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Abstract. We show that the existence of an infinite set can be reduced to the existence
of finite sets “as big as we will”, provided that a multivalued extension of the relation of
equipotence is admitted. In accordance, we modelize the notion of infinite set by a fuzzy
subset representing the class of (finite) wide sets.
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1 Introduction

The main idea of this work stems from the fact that in a many-valued logic whose
set of truth values is a continuum as [0, 1] the meaning of an existential assertion is
thoroughly different from its classical counterpart. As a matter of fact, a formula of
the kind 3z A(z) can be valued 1 despite of the lack of an object in the interpretation
domain D satisfying A. Indeed the truth value of the formula 3z A(z) is 1 if and
only if a sequence (dn)nen of elements in D exists such that sup,, .y I(A)(d,) = 1,
where I(A) is the multivalued interpretation of the predicate A. Hence the validity of
Jdz A(z) entails the existence of objects verifying property A with a degree arbitrarily
close to 1. We apply this to show that, in a multivalued environment, the existence
of an infinite set can be reduced to the existence of finite sets “as big as we will”, in a
sense. To such an extent we consider a binary predicate EQ as a multivalued extension
of the classical relation of “equipotence” between two finite sets. As in the classical
case, a set is called “infinite” provided that it is equipotent to its successor, i.e.
INF(z) denotes the formula EQ(z,z U {z}). Equivalently, INF(z) can be interpreted
by the fuzzy notion of “wide set”. Note that the famous “sorites paradox” is based
on the notion of wide set and that a very interesting solution of such a paradox using
fuzzy logic was proposed by J. A. GOGUEN in [1]. Also, an interesting analysis of the
connection between infinity and fuzziness was exposed by D. H. SANFORD in [6].
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2 Wide set theory

Recall some basic notions about the semantics of a multivalued logic. Let £ be a first
order language with the logical connectives A, —, — and let U = ([0, 1],A’, =/, =)
be an algebraic structure, called evaluation structure, whose operations are used to
interpret the logical connectives. A multivalued interpretation or fuzzy model of £
is a pair M = (D, I), where D is a set and I a map such that I(f) : D* — D
Is an n-ary operation for any name of an n-ary operation f, I(r) : D® —s U is an
n-ary fuzzy relation for any name of an n-ary predicate 7, and I(c) is an element of
D for any constant ¢. Given a formula o whose free and bounded variables are within
{z1,23,...,2,}, we define the number Val(a,d, ... ,dn) (where dy,...,d, € D) by
induction on the complexity of a:

Val(r(ts,...,tp),d1,...,dp) = I(r)(I(t1)(d1,. .., dn), ..., I(t,)(d1, . .., dn))
Val(e A B,du,. .., da) = Vale,di,. .., dn) A Val(B,da, . .. ,ds)

Val(e — B,dy, ..., dy) = Val(a,di, .. dn) —" Val(B,d1,. .. yds)
Val(—e,di; ..., dn) = =Val(eydi,. .- d.)

Val(Ve; a,ds, ..., dy) = infaep{Val(a,dy, ..., di—1,d, dip1, .. ., dp)}
Val(3z; o, dyys o2 ydn) = supzep{Valle,di,- .. ydicy, dydigs, . . ., dn)},

where, for any n-ary term t, the corresponding n-ary function I(¢) is defined as usual.
We say that M satisfies o, and we write M F o, if Val(a, d; . .oydy) = 1 for any
dy,...,d, in D. Finally, given a set of formulae S, we say that M is a model of S and
we write M F Sif M F « for any formula e in S. We extend I to any formula o whose
free variables are among z,,..., 2, by setting I(a)(d1,...,d,) = Val(a,dy, ..., d,).
So, I(a) is an n-ary fuzzy relation. In this paper we assume that z —' y is equal to 1
if and only if z < y, that A’ is the standard multiplication and —’ is the function 1 — z
in [0, 1]. The choice of the product as T-norm that interprets A is a kind of example.
However, note that the ‘minimum’ is not suitable because transitive property must
“weaken” the degree of equivalence. That means that, for degrees different from 1,
the evaluation of conjunction EQ(z,y) A EQ(y, z) must be strictly minor than the
evaluation of EQ(z,y) and EQ(y, z). We are interested to a first-order language £
containing the usual linguistic tools for the set theory, as the relation names C, &,
= for the inclusion, membership relation, equipotency, the singleton-function {.}, the
union U and the constant ). Also, we denote by L. the extension of £ obtained by
adding a binary predicate EQ we call graded equipotency relation. Let T be a theory
in L expressing the main properties of the class of finite sets S. As an example, T' can
be equal to ZF* + -3z (z = z U {z}), where ZF" is the theory ZF without the axiom
of infinity. We add to T the following formulae in L.:

