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Abstract

This paper is an extended abstract of my paper [12] published in
Fuzzy Set and Systems. We start from a residuated lattice L and a
monoid M , and we define a Galois connection from the lattice of the
compatible L-preorders in M and the lattice of L-submonoids of M .
Given a set S we define a Galois connection between the lattice of
the L-preorders in S and the lattice of L-submonoids of the monoid
(SS , ◦, i). A link with the notion of quasi-metric is also established.

Keywords. Fuzzy monoids, fuzzy orders, similarities, quasi-metric spaces,
residuated lattices.

1 Introduction

Rosenfeld, in its pioneer work [21] gives the very interesting notion of fuzzy
subgroup of a given group. Such a notion was extended into the general
notion of fuzzy subalgebra of an algebraic structure (see, for example, [2],
[6] and [7]). Another basic notion is the one of fuzzy equivalence extending
the classical one of equivalence (see for example, Chakraborty and Das [3],
Valverde and Jacas [14], [23] and Ovchinikov [20]). In [19] the notion of a
fuzzy subgroup of a group G is related with the one of fuzzy equivalence in
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G. In [8] and [13] one shows that, given a nonempty set S, there is a Galois
connection among the lattice of the fuzzy equivalences in S, and the lattice
of the fuzzy subgroups of transformations in S.

This paper is devoted to propose an analogous connection between the
lattice of the compatible L-preorders and the lattice of the L-submonoids
of a monoid. In particular, we refer to the monoid (SS, ◦, i) of the maps
from S into S. In account of a well known duality between fuzzy orders and
quasi-metrics, this induces also a Galois connection between the lattice of the
quasi-metric on S and the lattice of the fuzzy submonoids of SS. We focalize
our attention also to formulas to calculate the L-submonoid generated by a
given L-subset and the L-order generated by an L-relation. Some examples
are given and some suggestions for future applications are also outlined in
the field of fuzzy codes theory, complexity theory and genetics.

2 Preliminaries

In this paper L always denotes a complete residuated lattice (L,∧,∨, ∗,→
, 0, 1) (see [5]). This means that:

- (L,∧,∨, 0, 1) is a complete lattice

- ∗ is a commutative and associative operation such that x ∗ 1 = x

- z ≤ x → y ⇔ x ∗ z ≤ y (adjointness).

It is easy to prove that in any complete residuated lattice the infinite distrib-
utivity

(sup
i∈I

xi) ∗ x = sup
i∈I

(xi ∗ x)

holds true. More precisely, in a complete lattice such a property is equivalent
to the existence of residuum for ∗. The intended interpretation is that L is
the set of truth values of a multi-valued logic and that ∗ and → are the
interpretations of the logical connectives ”and” and ”implies”, respectively.
Given a nonempy set S, we denote by LS the direct power of L and we call
L-subset of S any element in LS, i.e. any map from S to L. An L-relation
is an L-subset of a cartesian product. The direct power LS is a complete
lattice. We call inclusion relation the order relation in LS and we denote it
by ⊆ . We call intersection and union the meet and join operations in LS

and we denote them by ∩ and ∪, respectively. We say that an L-subset s is

2



crisp provided that s(x) ∈ {0, 1} for every x ∈ S. By associating any subset
of S with the related characteristic function, we can identify the subsets of S
with the crisp L-subsets of S. As an example, we identify the empty set with
the map s0 constantly equal to 0 and S with the map s1 constantly equal to
1. This gives an embedding of the lattice (P (S),∩,∪, ∅, S) into the lattice
(LS,∩,∪, s0, s1).

We conclude this section by recalling some basic definitions in ordered
set theory.

Definition 1. Let L be a complete lattice, then a closure system in L is
any class C of elements of L such that the meet of any family of elements of
C is an element of C. Given x ∈ L, we say that

−
x= inf{z ∈ C | z ≥ x}

is the element in C generated by x.

