, 
  J well-stratified  ⇔  Cs(J) well-stratified. 
If C is a fuzzy closure system, then 
  C stratified  ⇔  Co(C) stratified, 
  C well-stratified  ⇔  Co(C) well-stratified. 
 
Proposition 3.10. Assume that J1 and J2 are two (well) stratified closure 
operators. Then the closure operator generated by the product J1 ë J2 is (well) 
stratified. 
 
 Proof. Observe that Cs(J1) and Cs(J2) are both (well) stratified and therefore 
Cs(J1)∩Cs(J2) is also (well) stratified. Moreover, it is easy to prove that 
Cs(J1)∩Cs(J2) is the set of fixed points of J1 ë J2. This completes the proof. � 

 
4. A CHARACTERIZATION OF STRATIFIED CLOSURE SYSTEMS 
Observe that every fuzzy closure system determines a family of closure systems in 
a natural way. 
 
Definition 4.1. Let C be a class of fuzzy subsets and set, for every λ ∈ U  
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  H(C,λ) = {C(s,λ) : s ∈ C}. (4.1) 
Then we say that (H(C,λ))λ ∈U is the family of classes associated with C.  
 
Proposition 4.2. For every fuzzy closure system C, and λ ∈ U, the class H(C,λ) is 
a closure system. Moreover, if C is associated with a family (Cλ)λ∈U of closure 
systems then, for every λ ∈ U, 

H(C,λ) ⊆ Cλ. 
Finally, in the case that (Cλ)λ∈U is a continuous chain, 

H(C,λ) = Cλ. 
 
 Proof. Let (Xi)i∈I be a family of elements of H(C,λ). Then a family (si)i∈I of 
elements of C exists such that Xi = C(si,λ). Since …i∈IXi = C(…i∈Isi,λ) and …i∈Isi 
belongs to C, the set …i∈IXi belongs to H(C,λ). This demonstrates that H(C,λ) is a 
closure system.  
 Assume that C is associated with a family (Cλ)λ∈U of closure systems and let X 
∈ H(C,λ). Then an element sλ in C exists such that C(sλ,λ) = X. The fact that every 
λ-cut of an element in C belongs to Cλ enables us to conclude that X ∈ Cλ. 
 Assume that (Cλ)λ∈U  is a continuous chain and that X ∈ Cλ. Then, since Cλ is 
the closure operator generated by »µ<λ Cµ , X = …i∈IXi where each Xi is an element 
of a suitable Cµ(i) , for µ(i) < λ. Consider the fuzzy subset si = Xi ∨ µ(i). We claim 
that si ∈ C. Indeed, since S belongs to any closure system, in the case t ≤ µ(i) we 
have C(si,t) = S ∈ Ct . In the case t > µ(i), since C(s,t) = Xi and Xi ∈ Cµ(i), from the 
inclusion Cµ(i) ⊆ Ct, it follows that C(s,t) ∈ Ct. From si ∈ C it follows that Xi = 
C(si,λ) ∈ H(C,λ). Since H(C,λ) is a closure system, this demonstrates that X = 
…i∈IXi ∈ H(C,λ).  � 
 
Definition 4.3. Given a fuzzy closure system C, we denote by C* the fuzzy closure 
system associated with the family (H(C,λ))λ∈U and we say that C* is the stratified 
closure system associated with C.  
 
In other words, we set 
  C*= {s ∈ F(S) : C(s,λ) ∈ H(C,λ) for every λ ∈ U}. (4.2) 
In a series of papers we defined the canonical extension of a crisp closure system 
C as the fuzzy closure systems   

C* = {s : C(s,λ) ∈C for any λ∈U } 
The following proposition, whose proof is trivial, shows that the notation in 
Definition 4.3 is coherent with such a definition. 
 
Proposition 4.4. If C is a classical closure system, then the stratified closure 
system associated with C by (4.2) coincides with the canonical extension of C. 
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 The following proposition shows that the map associating any fuzzy closure 
system C with the  fuzzy closure system C* defines a closure operator in the lattice 
of fuzzy closure systems. Furthermore, it characterizes the stratified fuzzy closure 
systems as the fixed points of such an operator. 
 
Theorem 4.5.  Assume that C, C1 and C2 are fuzzy closure systems. Then  
 (i)      C ⊆ C*, 
 (ii)    C1 ⊆ C2  ⇒  C1

* ⊆ C2
*, 

 (iii)   (C*)*= C*. 
Moreover,  
  C = C*  ⇔  C is a stratified closure system. 
 
 Proof.  Properties (i), (ii) and (iii) are obvious. It is self-evident that if C = C*, 
then C is stratified. Assume that C is the stratified closure system associated with a 
family (Cλ)λ∈U of closure systems. Then from the inclusion H(C,λ) ⊆ Cλ we have 
that C* ⊆ C and therefore that C* = C.  
 The converse implication is trivial.  � 
 
 Let T be a class of fuzzy subsets. Then we define Q(T) by setting 
  Q(T) = {λ ∨ C(s,λ) : s ∈ T, λ ∈ U }. (4.3) 
 
Proposition 4.6.  For every fuzzy closure system C,  
   C  ⊆ C* ⊆ c(Q(C)) 
where c(Q(C)) is the fuzzy closure system generated by Q(C). Consequently, 
  C ⊇ Q(C)  ⇒  C = C* = c(Q(C)).  
Furthermore, if (H(C,λ))λ∈U  is a chain,  
  C*= c(Q(C)) 
and therefore, 
  C = c(Q(C))  ⇔  C = C*. 
 