(1) EQ(z,z)  (reflezivity),

(2)  EQ(z,y) — EQ(y,z)  (symmetry),

3)  EQ(z,y) AEQ(y,z) — EQ(z,2)  (transitivity),
(4)  z=2 — (EQ(z,y) » EQ(z',y))  (compatibility).
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They express the fact that EQ represents an equivalence relation extending the clas-
sical equipotence relation. If we denote by INF(z) the formula EQ(z, z U {z}), it is
immediate that in any classical model of set theory such a formula is satisfied by a
set s if and only if s 1s infinite. We assume the following axioms:

(5) INF(z) A (z Cy) — INF(y) (monotonzcity),
(6) —INF(0) (0 is not infinite),
(7 dz INF(z) (infinity aziom).

Definition 1. We denote by T* the theory obtained by adding to T" the formulae
(1) through (7) and we call them wide set theory.

In this work we are interested only to particular models M = (S,I) of T* in
which § is the class of finite sets of a model of ZF and I(¢), I(C), I(=), I(0), I({.})
are defined as usual, i.e. they correspond to the crisp fuzzy relations in the classical
model. The intended meaning of I(EQ) is that, given two (finite) sets = and y, the
number I(EQ)(z,y) is the “degree of equipotence between x and y”. Accordingly, for
every ¢ € §, the number I(INF)(z) is the “degree of infinity” of z, and therefore the
fuzzy set I(INF) is the fuzzy class of “infinite sets”. Equivalently, since the sets we
refer to are finite, we can interpret /(INF) as the class of the “wide sets”. In this work
we show that, under a suitable choice of I(EQ), the class of finite sets is a sensible
model of T*, in particular of the infinity axiom.

3 The existence of a model

In accordance with the compatibility axiom, we assume that the degree I(EQ)(z,y)
depends only on the (classical) cardinality of z and y. In other words, we assume that
there exists a suitable function eq : N x N — [0, 1] in such a way that by setting

(8)  I(EQ)(z,y) = eq(card(z), card(y))

the axioms above proposed are satisfied. We call the model (S, I) defined by (8) the
model associated with the function eq. Through the following conditions the function
eq: N x N — [0, 1] defines a model of wide set theory.

Proposition 1. Leteq :N x N — [0, 1] be a fuzzy relation in N and set

(9) g(n) = eq(n,n+1).
Then the model M = (8, I) associated with eq is a model of wide sets theory if and
only if the following properties hold for every m,n,p in N:

(i) eq(n,n) = 1,

(ii) eq(n, m) = eq(m,n),

(iii) eq(n,m) > eq(n, p) - eq(p, m),

(iv) g(n) is monotonic on N,

(v) ¢(0) = 0,

(vi) lim, g(n) = 1.
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Proof. The proof is a matter of routine: For example, to prove axiom (5), observe
that M F INF(z) A (z C y) — INF(y) iff Val(INF(z) A (z C y) — INF(y),d1,d>) = 1
for all d1,dy € S iff Val(INF(z) A (z C y),d1,d3) < Val(INF(y),dz) for all dy,d5 € S,
i.e. Val(INF(z),d;) A’ Val(z C y,dy,dz) < Val(INF(y),ds) for all di,d2 € S iff
dy C dq implies Val(INF(z),d;) < Val(INF(y), d2) iff eq(card(z), card(z U {z})) <
eq(card(y), card(y U {y})) for every z C y iff g(n) is monotonic on N. ]

We call any function eq satisfying Properties (i) through (vi) of Proposition 1
an equipotence measure, and we call the associated function g an infinity measure.
In some sense, g represents the “fuzzy subset of large numbers” and, in accordance,
I(INF) is the “fuzzy subset of wide sets”. Obviously, we have to prove that equipo-
tence measures exist.