Any closure system is a complete lattice in which the join of a family (xi)i∈I

of elements is the element generated by supi∈I xi and the meet is infi∈I xi.

Definition 2. Let L be a complete lattice, then an order-preserving map
H : L → L is called a closure operator provided that

H(x) ≥ x ; H(H(x)) = H(x).

It is easy to prove that if H is a closure operator, then the set {x ∈ L :
H(x) = x} of fixed points of H is a closure system. Conversely, if C is a
closure system, then by setting H(x) = x we obtain a closure operator. The
order-theoretically dual notions are interior system, interior operator and
interior of an element x. As an example, a map H is an interior operator
provided that it is order preserving and

H(x) ≤ x ; H(H(x)) = H(x).

Definition 3. Let L1 and L2 be complete lattices, then a Galois connection
from L1 to L2 is a pair (h, k) of order-preserving maps h : L1 → L2 and
k : L2 → L1 such that
- k ◦ h : L1 → L1 is an interior operator in L1,
- h ◦ k : L2 → L2 is a closure operator in L2.
In the case k ◦ h and h ◦ k are identity maps, we say that (h, k) is a lattice
isomorphism.

3



We represent a Galois connection as follows:

L1

h

−−−→
←−−−

k

L2

Equivalently, (h, k) is a Galois connection if and only if h and k are order-
preserving maps such that for all x ∈ L1 and for all y ∈ L2

k(h(x)) ≤ x ; h(k(y)) ≥ y.

Observe that there are several equivalent definitions of Galois connection we
obtain by referring to the duals of the considered lattices. As an example,
if we consider the dual of L1, then we can define a Galois connection as a
pair (h, k) such that h and k are order-reversing and both h ◦ k and k ◦ h
are closure operators. It is easy to prove that if (h, k) is a Galois connection
from L1 to L2 and (h′, k′) is a Galois connection from L2 to L3, then the
composition (h′ ◦ h, k ◦ k′) is a Galois connection from L1 to L3.

3 Fuzzy submonoids and L-preorders

The first notion we consider in this paper is the one of L-submonoids.

Definition 4. Let M = (M, ·, e) be a monoid. Then an L-submonoid of
M is an L-subset m of M such that

i) m(e) = 1,

ii) m(x · y) ≥ m(x) ∗m(y) for every x, y ∈ M .

If we consider a multivalued logic whose language contains a monadic pred-
icate symbol M̃ , the constant e and the operation symbol ·, then m is an
L-submonoid of M if and only if (M, ·,m, e) is a multi-valued model of the
axioms

M̃(e) ; ∀x∀y(M̃(x) ∧ M̃(y) → M̃(x · y)).

So, the just given definition is the natural extension in a multi-valued logic of
the definition of monoid with a given submonoid. The following proposition
gives a formula to obtain the L-submonoid generated by a given L-subset of
M .
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Proposition 5. The class L−SM(M) of L-submonoids of a monoid (M, ·, e)
is a closure system in the lattice of L-subsets of M . Given an L-subset s of
M , the L-submonoid s generated by s can be obtained by setting s(e) = 1
and,

s(x) = sup{s(x1) ∗ ... ∗ s(xn) : x1 · ... · xn = x}
in the case x 6= e.

Proof. See [12].

The second notion we are interested is the one of L-preorder.

Definition 6. An L-preorder on a nonempty set S is an L-relation r :
S × S → L such that:

i) r(x, x) = 1 for every x ∈ S (reflexivity),

ii) r(x, z) ≥ r(x, y) ∗ r(y, z) for every x, y, z ∈ S (∗-transitivity).

If we consider a multi-valued logic with a binary predicate symbol R̃,
then r is an L-preorder in S if and only if (S, r) is a multi-valued model of
the axioms

∀xR̃(x, x) ; ∀x∀y∀z(R̃(x, y) ∧ R̃(y, z) → R̃(x, z)).

So, the just given definition is the natural extension in multi-valued logic of
the definition of preorder. The following proposition gives a formula for the
L-preorder generated by a given L-relation in S (see [1]).