 Proof. Let s ∈ C* and observe that 
 C*= {s ∈ F(S) : for every λ ∈ U , C(s,λ) = C(sλ,λ) for a suitable sλ ∈ C}.  
Then,  

s = …λ∈U λ ∨ C(s,λ) = …λ∈U λ ∨ C(sλ,λ), 
and therefore that s ∈ c(Q(C)). This proves that C* ⊆ c(Q(C)). 
 Suppose that (H(C,λ))λ∈U is a chain, and let s ∈ C. Then, since C(s,λ) ∈ 
H(C,λ) ⊆ H(C,µ) for every µ > λ  and 
 
                                    S           if µ ≤ λ, 
 C(λ ∨ C(s,λ), µ) =  
                                    C(s,λ)   if µ > λ, 
   
we may conclude that Q(C) ⊆ C*and therefore, that c(Q(C)) ⊆ C*. � 
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Examples.  Let E be a finite dimensional Euclidean space, CS the class of closed 
subsets of E and CCS the class of closed convex subsets of S. Then we obtain a 
continuous chain (Cλ)λ∈U  by setting C0 = {S} and 
    
                  CCS      if  0 < λ ≤ 0.5, 
 Cλ = 
             CS        otherwise. 
   
Denote the well-stratified closure system associated with this family by C. Then  

s ∈ C  ⇔  C(s,λ) is closed for λ > 0.5 and closed and convex for λ ≤ 0.5. 
Also, we have  

C = C*= c(Q(C))  and  H(C,λ) = Cλ 
and the class of crisp elements of C coincides with CCS. 
 A counterexample can be achieved by exchanging CCS with CS in defining 
(Cλ)λ∈U, i.e., by setting  
   
             CS        if  0 < λ ≤ 0.5, 
 Cλ =  
                  CCS    otherwise. 
  
Then the obtained family is order-reversing. Moreover, if C is the fuzzy closure 
system associated with (Cλ)λ∈U ,   

s ∈ C ⇔ C(s,λ) is closed for λ ≤ 0.5 and closed and convex for λ > 0.5. 
Trivially, since C is stratified, C = C*. We claim that 
  Q(C)  C.  (4.4) 
Indeed, let X and Y be two disjoint closed subsets such that X ∪ Y is not convex 
and Y is convex and define s by 
 
               1       if x ∈ Y, 
 s(x) =     0.5    if x ∈ X, 
               0       otherwise. 
  
We have that s ∈ C and that λ ∨ C(s,λ) = λ ∨ (X ∪ Y) for every λ ≤ 0.5. Now, 
since C(λ ∨ X ∪ Y,µ) = X ∪ Y for every µ > λ, we have that C(λ ∨ X ∪ Y,µ) ∉ Cµ 
for every µ > 0.5. Thus, λ ∨ C(s,λ) ∉ C and this proves that Q(C) is not contained 
in C. As a consequence of (4.4) we have 
  C* ≠ c(Q(C)). (4.5) 
 Another interesting property is that, for any λ ∈ U, 
  Cλ = H(C,λ). (4.6) 
In fact, let X be an element of Cλ. Then in the case λ > 0.5 the set X is closed and 
convex. Hence X ∈ C and X ∈ H(C,λ). If λ ≤ 0.5, then λ∧X is an element of C 
such that X = C(λ∧X,λ). This proves that X ∈ H(C,λ). 
 Finally, note that C is not well-stratified. Indeed, otherwise, let (Qλ)λ∈U be a 
continuous chain of closure systems whose associate system is C. Then by 
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Proposition 4.2, we have that Qλ = H(C,λ) = Cλ. This is absurd. In fact, (Cλ)λ∈U, is 
not order-preserving.   
 Co(C) is an example of fuzzy operator which is stratified and not well-
stratified. 

  
5.  A CHARACTERIZATION OF STRATIFIED OPERATORS 
Given a fuzzy closure operator J, we may define a family (K(J,λ))λ∈U of classical 
operators by setting  
  K(J,λ)(X) = C(J(λ∧X),λ) (5.1) 
for every λ ∈ U. If J is a deduction operator of a fuzzy logic, then we can interpret 
K(J,λ)(X) as the set of formulas which are consequences at least to degree λ of the 
formulas in X assumed at least to degree λ.  
 The following proposition shows that K and H are related in accordance with 
the diagrams: 
 
 
 
 
 
 
 
Proposition 5.1 (Castro [1993]) Given a fuzzy closure operator J, (K(J,λ))λ∈U is a 
family of closure operators. More specifically, we have 
  K(J,λ) = Co(H(Cs(J),λ)). (5.2) 
Given a fuzzy closure system C, we have 
  H(C,λ) = Cs(K(Co(C),λ)). (5.3) 
 
 Proof. Let X be a subset of S and suppose x ∈ Co(H(Cs(J),λ))(X). Then, since 
H(Cs(J),λ) is the class of the λ-cuts of Cs(J),  x ∈  C(s,λ) for every s ∈ Cs(J) such 
that X ⊆ C(s,λ). Taking s = J(λ ∧ X), since s ∈ Cs(J) and  
  X = C(λ ∧ X,λ) ⊆ C(J(λ ∧ X),λ) = C(s,λ), 
we have x ∈ C(J(λ ∧ X),λ) = K(J,λ)(X).  
 Conversely, suppose x ∈ K(J,λ)(X). Then J(λ ∧ X)(x) ≥ λ and hence, for any s 
∈ Cs(J) such that s ⊇ λ ∧ X, we have x ∈ C(s,λ). Thus, since s ⊇ λ∧X iff 
C(s,λ) ⊇ X, for every s ∈ Cs(J) such that C(s,λ) ⊇ X, we have x ∈ C(s,λ). This 
proves that x ∈ Co(H(Cs(J),λ))(X). 
  In order to prove (5.3), we apply (5.2) to the fuzzy closure operator Co(C) by 
obtaining 
  K(Co(C),λ) = Co(H(C,λ)). 
This equation is equivalent to (5.3).  � 

J  Cs(J) 

K(J,λ) H(Cs(J),λ) 

C

H(C,λ) 

Co(C) 

K(Co(C),λ). 
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Definition 5.2. Given a fuzzy closure operator J we denote by J* the fuzzy closure 
operator associated with the family (K(J,λ))λ∈U of closure operators and we say 
that J* is the stratified operator associated with J. 
 