Theorem 1. Let the function €q(n, m) be defined by
Min[n, m]

Max([n, m]
Then €q is an equipotence measure. Therefore it exists a model of wide set theory.

Proof. The Properties (i), (ii), (iv), (v) and (vi) are trivially satisfied. For
Property (iii) consider the triple n,m,p € N. We can suppose that n < m. Then
there are three cases:

(10) egq(n,m) =

Case 1. p < n < m. Then Property (iii) reduces to i > £ 2, which is satisfied
since n > p. ey B

Case 2. n < p < m. Then Property (iii) reduces to i > Lt E, which is
trivially true. 4 A i

Case 3. n < m < p. Then Property (iii) reduces to % > %%, which is true
since m < p. O

We call the model defined by (10) the base-model, and we denote by g the function
eq(z, z + 1), i.e. the related fuzzy set of large numbers.

4 Tuning up the infinity measure according to the context

It is a basic feature of any fuzzy concept that it is strongly dependent on the context.
This is also true for the equipotence measure and the related infinity measure. For

example, consider the base-model. Then, since g(1000) = «10—8? is very near to 1, a

set with 1000 elements is “almost infinite” or, equivalently a “very large set” (and
this is reasonable perhaps). None on the less, while there are contexts in which 1000
can be considered “very large”, there are contexts in which we have to consider it
“small”. More unsatisfactory is the behavior of such an interpretation if we consider

very small sets. In fact, since g(1) = eq(1,2) = l, in the base model it is not

completely wrong to admit that a set with only one element is infinite. Then it is
often necessary to have a large class of parametrized equipotence measures in such a
way that it is possible to pick up the particular model appropriate with the order of
magnitude of the context. This can be obtained starting from the base-model €q and
composing it with a suitable function F'. So we consider inner-ezpanded functions
of the kind H;(n,m) = eq(F(n), F(m)) and outer-ezpanded functions of the kind
H, = F(eq(n, m)).
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4.1 Inner-expanded functions

Let ¥ : N — R be a monotonic function such that F(0) = 0 and let eq be the
base-model. We now analyze the conditions under which the function

Hi(n,m) = e_q(F(n), F(m))

is an equipotence measure. To do that, it is sufficient that Properties (i) through
(vi) of Proposition 1 hold. Now, Properties (ii), (iii) and (vi) are trivially satisfied;
Property (iv) holds by monotonicity of F. Therefore we have to impose Properties

(i) and (v), i.e. that G(n) = F(-E(-?_-)-l-)— is monotonic and its limit is 1.
Proposition 2. Let F : N — IR be a monotonic function with F(0) = 0
and assume that G(n) = % s a monotonic function such that lim, G(n) = 1.
Then the function Hi(n,m) = eﬁ(F(n),F(m)) = %% is an equipotence
measure.
Proof. Obvious. (8]

The following is an immediate application of Proposition 2.
Proposition 3. The function

Min[log(n + 1), log(m + 1)]
Max[log(n + 1), log(m + 1)]

H,-(n, m) —

1s an equipotence function.

Proof. We refer to Proposition 2, in which F(n) = log(n + 1). To prove that

1 1
Gn) = og(n+1)

log(n + 2)
is an increasing function, it is sufficient to observe that the derivative is always posi-
tive. In fact
log(n+1) log(n)

GI = n n+1
() log?(n + 1)

and, since nlog(n) is increasing (n + 1)log(n + 1) — nlog(n) > 0. The remaining
Properties of Proposition 2 are immediate. O