Proposition 7. The class L − PO(S) of the L-preorders on S is a closure
system. For any L-relation r : S × S → L, the L-relation r obtained by
setting r(x, x) = 1 and, in the case x 6= y,

r(x, y) = sup{r(x1, x2) ∗ ... ∗ r(xn−1, xn) : x1 = x, xn = y},
is the L-preorder generated by r.

Proof. See [12].

An obvious example of L-preorder is the residuation →. More generally,
in [23] one proves the following proposition.

Proposition 8. Any L-subset s of S defines an L-preorder rs obtained by
setting

rs(x, y) = s(x) → s(y)

for any x, y ∈ S. The class of so defined L-preorders is a basis in L−PO(S),
i.e. any L-preorder is intersection of so defined L-preorders.
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4 A link between L-preorders and L-submonoids

In this section we will examine some links between L-preorders and L-
submonoids. Let (M, ·, e) be a monoid, then we say that an L-relation r
in M is right compatible, in brief compatible, provided that

r(x, y) ≤ r(x · t, y · t)

for any t ∈ M (see [19]). The residuation is an example of compatible L-
relation.

Proposition 9. The class of compatible L-relations in a monoid M is a
closure system and therefore a complete lattice. Let r be an L-relation in M ,
then by setting

r̃(x, y) = sup{r(x′, y′) : ∃t ∈ M, x′ · t = x, y′ · t = y},

we obtain the compatible L-relation generated by r. The class L−CPO(M)
of compatible L-preorders in M is a closure system. Moreover, given an
L-relation r, r̃ is the compatible L-preorder generated by r.

Proof. See [12].

Definition 10. Let (M, ·, e) be a monoid. Then we associate any L-relation
r in M with the L-subset α1(r) defined by setting

α1(r)(x) = r(e, x) (1)

for any x ∈ M . Also, we associate any L-subset m of M , with the L-relation
β1(m) defined by setting

β1(m)(x, y) = sup{m(t) : t · x = y}. (2)

The interest of these definitions lies in the following proposition.

Proposition 11. Let (M, ·, e) be a monoid and r a compatible L-preorder.
Then α1(r) is an L-submonoid. Let m be an L-submonoid of M , then β1(m)
is a compatible L-preorder.

Proof. See [12].
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Now, we are ready to prove the following theorem.

Theorem 12. Both α1 and β1 are order-preserving maps with respect to the
inclusion relation. Moreover, for any r ∈ L−CPO(M) and m ∈ L−SM(M)

β1(α1(r)) ⊆ r ; α1(β1(m)) = m.

Consequently, (α1, β1) is a Galois connection from L − CPO(M) into L −
SM(M)

L− CPO(M)

α1

−−−→
←−−−

β1

L− SM(M) .

Proof. See [12].

Observe that β1(α1(r)) 6= r, in general. As an example, set r = M×M . Then
α1(M×M) = M and therefore β1(α1(M×M)) = {(x, y) : ∃t ∈ M, x · t = y}.
Assume that a, b ∈ M exists such that a is not a left divisor of b, then (a, b)
is not an element in β1(α1(M×M)) and therefore β1(α1(M×M)) 6= M×M .

Proposition 13. Let s be an L-subset of M , and s is the L-submonoid
generated by s. Then

β1(s)(x, y) = sup{s(t1) ∗ ... ∗ s(tn) : t1 · ... · tn · x = y}. (3)

Let r be an L-relation in M and let r̃ be the compatible L-preorder generated
by r. Then

α1(r̃)(x) = sup{r̃(e, x1) ∗ ... ∗ r̃(xn, x) : x1, ..., xn ∈ S}. (4)

In other words (3) enables us to define an L-preorder β1(s) in M from any
L-subset s of M and (4) enables us to define an L-submonoid α1(r̃) of M
from any L-relation in M .