The above notation is in accordance with the notation for the canonical extension 
of a classical closure operator. Indeed, given an operator J, denote by J' the fuzzy 
operator defined by setting, for every fuzzy subset s, 
  J'(s) = J(Supp(s)). 
Then, the following proposition holds: 
 
Proposition 5.3. Let J be a classical closure operator. Then the stratified operator 
associated with J' coincides with the canonical extension of J. 
 
 Proof. Observe that 
 Sup{λ ∈ U : x ∈ J(C(s,λ))} = Sup{λ ∈ U : x ∈ J(Supp(λ∧C(s,λ),λ))} 
                                                    = Sup{λ ∈ U : J'(λ ∧ C(s,λ))(x) ≥ λ}. 
This demonstrates both that the a-c-closure operator associated with the family 
(K(J',λ))λ∈U of closure operators is a closure operator and that this operator 
coincides with the canonical extension.   � 
 
 The next proposition shows that the notion of stratified closure system C* 

associated with a fuzzy closure system C is strictly related to the notion of 
stratified fuzzy operator J* associated with a fuzzy closure operator J. Indeed, the 
following diagrams commute: 
 
 
 
 
 
  
 
Proposition 5.4. Let C and J be a fuzzy closure system and a fuzzy closure 
operator, respectively. Then 
  C* = Cs(Co(C)*)  ;  J* = Co(Cs(J)*). (5.4) 
 
 Proof. If J is a fuzzy closure operator, then by Proposition 3.6, J* = Co(C) 
where C is the closure system associated with the family (Cs(K(J,λ)))λ∈U. 
Moreover, since by Proposition 5.1 K(J,λ) = Co(H(Cs(J),λ)), we have that 
Cs(K(J,λ)) = H(Cs(J),λ). This proves the first part of the proposition. 
 Let C be a fuzzy closure system and set J = Co(C). Then from the proved 
equality we obtain that (Co(C))* = Co(Cs(Co(C))*) = Co(C*) and therefore 
Cs(Co(C)*) = Cs(Co(C*)) = C*.   � 
 

C

C* 

Co(C) 

Co(C)*

J Cs(J)

Cs(J)*J* 
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 The following Theorem shows that Definition 5.2 gives an interior operator in 
the lattice of fuzzy closure operators. Furthermore, it characterizes the stratified 
closure operators as the fixed points of such an operator. 
 
Theorem 5.5.  For every fuzzy closure operator J,  
  J* ≤ J     ;    J1 ≤ J2 ⇒  J1

* ≤ J2
*   ;    J** = J*. 

Moreover,  
  J = J*   ⇔  J is a stratified closure operator. 
 
 Proof.  Inclusion Cs(J)* ⊇ Cs(J) entails that J* = Co(Cs(J)*) ≤ Co(Cs(J)) = J. 
Likewise, since Cs(J* ) = Cs(J)*, 
   J** = Co(Cs(J*)*) = Co(Cs(J)*) = J*. 
Moreover, from J1 ≤ J2 it follows that C1 ⊇ C2 and, hence, that C1

* ⊇ C2
*. So, J1

*= 
Co((Cs(J1))*) ≤ Co(Cs(J2)*) = J2

*. Finally, J = J* iff J = Co((Cs(J))*) iff Cs(J) = 
Cs(J)* iff a family (Cλ)λ ∈U exists such that Cs(J) is associated with it. In turn, this 
happens iff J is associated with (Co(Cλ))λ∈U. � 

  
6. STRATIFIED DEDUCTION SYSTEMS 
We can interpret the definitions and the results in the previous sections in terms of 
deduction systems. Indeed, we interpret a family ((Å,Dλ))λ∈U of deduction systems 
as a deduction apparatus stratified in accordance with the reliability of the 
deductive instruments used. More precisely, given a set X of formulas, we interpret 
Dλ(X) as the set of formulas we can derive from X to degree λ.  
 
Definition 6.1. Let ((Å,Dλ))λ∈U be a family of crisp deduction systems and D the 
closure operator associated with (Dλ)λ∈U. Then (Å,D) is called, the fuzzy deduction 
system associated with ((Å,Dλ))λ∈U. In this case, we say that (Å,D) is stratified. If 
((Å,Dλ))λ∈U is a chain, we say that (Å,D) is well-stratified. 
 
 It is rather natural to admit that (Dλ)λ∈U is a continuous chain. Indeed, given a 
set X of formulas, condition D0(X) = Å means that every formula can be 
considered as a consequence of X (at least) to degree zero. The inclusion 
Jµ(X) ⊆ …λ<µ Jλ(X), means that, for every λ < µ, if x is a consequence of X (at 
least) to degree µ, then x is a consequence of X (at least) to degree λ. Condition 
Jµ(X) ⊇ …λ<µ Jλ(X) says that if x is a consequence of X (at least) to degree λ for 
any λ < µ, then x is a consequence of X (at least) to degree µ. 
 If (Dλ)λ∈U is a chain, D can be defined in a more expressive way by the 
relation ¢λ defined by setting v ¢λ α everywhere α ∈ Dλ(C(v,λ)).  Indeed, 
  D(v)(α) = Sup{λ ∈ U : v ¢λ α}. (6.1) 
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Trivially, if Tau is the fuzzy subset of tautologies of D and Tauλ the set of 
tautologies of  Dλ , Tau(α) = Sup{λ ∈ U : α ∈ Tauλ} or, equivalently, 
  Tau = »λ∈U (λ ∧ Tauλ). (6.2) 
In particular, α is a tautology of (Å,D) iff α is a tautology of all the deduction 
systems (Å,Dλ). 
 