4.2 Outer-expanded functions
Another class of equipotence functions could be obtained through the outer-expanded
functions.
Proposition 4. Let F' : [0,1] — [0,1] be a monotonic function such that
F(0) =0 aend F(1) = 1 and assume that
(@) hm, S57F () =1
(b) F(z-y) > F(o)- F(y) for any 2,y € [0, 1.
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Then the function
Min[n, m
H,(n,m) = F(Mﬁ,m]])
15 an equipotence function.
Proof. Properties (i), (ii), (iv), (v) and (vi) of Proposition 1 are immediate. To
prove (iil), observe that
Min[n, m] - Min[n, k] Min[k, m]|
Max[n,m] = Max[n, k] Max[k,m]’
and, by the monotonicity of F', it follows that
P (sigd) 2 " i Mo o)
So, the thesis follows from (b). o

Since the notion of wideness depends on the context, it seems natural that the
model M must become flexible, in some way. This can be obtained introducing a
parameter A in the model we are going to define. We call a family (M)‘))\E]E+ of
models of T* a parametrized model of wide set theory T™.

Proposition 5. For every A € RY let My = (S, 1)) be defined by setling
I, (EQ)(n, m) = eq(n, m)*.

Then (M) en+ s a paramelrized model.

Proof. We can consider I as a case of outer composition H,(n,m). Since the
conditions (a) and (b) of Proposition 4 are satisfied, (M))xep+ 1s a parametrized
model. ]

Note that the infinity measure associated with M) is given by the function
Hl A
G(n) = (—=)".
A=t

For example, we can find a context where a set with 10® elements is to be considered as
“small”. This can be expressed by setting, say, G(10°) < 0.4. Solving this constraint
yields A > 91,629.

5 Cantor’s Theorem

It is interesting to analyze whether the basic theorems of set theory are preserved in
our system. As an example, we examine in this section Cantor’s Theorem, claiming
that the cardinality of a set is different from the cardinality of its powerset. Assume
that in £ there is also a function name P to denote the powerset P(z) of a set .
Then a formula expressing Cantor’s Theorem is

(11) Vz-EQ(=z, P(z)).
Such a formula is satisfied provided that

infren(l —eq(n, 2")) = 1 —sup,eyeq(n, 27) = 1,
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and therefore eq(n,2") = 0 for every integer n. Such a condition is not satisfied in
general and this is in accordance with the fact that finite sets with different cardinality
may have a degree of equipotence different from 0. Therefore, Cantor’s Theorem does
not hold. A weaker way to express this theorem is to assert it only for “infinite”
(wide) sets. Then the formula we have to consider is

(12) Vz (INF(z) — —EQ(z, P(z))),
which is true in a multivalued model if, for every n € N,
(13)  eq(n,n+1) <1—eq(n,27).
In the base-model, this is equivalent to say that
n n
il ah

Since this inequality is false for n = 2, in the base-model (12) it is not true. The fol-
lowing proposition shows that a suitable deformation of the base-model satisfies (12).

Proposition 6. Let F(n) = n?. Then the function H,(n,m) = F(eq(n,m)) ts
an equipotence function whose associated multi-valued model satisfies (12).

Proof. To verify (12) we have to prove that, for any integer n € N,

n? n

P Bl (27)2,
that 1s 22"(2n + 1) > n?(n+ 1)?. The latter inequality is provable by induction on n.
The case n = 1 is immediate. As to the inductive case, we have that

22ntD(Ofn 4 1)+ 1) =4 - 22%(An.t 14 2) = 4::.22%(2n + 1)+ 8- 227

>4ni(n +1)2 + 220,

Moreover, we have that

an*(n+1)2+8-2" > (n+ 1)%(n+ 2)%
Indeed, such an inequality holds for n = 1. On the other hand, we have that, for any
n > 2, 4n? > (n 4+ 2)%. Thus, the chain of inequalities holds and so

22rtD(3(n 4+ 1)+ 1) > (n + 1)?(n + 2)?,
and the step of induction is proved. Hence the thesis follows. o

Finally, we can simply assert the existence of an infinite set satisfying Cantor’s
Theorem. The corresponding formula is

(14) 3z (INF(z) A —EQ(z, P(z))).
The following proposition shows that (14) does not depend on the system 1™ of
axioms.

Proposition 7. The base model satisfies (14). Also, there is a model of wide
set theory that does not satisfy (14).