5 L-submonoids of (SS, ◦, i)
If S is a nonempty set, then we can consider the monoid (SS, ◦, i) where
SS is the class of all the maps from S into S, ◦ is the composition operator
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and i is the identity map. It is not restrictive to concentrate our attention
on such a kind of monoid since any monoid (M, ·, e) is isomorphic with a
suitable submonoid of (MM , ◦, i). Indeed, the map h : M → MM defined
by setting, for any a ∈ M , h(a)(x) = a · x is an injective homomorphism. A
trivial submonoid of SS is defined by the set Const = {cx ∈ SS : x ∈ S}∪{i}
where, for any x ∈ S, we denote by cx the map constantly equal to x. The
proof of the following proposition is well known.

Proposition 14. Let r be an L-preorder on S and define the L-relation σ(r)
in SS by setting

σ(r)(f, g) = inf
x∈S

r(f(x), g(x)) (5)

for all f, g ∈ SS. Then σ(r) is a compatible L-preorder. Let r′ be a compatible
L-preorder in SS and define the L-relation τ(r′) in S by setting

τ(r′)(x, y) = r′(cx, cy) (6)

for every x, y ∈ S. Then τ(r′) is an L-preorder in S.

Notice that, in a sense, σ(r)(f, g) is a valuation in a multi-valued logic of
the claim that for any x ∈ S the images f(x) and g(x) are in the relation r.

Proposition 15. The maps σ : L − PO(S) → L − CPO(SS) and τ :
L− CPO(SS) → L− PO(S) are order-preserving. Moreover

τ(σ(r)) = r ; σ(τ(r′)) ⊇ r′

for any r ∈ L− PO(S) and r′ ∈ L− CPO(SS). As a consequence, the pair
(σ, τ) is a Galois connection from L− PO(S) to L− CPO(SS)

L− PO(S)

σ

−−−→
←−−−

τ

L− CPO(SS) .

Proof. See [12].

Observe that σ(τ(r′)) 6= r′, in general. Indeed, assume that S is equal to
the real number set and define r′ : SS → {0, 1} by setting r′(f, g) = 1
provided that f = g or f(S) ≤ g(S), i.e. f(x) ≤ g(y) for any x, y ∈ S.
Then r′ is a compatible L-preorder, τ(r′) coincides with the natural order
in S and σ(τ(r′)) with the pointwise order in the functional space SS. As a
consequence, σ(τ(r′)) 6= r′.
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Definition 16. We denote by (α′1, β
′
1) the Galois connection from L −

PO(S) to L− SM(SS) obtained by composing (σ, τ) with (α1, β1)

L− PO(S)

α′1 = α1 ◦ σ

−−−−−−−→
←−−−−−−−
β′1 = τ ◦ β1

L− SM(SS) .

Observe that
α′1(r)(f) = inf

x∈S
r(x, f(x)) (7)

and
β′1(m)(x, y) = sup

{
m(f) | f(x) = y, f ∈ SS

}
. (8)

So, we can consider α′1(r)(f) as the valuation in a multivalued logic of the
claim that f(x) is greater than or equal to x for all the elements x ∈ S and
β′1(m)(x, y) as the valuation of the claim that a function f in m exists such
that f(x) = y.

Proposition 17. For every L-preorder r in S and L-submonoid m of SS,

β′1(α
′
1(r)) = r ; α′1(β

′
1(m)) ⊇ m. (9)

Proof. See [12].

It is not possible to prove that α′1(β
′
1(m)) = m. A counterexample is obtained

by noticing that β′1(Const) = S × S and therefore α′1(β
′
1(Const)) = SS.

Example. Let s be an L-subset of S to represent a vague property. Then,
by considering the associated L-order rs we obtain

α′1(rs)(f) = inf
x∈S

(s(x) → s(f(x))).