Theorem 6.2. Let (Å,D) be a stratified fuzzy deduction system. Then, for every set 
X of formulas and µ ∈ U,  
  D(µ ∧ X) = (µ ∧ D(X)) ∪ Tau. (6.3) 
Moreover,  
  Inc(D) = 1. (6.4) 
 
 Proof. To prove (6.3) assume that D is associated with a family of (Dλ)λ∈U of 
closure operators. Since 
   
                                 X   if λ ≤ µ 
 C(µ ∧ X, λ) =  
                                ∅   if λ > µ, 
 
we have that 
  D(µ ∧ X)(x) = Sup{λ ∈ U : x ∈ Dλ(X), λ ≤ µ} ∨ Sup{λ ∈ U : x ∈ Dλ(∅), λ > µ}. 
Assume that  x ∈ Dλ(∅) for a suitable λ > µ. Then, since 
 Sup{λ ∈ U : x ∈ Dλ(∅), λ > µ} > µ ≥ Sup{λ ∈ U : x ∈ Dλ(X), λ ≤ µ} 
it is  

µ ∧ D(X)(x) = Sup{λ ∈ U : x ∈ Dλ(X), λ ≤ µ} 

Because D is order-preserving, 
  D(∅)(x) ≤  D(µ ∧ X)(x) = Sup{λ∈ U : x ∈ Dλ(∅), λ > µ} ≤ D(∅)(x) 
and D(µ ∧ X)(x) = D(∅)(x). Then  
  D(∅)(x) = ((µ ∧ D(X)(x)) ∨ D(∅))(x). 
Assume that, for every λ > µ, x ∉ Dλ(∅). Then Sup{λ ∈ U : x ∈ Dλ(∅), λ > µ} = 
0 and D(∅)(x) ≤ µ. As a consequence 
 D(µ ∧X)(x) = Sup{λ∈U : x ∈ Dλ(X), λ ≤ µ} = µ ∧D(X)(x)  
                    = ((µ ∧D(X)) ∨ D(∅))(x). 
To prove (6.4), set X equal to the whole set of formulas Å. Then (6.3) becomes  
  D(sµ) = sµ  ∪ Tau.  
Consequently, Inc(sµ) ≥ µ and therefore, Inc(D) ≥ Sup{Inc(sµ) : µ ∈ U} = 1.  � 
 
 The proof of the following theorem is trivial. 
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Theorem 6.3.  Let (Å,D) be a fuzzy deduction system. Then (Å,D) is stratified iff 
the class of its theories is a stratified closure system. Moreover, if (Å,D) is 
associated with the family ((Å,Dλ))λ∈U of deduction systems, then  
 τ is a theory of (Å,D)  ⇔  every cut C(τ,λ) of τ is a theory of (Å,Dλ). 
Finally, 

X is a crisp theory of  (Å,D)  ⇔  X is a theory of any (Å,Dλ). 
 
 Proposition 4.6 and Theorem 4.5 entail the next theorem: 
 
Theorem 6.4.  Assume that, for every λ ∈ U, 

τ theory of  (Å,D)  ⇒  λ ∨ C(τ,λ) theory of (Å,D). 
Then (Å,D) is stratified. 
 
By recalling that the deduction operator of a canonical similarity logic is generated 
by the product of two stratified operators, from Proposition 3.10 we obtain: 
 
Theorem 6.5. Any canonical similarity logic is well-stratified. 

 
7. SEQUENTS AND CONSEQUENCE RELATIONS 
We call sequent any element of the set SEQ== P(Å) × Å,, i.e., any pair (X,α) 
where X is a set of formulas and α a formula. A sequent (X,α) represents the 
metalogical claim that α is a consequence of the set X of formulas. In this section 
we begin by giving the basic notions of the theory of crisp consequence relations. 
We call a conclusion relation any set of sequents, i.e., any binary relation ¢ from 
P(Å) to Å. Given X ∈ P(Å) and α ∈ Å, we write X ¢ α to denote that (X,α) ∈ ¢. 
Given Z ∈ P(Å), we write X ¢ Z to denote that  X ¢ α  for any formula α in Z. 
 
Definition 7.1. A conclusion relation ¢ is a consequence relation if 
  (i)    X ¢ α  whenever α ∈ X, 
  (ii)   X ¢ α   ⇒  X ∪ Y ¢ α, 
  (iii)  X ¢ Z and  X ∪ Z ¢ α   ⇒  X ¢ α. 
 
If  ¢ is a consequence relation and X ¢ α, then we say that α is a consequence of X. 
The meanings of the above conditions are apparent. Condition (i) says that every 
formula in X is a consequence of X, condition (ii) that the logic under 
consideration is monotone, (iii) that if the set of formulas Z follows from X and we 
are able to prove α from X ∪ Z, then we may prove α directly from X. 
 There is a strict connection between the operators and the conclusion relations. 
 
Definition 7.2. Given an operator J, we define ¢J by setting  
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  X ¢J α   ⇔   α ∈ J(X). (7.1) 
Given a conclusion relation ¢ we denote by J¢  the operator defined by 
  J¢(X) = {α ∈ Å : X ¢ α}. (7.2) 
 
These definitions enable us to define a bijective correspondence between the class 
of operators and the class of conclusion relations. 
 