Proof. Let F(n) = j—l
n

tivalued model M. Since the Properties of Proposition 2 are verified for F', M is a
model of wide set theory. Formula (14) is true if the following condition is satisfied:

(15)  sup,en(eq(n,n+1)(1 — eq(n,2%))) = 1.

and consider the corresponding inner-expanded mul-
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If H;(n, m) = eq(F(n), F(m)) is an inner-expanded model, (15) becomes

(16)  sup,cy (F(}:;(j-)l) (1 i) )) = L

TR
Since
. F(n) Fla)y .
limy, Fln+ 1) (1 = F(Z")) =0,

1 ;
the set {n € N : F(I:L(:-)l) (1 - FF((;))) > 5} is finite. Let K be the maximum of

such set. Moreover, for any integer n € N,
F(n) F(n)
F(n+1) (i F(Zﬂ)) o
Therefore,
£(n) Rl
e Ty (- F@y)) = K<t
Thus, (14) is not true in the model M. o

6 Degree of inclusion and degree of equipotency

In this section we investigate on the connections between a multivalued version of
inclusion and the notion of equipotence measure. We start from Kosko’s definition
of conditional probability in terms of a fuzzy inclusion (see [4]) and we show that it
leads to the canonical multivalued model of the equipotence relation. Conversely, an
equipotence relation defines straightforwardly a fuzzy inclusion.

We add to the language £ a binary predicate INC for a multivalued inclusion
relation. Following the approach of Kosko, an interpretation for INC can be obtained
through conditional probability by setting I(INC)(#,y) = 1 and

card(z Ny)

card(z) ’
Now, in classical set theory, a set z has lesser cardinality than a set y if there is a
“copy” z’ of z such that =’ C y. This leads to the predicate 3z (z' = z A INC(z’, y))
that we denote by PM(z,y). Such a predicate, when evaluated on a multivalued
model M, gives the following fuzzy relation
(18)  I(PM)(z,y) = sup,ics {I(INC)(z',y) : 2’ = z}.
The following proposition is immediate.

Proposition 8. Let I be Kosko’s interpretation of INC. Then, for any = and y,

(17) I(ONG)(£:3) = for every = # 0.

1 if card(z) < card(y),
I(PM)(z,y) = ¢ card(y) .
{m if card(z) > card(y).

We are now ready to define the predicate EQ,: We write EQ;(z,y) to denote
PM(z,y) A PM(z,y). Obviously, in a multivalued model M = WOLIG)

(19)  I(EQ)(z,y) = I(PM)(z,y) - I(PM)(y, z).
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The following theorem is immediate.

Theorem 2. The interpretation of EQ, in Kosko’s model coincides with the
interpretation of EQ in the base-model.

On the other hand, once we have the predicate EQ as primitive, since in the
classical case z C y iff Ny = =, we can define the predicate INC(z, y) by the formula
EQ(z Ny, z). The proof of the following theorem is immediate.

Theorem 3. Consider the base model and let INC(x,y) denote the formula
EQ(z Ny,z). Then I(INC) is Kosko’s inclusion.

Note that Kosko’s definition of inclusion suffers a major drawback: seen as a
fuzzy relation, it is not transitive. Indeed, if we take three sets z,y,z € S such that
rNz=0zNy+#0, and y Nz # O, the predicate INC(z, y) A INC(y, z) — INC(z, z)
is not true in the model of conditional probabilities.

7 Fuzzy equivalence relations and pseudo-metric spaces

In this section we consider a “duality” between equipotence measures and a particular
class of extended pseudo-metric spaces. The relations between pseudo-metrics and
fuzzy equivalence relations are straightforward and some examples can be found in
[2] and [3]. Recall that an extended pseudo-metrics on a set S is an application
d:S xS —[0,+00] such that

(i) d(z,z)=0for allz € S,

(ii) d(z,y) = d(y,z) for all z,y € S,

(iil) d(z,y) < d(z,z)+ d(z,y) for all z,y,2z € S.

We say that an extended pseudometric d on the set of integers N is asymptotically
compressed if f(n) = d(n,n+1) is a decreasing function such that lim,, d(n, n+1) = 0.
Also, recall that a fuzzy relation R over a set S is called a fuzzy equivalence provided
that the following properties hold:

Rz z)=1,
(i1) R(z,y) = R(y, z) for any z,y € S,
(i) R(z,y) > R(z,z) - R(z,y) for any z,y,z € S.