In other words, α′1(rs) is the L-monoid of the transformations preserving the
vague propery s. In accordance with the fact that the intersection of a family
of L-submonoids is an L-submonoid, it is possible to extend such an example
to any class of vague properties.
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Example. Consider an L-subset small : SS → L of SS we interpret as the L-
subset of ”small” (”possible”, ”non expensive”, ”legal”, ...) transformations.
Then, in accordance with (3), an L-ordering r is defined by setting

r(x, y) = sup{small(f1) ∗ ... ∗ small(fn) : f1(...fn(x)...) = y}. (10)

We can imagine that r(x, y) is the valuation in a multi-valued logic of the
claim that it is possible to transform x into y by a suitable sequence of ”small”
(equivalently ”possible”, ”non expensive”, ”legal”,...) transformations.

6 Quasi-metrics and metrics.

In this section we refer to a residuated lattice ([0, 1],∧,∨, ∗,→, 0, 1) where
∗ is a continuous Archimedean t-norm, i.e. a continuous t-norm such that
x ∗ x < x for any x ∈ (0, 1). These norms satisfy a basic representation
theorem (see for example [16]). Indeed, denote by ([0, +∞],≤, +, 0) the
extension of the ordered monoid ([0, +∞),≤, +, 0) defined by assuming that,
for any x ∈ [0, +∞], x + (+∞) = (+∞) + x = +∞, x ≤ ∞. Then we call
additive generator, any continuous strictly decreasing function h : [0, 1] →
[0, +∞] such that h(1) = 0 and we denote by h[−1] the map defined by

h[−1](x) =

{
h−1(x) if x ∈ h([0, 1])
0 otherwise.

(11)

Observe that, since h([0, 1]) is the interval [0, h(0)], h[−1](x) = h−1(x) if
x ≤ h(0) and 0 otherwise. In particular, for any x ∈ [0, 1] and y ∈ [0, +∞]

h[−1](h(x)) = x ; h(h[−1](y)) = y ∧ h(0).

Proposition 18. A binary operation ∗ is a continuous Archimedean t-norm
if and only if an additive generator h exists such that for all x, y ∈ [0, 1]

x ∗ y = h[−1](h(x) + h(y)). (12)

Also, ∗ is strict, i.e. strictly increasing with respect to both the variables, if
and only if h(0) = ∞.

For example, if we set h(x) = − ln(x) for any x > 0 and h(0) = ∞, then
we obtain a generator whose associated t-norm is the usual product. If
h(x) = 1 − x, then ∗ is the t-norm of Lukasiewicz. The notion of additive
generator is on the basis of a duality established by Valverde in [23] and
enables us to restate all the results in this paper in metrical terms.
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Definition 19. Given a nonempty set S, we call (extended) quasi-pseudo-
metric on S any map d : S × S → [0, +∞] such that, for any x, y, z ∈ S,

d(x, x) = 0, d(x, y) ≤ d(x, z) + d(z, y).

The class of these maps is denoted by QPM(S).

Such a notion extends the one of metric space since a metric space is an
extended quasi-pseudo-metric space which is symmetric, with real values and
separating, i.e. d(x, y) = 0 entails x = y. In the following we consider the
lattice ([0, +∞]S×S,¹) where ¹ is defined by setting d1 ¹ d2 provided that
d2(x, y) ≤ d1(x, y) for any x, y ∈ S.

Proposition 20. The class QPM(S) of all extended quasi-pseudo-metric
on S is a closure system in ([0, +∞]S×S,¹) and therefore a complete lattice.
Also, for any d ∈ [0, +∞]S×S, the quasi-pseudo-metric generated by d is the
function d defined by setting d(x, x) = 0 and, in the case x 6= y,

d(x, y) = inf{d(x1, x2) + ... + d(xn−1, xn) : x1, ..., xn ∈ S, x1 = x, xn = y}.

Proof. See [12].

In this section we assume that h is a generator of a continuous Archimedean
t-norm ∗ and that L the related residuated lattice. The following proposition
was proved in [23].