Proposition 7.3. Let J be an operator and let ¢ be its associated conclusion 
relation. Then 
   J¢  = J. (7.3) 
Let ¢ be a conclusion relation and denote its associated operator by J. Then 
  ¢J = ¢. (7.4) 
 
 Proof.  For every X ⊆ Å,  

J¢(X) = {α ∈ Å : X ¢J α} = {α ∈ Å : α ∈ J(X)} = J(X). 
Likewise, for every X ⊆ Å and α ∈ Å  
  X ¢J α ⇔  α ∈ J¢(X)  ⇔  X ¢ α . � 
 
Definitions (7.1) and (7.2) establish also a one-one correspondence between the 
crisp consequence relations and the closure operators. 
 
Theorem 7.4. Let  ¢  be a conclusion relation. Then 

¢ is a consequence relation  ⇔  J¢  is a closure operator. 
Let J : P(Å) → P(Å) be an operator. Then 
  J is a closure operator  ⇔   ¢J  is a consequence relation. 
 
 Proof. Assume that ¢ is a consequence relation. Then, from (i) it follows that 
J¢(X) ⊇ X and from (ii) that X ⊇ Y implies J¢(X) ⊇ J¢(Y). In order to prove that 
J¢(J¢(X)) = J¢(X), observe that, since X ¢ β for every β ∈ J¢(X), by (iii),  
  J¢(X) ¢ α  ⇒  X ¢ α. 
Thus, J¢(J¢(X)) = {α ∈ Å : J¢(X) ¢ α} ⊆  J¢(X) and J¢(J¢(X)) = J¢(X).  
 Assume that J is a closure operator. Then, the inclusion property J(X) ⊇ X 
entails that X ¢J α for every α ∈ X, and this demonstrates (i). In order to prove (ii), 
suppose X ¢J α and Y ⊇ X. Then, since α ∈ J(X) and J is order-preserving, α ∈ 
J(Y), i.e., Y ¢J α. In order to prove (iii), assume that X ¢J  β for every β ∈ Z and that 
X ∪ Z ¢J  α. Then, Z ⊆ J(X) and α ∈ J(X ∪ Z). Consequently, since X ∪ Z ⊆ J(X) 
and α ∈ J(X ∪ Z) ⊆ J(J(X)) = J(X), we have that that X ¢J α. Thus ¢J is a 
consequence relation. 
 The remaining part of the proposition follows from Proposition 7.3.  � 
 
For instance if J is the identity map, then the corresponding relation ¢J is the usual 
membership relation. As a matter of fact, by (i) of Definition 7.1, this relation is 
the least crisp consequence relation.  
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 The next theorem shows that the theory of consequence relations coincides 
with the theory of the abstract deduction systems.  
 
Theorem 7.5. A conclusion relation ¢ is a consequence relation iff a deduction 
system (Å,D) exists such that 
  X ¢ α  ⇔  α ∈ D(X). (7.5) 
 
 Proof. Let ¢ be a consequence relation and let D = J¢. Then D is a closure 
operator satisfying (7.5). Conversely, if (Å,D) is a deduction system satisfying 
(7.5), then ¢ coincides with ¢D. So, ¢ is a consequence relation. � 
 
8. GRADED CONSEQUENCES  AND SEQUENT CALCULUS 
The concept of graded consequence relation was proposed in Chakraborty [1988] 
as a graded extension of the crisp abstract concept of consequence relation ¢. We 
call a graded conclusion relation any fuzzy subset of sequents, i.e., any fuzzy 
relation g : SEQ  → U  from P(Å) to Å. If X is a set of formulas and α a formula, 
we write g(X ¢ α)  instead of g(X,α). Moreover, given another set Z of formulas, 
we set 
   g(X ¢ Z) = Inf{g(X ¢ z) : z ∈ Z}. (8.1) 
 
Definition 8.1. We say that a graded conclusion relation g is a graded 
consequence relation if, for every X, Y, Z ∈ P(Å) and α ∈ Å, 
  (i)    g(X ¢ α) = 1 for every α ∈ X,  
  (ii)   g(X ∪ Y ¢ α) ≥ g(X ¢ α), 
  (iii)  g(X ¢ α) ≥  g(X ¢ Z) ∧ g(X ∪ Z ¢ α). 
 
If λ = g(X ¢ α) we say that α is a consequence of X at least to degree λ. The 
following proposition, whose proof is trivial, summarizes some elementary 
properties of the graded consequences. 
 
Proposition 8.2. Let g be a graded consequence. Then, for X, Y, Z, X1, X2, Y1, Y2 

subsets of Å and (Yi)i∈I family of subsets of Å, 
  (i)      g(X ¢ X) = 1, 
  (ii)     g(X ∪ Y ¢ Z) ≥  g'(X ¢ Z), 
  (iii)    g(X ¢ Y) ≥  g(X ¢ Z) ∧ g(X ∪ Z ¢ Y), 
  (iv)    g(X ¢ »i∈IYi) = Inf{g(X ¢Yi) : i ∈ I}, 
  (v)     X1 ⊆ X2 ⇒ g(X1 ¢ Y) ≤  g(X2 ¢ Y), 
  (vi)    Y1 ⊆ Y2 ⇒ g(X ¢ Y1) ≥  g(X ¢ Y2), 
  (vii)   X ⊇ Y ⇒ g(X ¢ Y) = 1, 
  (viii)    g(X ¢ Y) ≥ g(X ¢ Z) ∧ g(Z ¢ Y). 
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It is possible to interpret the crisp consequence relations as theories of a suitable 
H-system with an infinitary inference rule. In fact, first we consider a crisp H-
system  S = (À,Ñ) which we call minimal sequent calculus, such that 
  - the set of formulas is the set SEQ of sequents,  
  - the set À of logical axioms is {(X,x) : x ∈ X},  
  - there is a finitary rule: 

(X, α) 
(X ∪ Y, α) 

and an infinitary rule: 
 
                                             {(X, β) : β ∈Z} ,  (X ∪ Z, α)        

(X , α) 
 
Proposition 8.3. The class of theories of the minimal sequent calculus coincides 
with the class of crisp consequence relations.  
 