We extend the functions logz and e® by setting log0) = —oo, —log0 = oo and
e =)

Proposition 9. Let R be a fuzzy equivalence on the set S and define, for any
T,y €5,

(20)  dr(z,y) = —log(R(z,v))-
Then dr is an extended pseudomeiric on S.

Conversely, let d be an extended pseudomelric over S. Then the following fuzzy
relation R4 over S

(21)  Ra(z,y) =e =)

is a fuzzy equivalence.
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Proof. Since R(z,y) € [0,1], the range of dg is [0,4+00]. Moreover, since
R(z,z) =1, dr(z,z) = 0. Besides, dr(z,y) = dr(y,z) trivially. Finally, for any
m’ y} z E S!

dr(z,y) < dr(z,y) +dr(y,2) iff —log(R(z,y)) < —(log(R(z,y)) + log(R(y, 2))

ifl. —log(R(z,y)) < —(log(R(z,y) - R(y, 2))
iff R(z,y) >R(z,y) R(y,2).

Since this is true by (iii), the function dg is an extended pseudometric over S x S.
Conversely, let d be an extended pseudometric over S. Since d(z,z) = 0, we have
that R4(z,z) = 1. Besides, Rq(z,y) = Ra(y, ), since d(z,y) = d(y,z). Finally,
Ra(z,y) > Ra(z, z) - Ra(z,y), since d(z,y) < d(z, z) + d(z,y). O

Note that given a fuzzy equivalence R over S it may well be the case that
R(z,y) = 0 for some z,y € S. In this case, dg(z,y) = oo, and this explains why
the range of dr is assumed to be [0, +o0]. Equations (20) and (21) are remarkable to
the extent that they establish a duality between fuzzy equivalence relations and ex-
tended pseudometrics. The following proposition extends this duality to equipotence
measures and compressed extended pseudometrics.

Theorem 4. Consider an equipotence measure eq and let deq be defined by (20).
Then deq is an asymplotically compressed extended pseudometric in N such that
deq(o, ].) = +4o00.

Proof. Since deq(n, m) = —log(eq(n, m)) and eq(n, n+ 1) is an increasing func-
tion, it follows that deq(n,n+ 1) is decreasing. Moreover, since lim,, eq(n,n+1) = 1,
lim, deq(n,n + 1) = 0. Finally, deq(0,1) = —log(eq(0, 1))) = —log(0) = +oo. O

Theorem 5. Let d be an asymplotically compressed extended pseudometric over
N such that d(0,1) = +oo. Then the relation Ra(n, m) = e~ *™™) is an equipotence
Sfunction.

Proof. We prove that Properties (i) through (vi) of Proposition 1 are satisfied.
Properties (i) through (iii) are true, since R is a pseudometric on N as follows

Ve -yl ifz#0,y#0,
0 it mi=iy =10}
00 otherwise.

d(z,y) =

Then, the associated fuzzy relation Ry(z,y) = e~ 4%¥) is an equipotence measure, as
it 1s easy to see. O

8 Conclusions and future developments

The topics discussed so far seem to have a larger scope than the one of this work. As
a matter of fact, it seems that every process of approximation through which we can
obtain objects verifying a certain property 4 with a degree close to truth “as much as
we” could be turned into the validity of the formula 3z A(z) in a multivalued logic.
Nevertheless, the kind of existence supported by multivalued logic could appear too
unsatisfactory to those willing the actual exhibition of an object that fully satisfies
the required property. Therefore, it would be appropriate to single out a multivalued
logic such that a theorem of the following kind holds: Given a multivalued model M it
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is possible to build up a classical model M' such that any existential formula which is
true in M (i.e. possesses the designated value 1) is true in M', too. Provided this, the
validity in M of a formula 3z A(z) (derived from the existence of an approximation
process) entails the validity of such a formula in the classic model M’ and therefore
the existence of an object verifying A(z). In other words, a process entailing the
potential construction of an object could be turned into the actual exhibition of the
object. But this is a subject of investigation that will be tackled in an upcoming
work.
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