Proposition 21. We can associate any extended quasi-pseudo-metric d with
the L-preorder α0(d) : S × S → [0, 1] defined by setting

α0(d)(x, y) = h[−1](d(x, y)). (13)

Conversely, we can associate any L-preorder r with an extended quasi-pseudo-
metric β0(r) : S × S → [0,∞] defined by setting

β0(r)(x, y) = h(r(x, y)). (14)

The proof of the following theorem is immediate.

Proposition 22. Both the maps α0 : QPM(S) → L − PO(S) and β0 :
L− PO(S) → QPM(S) are order-preserving and

α0(β0(r)) = r ; β0(α0(d)) = d ∧ h(0) ≤ d. (15)
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Observe that we are not authorized to claim that the pair (α0, β0) is a Galois
connection from QPM(S) to L − PO(S) since in the space QPM(S) we
consider the dual order. To obtain this, we have to confine ourselves to the
strict Archimedean t-norms.

Theorem 23. Assume that h(0) = +∞, then

α0(β0(r)) = r ; β0(α0(d)) = d. (16)

As a consequence (α0, β0) is an isomorphism and therefore a Galois connec-
tion from QPM(S) to L− PO(S),

QPM(S)

α0

−−−→
←−−−

β0

L− PO(S) .

In this section we consider only Archimedean strict t-norms. As an alterna-
tive, it should be considered any generator h and the restriction of α0 to the
sublattice of the elements in QPM(S) bounded by h(0).
We say that an extended quasi-metric d in a monoid M is right compatible,
in brief compatible provided that

d(x, y) ≥ d(x · t, y · t)

and we denote by CQPM(M) the class of compatible extended quasi-pseudo-
metrics in M . The proof of the following proposition is trivial.

Theorem 24. Let M be a monoid. Then the pair (α0, β0) is a Galois con-
nection from CQPM(M) to L− CPO(M)

CQPM(M)

α0

−−−→
←−−−

β0

L− CPO(M) .

In accordance with the fact that the composition of two Galois connections
is a Galois connection, we can give the following definitions.
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Definition 25. We denote by (α2, β2) the Galois connection from CQPM(M)
to L− SB(M) obtained by composing the connections (α0, β0) and (α1, β1)

CQPM(M)

α2 = α1 ◦ α0

−−−−−−−→
←−−−−−−−
β2 = β0 ◦ β1

L− SB(M) .

A direct computation of α2 and β2 gives

α2(d)(x) = h−1(d(e, x))

and
β2(m)(x, y) = inf({h(m(t)) | t · x = y}).

It is also immediate to prove that

β2(α2(d)) ¹ d ; α2(β2(m)) = m.

Definition 26. We denote by (α′2, β
′
2) the Galois connection from QPM(S)

to L − SM(SS) obtained by composing the Galois connections (α0, β0) and
(α′1, β

′
1)

QPM(S)

α′2 = α′1 ◦ α0

−−−−−−−→
←−−−−−−−
β′2 = β0 ◦ β′1

L− SM(SS) .

A direct computation of α′2 gives

α′2(d)(f) = h−1(d′(e, f))

where d′ : SS → [0, +∞] is the compatible extended quasi pseudo metric
defined by setting, for any f, g ∈ SS,

d′(f, g) = sup
x∈S

d(f(x), g(x)). (17)

Moreover β′2 is defined by

β′2(m)(x, y) = inf({h(m(f))|f(x) = y}).
It is immediate to prove that

β′2(α
′
2(d)) = d ; α′2(β

′
2(m)) ⊇ m.
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7 Similarities, L-subgroups and distances

The notion of L-subgroup is defined as a many valued extension of the clas-
sical one of subgroup (as an example see [2] and [21]).

Definition 27. Let (G, ·,−1 , e) be a group. Then an L-subgroup of G is an
L-submonoid g of G such that g(x−1) ≥ g(x) for every x ∈ G.

To obtain a formula for the L-subgroup generated by an L-subset, we denote
by s−1 the L-subset of G defined by setting s−1(x) = s(x−1). The proof of
the following proposition is immediate.