 Proof.  Indeed, with reference to Definition 7.1, a set ¢ of sequents contains the 
set of logical axioms iff it satisfies (i). ¢ is closed under the finitary rule iff it 
satisfies (ii), ¢ is closed under the infinitary rule iff it satisfies (iii). � 
 
 The next proposition shows that the class of graded consequence relations is 
the canonical extension of the class of crisp consequence relations. 
 
Proposition 8.4. The following are equivalent: 
  (a)   g : SEQ → U is a graded consequence relation. 
  (b)  every cut C(g,λ) is a consequence relation. 
In other words, the class of graded consequence relations is the canonical 
extension of the class of consequence relations. 
 
 Proof.  (a) ⇒ (b) It is self-evident that C(g,λ) satisfies (i) and (ii) of Definition 
7.1. In order to prove (iii), suppose (X ∪ Z,α) ∈ C(g,λ) and (X,z) ∈ C(g,λ) for 
every z ∈ Z. Then g(X ∪ Z ¢ α) ≥ λ and g(X ¢ z) ≥ λ for every z ∈ Z. 
Consequently, g(X ¢ Z) ≥ λ and by (iii) of Definition 8.1 this implies that g(X ¢ α) 
≥ λ. Hence, (X,α) ∈ C(g,λ). 
(b) ⇒ (a) Let X be a set of formulas and x ∈ X. Then, the fact that C(g,1) is a 
consequence relation entails that (X,x) ∈ C(g,1), i.e., g(X ¢ x) = 1. Let Y be a set of 
formulas containing X, and λ = g(X ¢ α). Then, since (X,α) ∈ C(g,λ) and Y ⊇ X, 
we have (Y,α) ∈ C(g,λ), i.e., g(Y ¢ α) ≥ λ = g(X ¢ α). Finally, given any set Z of 
formulas, set  

λ = Inf({g(X ¢  z) : z ∈ Z}) ∧ g(X ∪ Z ¢ α). 
Then, since C(g,λ) is a consequence relation, (X,z) ∈ C(g,λ) for every z ∈ Z and (X 
∪ Z, α) ∈ C(g,λ), we may conclude that (X,α) ∈ C(g,λ). Thus  
  g(X ¢ α) ≥ Inf({g(X ¢ z) : z ∈ Z}) ∧ g(X ∪ Z ¢ α). � 
 

. 
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We indicate the canonical extension of the minimal sequent calculus by S*, where  
how to extend an infinitary rule in a fuzzy infinitary rule is evident. Then  
 
  - the fuzzy set of logical axioms is 
  

{((X,x) : x ∈ X}, 
 
  - we have a finitary rule 
 
                                     (X,α)                                          λ 
                                   (X ∪ Y)                                        λ           
  
  - we have an infinitary rule 
 
 
              {(X,β) : β ∈ Z }, (X∪ Z,α)                           S, λ 
                             (X, α)                                        Inf(S) ∧ λ 
 
 The following theorem holds: 
 
Theorem 8.5. The class of graded consequence relations coincides with the class 
of theories of the canonical extension S* of the minimal sequent calculus S. 
 
 Proof. This is trivial.  � 
 
In particular, the class of graded consequence relations is a closure system and  
any fuzzy conclusion relation can be extended to a consequence relation (see 
Castro, Trillas, Cubillo [1994]). 

 
9. FINITE SEQUENT CALCULUS AND COMPACT GRADED 
CONSEQUENCES 
It is possible to avoid the infinitary inference rules provided that we only consider 
compact graded consequences. In the following, if X is a set we denote the class of 
finite subsets of X  by Pf(X). A conclusion relation ¢ is compact, if  
  X ¢ α  ⇔  there exists Xf ∈ Pf(X) such that  Xf  ¢ α. 
Trivially, if ¢ is a conclusion relation, then 
  ¢ is compact  ⇔  J¢ is compact, 
if J is an operator, then 
  J is compact  ⇔  ¢J is compact. 
A graded conclusion relation g is said to be compact if 
  g(X,α) = Sup{g(Xf  ¢ α) : Xf ∈ Pf(X)}. (9.1) 
 
Proposition 9.1. A graded conclusion g is a compact graded consequence iff it 
satisfies (9.1) and  

; 

. 

; 
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  (i)    g(X ¢ α) = 1 for every α ∈ X,  
  (ii)   g(X ∪ Y ¢ α) ≥ g(X ¢ α), 
  (iii)  g(X ¢ α) ≥ g(X ¢ z) ∧ g(X ∪ {z} ¢ α). 
 
 Proof.   Let g be is a compact graded consequence. Then it is evident that (9.1), 
(i), (ii) and (iii) are satisfied. Conversely, assume these conditions are satisfied. 
Then, first we demonstrate that, for every finite set Zf = {z1,...,zn},  
  g(X ¢ α) ≥ (Inf{g(X ¢ z) : z ∈ Zf}) ∧ g(X ∪ Zf ¢ α). 
Indeed, such an inequality coincides with (iii) for n = 1. Moreover, by induction 
hypothesis, 
 g(X ¢ α) ≥ (Inf{g(X ¢ z) : z ∈ {z1,...,zn−1}}) ∧ g(X ∪ {z1,...,zn−1} ¢ α) 
                    ≥ (Inf{g(X ¢ z) : z ∈ {z1,...,zn−1}})) ∧ g(X ∪ {z1,...,zn−1} ¢ zn)  
                         ∧ g(X ∪ {z1,...,zn−1,zn} ¢ α) 
                    ≥ (Inf{g(X ¢ z) : z ∈ {z1,...,zn−1}})) ∧ g(X ¢ zn) ∧ g(X ∪ Zf ¢ α) 
                    = (Inf{g(X ¢ z) : z ∈ Zf}) ∧ g(X ∪ Zf ¢ α). 
Let Z be any set, then,  
 (Inf{g(X ¢ z) : z ∈ Z}) ∧ g(X ∪ Z ¢ α) 
   = (Inf{g(X ¢ z) : z ∈ Z}) ∧ (Sup{g(X ∪ Zf  ¢ α) : Zf ∈ Pf(Z)} 
      = Sup{(Inf{g(X ¢ z) : z ∈ Z}) ∧ g(X ∪ Zf  ¢ α) : Zf ∈ Pf(Z)} 
      ≤ Sup{Inf(g(X ¢ z) : z ∈ Zf}) ∧ g(X ∪ Zf  ¢ α) : Zf ∈ Pf(Z)} ≤ g(X ¢ α). � 
 
We call finite sequent any sequent (X,α) in which X is finite and we denote the set 
of finite sequents by SEQf. If g is compact, then g is completely defined by its 
restriction to SEQf. Conversely, let h be a fuzzy subset of SEQf and set 
  g(X,α) = Sup{h(Xf,α) : Xf is a finite subset of X}. 
Then g is a compact graded conclusion relation. If h satisfies (ii), then g is an 
extension of h we indicate as the compact extension of h. 
 
Proposition 9.2. g is a compact graded consequence relation iff g is the compact 
extension of a fuzzy relation h : Pf(Å) × Å → U satisfying 
   (j)   h(X,α) = 1 for every α ∈ X,  
   (jj)  h(X ∪ Y, α) ≥ h(X,α), 
   (jjj) h(X,α) ≥ h(X,β) ∧ h(X ∪ {β},α). 
 
 Proof.  If g is a compact conclusion relation, then it is obvious that its 
restriction h to SEQf satisfies (j), (jj) and (jjj). Conversely, let g be the compact 
extension of a fuzzy relation h satisfying (j), (jj) and (jjj). Then, by using 
Proposition 9.1 we can prove g is a graded consequence relation by proving g 
satisfies (i) and (ii) and 
  g(X,α) ≥ g(X,β) ∧ g(X ∪ {β}, α). (9.3) 
Now, (i) and (ii) are trivial. In order to prove (9.3) observe that 
   g(X,α) = Sup{h(Xf,α) : Xf ∈ Pf(X)} ≥ Sup{h(Xf,β) ∧ h(Xf ∪ {β},α) : Xf ∈ Pf(X)}. 
On the other hand,  
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 g(X,β) ∧ g(X ∪ {β},α)  
  = (Sup{h(X1,β)) : X1 ∈ Pf(X)}) ∧ (Sup{h(X2  ∪ {β},α) : X2 ∈ Pf(X)})  
 =Sup{h(X1,β) ∧ h(X2 ∪ {β},α) : X1, X2 ∈ Pf(X)}. 
Now, observe that, by setting Xf = X1 ∪ X2, 
 h(Xf,B) ∧ h(Xf  ∪ β,α) ≥ h(X1,β) ∧ h(X2 ∪ {β},α). 
Then, we can conclude that g(X,α) ≥ g(X,β) ∧ g(X ∪ {β},α). � 
 
Proposition 9.2 enables us to relate the compact graded consequence relations with 
the theories of the canonical extension of a suitable sequent calculus. In fact, let Sf  
= (À,Ñ) be the H-system such that 
  - SEQf  is the set of formulas, 
  - the set À of logical axioms is {(X,x) ∈ SEQf : x ∈ X},  
  - there are the following rules: 
 
                                      (Y,α)                                   (X,β),  (X ∪ {β}, α)  
                                  (X ∪ Y, α)                                          (X, α) 
    
We call minimal finite-sequent calculus such a system. Then, we have the 
following theorem: 
 
Theorem 9.3. Let Sf

* be the canonical extension of Sf. Then, g is a compact 
graded consequence relation iff g is (the compact extension of) a theory of Sf

*. 
 
 Proof. It is evident that h : SEQf  → U satisfies (j), (jj) and (jjj) of Proposition 
9.2 iff h is a theory of Sf

*.   � 

 
10. GRADED CONSEQUENCES AND STRATIFIED OPERATORS 
The following theorem shows that we can identify the graded consequence 
relations with the continuous chains of consequence relations: 
 
Theorem 10.1. A conclusion relation g is a graded consequence relation iff a 
continuous family (¢λ)λ∈U  of consequence relations exists such that 
  g(X ¢ α) = Sup{λ ∈ U : X ¢λ α}. (10.1) 
 
Proof. Given λ ∈ U, denote the conclusion relation C(g,λ) by ¢λ. Then  

g(X ¢ α) = Sup{λ ∈ U : (X,α) ∈ C(g,λ)} = Sup{λ ∈ U : X ¢λ α}. 
So, the proof follows from Proposition 8.4. � 
 
 In Theorem 7.5 we observed that a conclusion relation is a consequence 
relation iff a closure operator J exists such that  
  X ¢ α  ⇔  α ∈ J(X). 

; . 
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The question arises whether such a connection holds also for the graded 
consequence relations and the fuzzy closure operators. 
 
Proposition 10.2. Let J be a fuzzy closure operator and define the graded 
conclusion relation g by setting 
   g(X ¢ α) = J(X)(α) (10.2) 
for every X ⊆ Å  and α ∈ Å. Then, in general, g satisfies (i) and (ii) but not (iii).  
 
 Proof. A straightforward verification proves the first part of the proposition. In 
the following example (iii) is not satisfied (M. K. Chakraborty, personal 
communication). Let Å = {α1, α2, α3, α4} and let s1 and s2 be the two fuzzy subsets 
of Å defined by setting 
  s1(α1) = s1(α3) = 1 , s1(α2) = 0.7 , s1(α4) = 0.8 
and 
  s2(α1) = s2(α3) = s2(α4) = 1 , s2(α2) = 0.9 . 
Then, the class C = {s1, s2} defines a fuzzy closure operator J. Namely, for every 
fuzzy subset s and α ∈ Å,  
  J(s)(α) = Inf{si(α) : si ⊇ s}. 
Take X = {α1, α3} and Z = {α4}. Then, a simple calculation gives 
  J(X)(α2) = 0.7 , J(X ∪ Z)( α2) = 0.9 , J(X)( α4) = 0.8. 
So, if g is the conclusion relation associated with J,  
  g(X ¢ α2) = 0.7,  Inf{g(X ¢ z) : z ∈ Z} = 0.8, and g(X ∪ Z ¢ α2) = 0.9. 
Hence, 
  g(X ¢ α2) < (Inf{g(X ¢ z) : z ∈ Z}) ∧ g(X ∪ Z ¢ α2). 
This demonstrates that (iii) is not satisfied. � 
 
  The following theorem shows that we can extend Theorem 7.5 to the graded 
consequences provided we confine ourselves to the well-stratified deduction 
systems (Gerla [1996]). 
 
Theorem 10.3. A fuzzy conclusion relation g : P(Å) × Å → U is a graded 
consequence relation iff a well-stratified deduction system (Å,D) exists such that 
   g(X ¢ α) = D(X)(α) (10.3) 
for every X subset of Å and α ∈ Å. 
 
Proof.  Let g be a graded consequence relation and, for every λ ∈ U, let Dλ be the 
deduction operator associated with the consequence relation C(g,λ), that is  

Dλ(X) = {x ∈ Å : g(X ¢ x) ≥ λ}. 
Moreover, denote by D the closure operator associated with (Dλ)λ∈U . Then 
 g(X ¢ α) = Sup{λ ∈ U : g(X ¢ α) ≥ λ} = Sup{λ ∈ U : α ∈ Dλ(X)} = D(X)(α). 
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So, we must prove only that (Dλ)λ∈U is a continuous chain. Let X be a set of 
formulas. Then, trivially, D0(X) = Å. Furthermore, if µ ∈ U, then 
 x ∈ Dµ(X)  ⇔  g(X ¢ x) ≥ µ   ⇔  g(X ¢ x) ≥ λ for every λ < µ   
                         ⇔  x ∈ …λ<µDλ(X). 
 Conversely, let (Å,D) be the fuzzy deduction system associated with a given 
continuous chain (Dλ)λ∈U  of deduction systems and, for every λ ∈ U, denote by ¢λ 
the consequence relation associated with Dλ, that is ¢λ = {(X,x) : x ∈ Dλ(X)}. We 
claim that (¢λ)λ ∈U  is a continuous family. Indeed, ¢0 = SEQ and  
 (X,x) ∈ ¢µ ⇔ x ∈ Dµ(X)  ⇔  x ∈ Dλ(X) for every λ < µ   
                       ⇔ (X,x) ∈ ¢λ for every λ <  µ. 
Thus, by Theorem 10.1 the conclusion relation g defined by (10.3) is a graded 
consequence relation.  � 
 
Theorem 10.3 enables us to find examples of graded consequence in a simple way. 
For instance, let S1 and S2 be two different deductive systems on the same set Å of 
formulas and let D1 and D2 be the related deduction operators. Moreover, assume 
that S2 is more powerful than S1, that is D1(X) ⊆ D2(X) for every set X of 
formulas but that, at the same time, S2 is less reliable than S1. Then, a continuous 
family of closure operators is achieved by setting Jλ = D2 for λ ≤ 0.5 and Jλ = D1 
for λ > 0.5. We obtain the corresponding graded consequence relation g by 
 
                     1      if x ∈ D1(X), 
 g(X ¢ x) =    0.5   if x ∈ D2(X) − D1(X),  (10.4) 
                     0      otherwise. 
 
 Further examples of graded consequences are furnished by the canonical 
similarity logics. In fact, the deduction operators of these logics are well-stratified.  
 
Theorem 10.4.  Let Con : P(Å) × Å → U the fuzzy relation associated with a 
canonical similarity logic. Then, Con is a graded consequence relation. 
 
 Proof. See Theorem 6.5.   � 
   

Remark. Theorem 10.3 suggests a natural way to extend a graded consequence 
relation g in a fuzzy relation ge from the lattice F(Å) to Å. Indeed, it is 
sufficient to consider the stratified deduction operator D associated with g and 
to set 
  ge(s ¢ α) = D(s)(α). (10.5) 
Equivalently, we can set 
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  ge(s ¢ α) = Sup{λ ∈ U : g(C(s,λ) ¢ α) ≥ λ} (10.6) 
for every s ∈ F(Å) and α ∈ Å.  This suggests to examine the possibility of 
extending the definition of graded consequence by calling fuzzy sequent any 
element of the set SEQ = F(Å)×Å and defining the graded consequence 
relations as suitable fuzzy subsets Con : SEQ  → U of SEQ. 
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