Proposition 28.The class L− SG(G) of L-subgroups of G is a closure sys-
tem and therefore a complete lattice. Given an L-subset s of G, let s be the
L-subset defined by setting s(e) = 1 and, in the case x 6= e

s(x) = sup{s̃(x1) ∗ ... ∗ s̃(xn) : x1 · ... · xn = x}

where s̃ = s ∪ s−1. Then s is the L-subgroup generated by s.

The symmetric L-preorders define the important class of L-similarities.

Definition 29. An L-similarity, in brief similarity, on S is an L-preorder
relation r satisfying the symmetric property, i.e.

iii) r(x, y) = r(y, x) for every x, y ∈ S.

The notion of similarity extends the classical one of equivalence relation. To
obtain the similarity generated by a given L-relation, in the following, given
an L-relation s in S, we denote by s−1 the L-relation defined by setting
s−1(x, y) = s(y, x). The proof of the following proposition is immediate (see
[1]).

Proposition 30. The class L − SI(S) of all the L-similarities on S is a
closure system and therefore a complete lattice. Given an L-relation s :
S × S → L, let s be the L-relation defined by setting s(x, x) = 1 and, in the
case x 6= y,

s(x, y) = sup{s̃(x1, x2) ∗ ... ∗ s̃(xn−1, xn) : x1 = x, xn = y},

where s̃ = s ∪ s−1. Then s is the similarity generated by s.
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Observe that a compatible L-relation r in a group G satisfies the identity

r(x, y) = r(x · z, y · z).

Also, for any L-subset g of G,

β1(g)(x, y) = g(y · x−1).

This means that β1(g) coincides with the L-relation defined in [19] where the
following proposition was also proved.

Proposition 31. Let G be a group and r be a compatible similarity in G.
Then α1(r) is an L-subgroup of G. Let g be an L-subgroup of G, then β1(g)
is a compatible similarity. Moreover,

β1(α1(r)) = r ; α1(β1(g)) = g. (18)

Then (α1, β1) is a Galois connection, namely a lattice isomorphism, from
the lattice L − CSI(G) of the compatible similarities in G into the lattice
L− SG(G) of all the L-subgroups of G

L− CSI(G)

α1

−−−→
←−−−

β1

L− SG(G) .

In particular, we are interested to the group ΣS of transformations on the
set S. The following theorem was proved in [8] and [13].

Theorem 32. Let r be a similarity in S. Then α′1(r) is an L-subgroup of
ΣS. Let g be an L-subgroup of ΣS, then β′1(g) is a similarity in S. Then
(α′1, β

′
1) is a Galois connection from L− SI(S) to L− SG(ΣS).

L− SI(S)

α′1
−−−→
←−−−

β′1

L− SG(ΣS)

Proof. See [12].
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Assume that L is the residuated lattice defined in [0, 1] by a t-norm ∗
generated by a function h such that h(0) = ∞. Also, denote by PM(S) the
lattice of the extended pseudo-metric spaces and by CPM(M) the lattice of
compatible extended pseudo-metric spaces. Then we can list some theorems
whose proofs are obvious.

Theorem 33. If d is an extended pseudo-metric then α0(d) is a L-similarity.
If r is an L-similarity, then β0(r) is an extended pseudo-metric. As a conse-
quence, the pair (α0, β0) is a Galois connection from the lattice PM(S) of the
extended pseudo-metric spaces into the lattice L−SI(S) of the L-similarities
in S

PM(S)

α0

−−−→
←−−−

β0

L− SI(S) .

Theorem 34. Let G be a group. Then if d is a compatible pseudo-metric
in G, then α0(d) is a compatible L-similarity in G. If r is a compatible L-
similarity in G, then β0(r) is a compatible pseudo-metric. As a consequence,
the pair (α0, β0) is a Galois connection from the lattice CPM(G) of com-
patible pseudo-metrics in G into the lattice L − CSI(G) of the compatible
L-similarities in G

CPM(G)

α0

−−−→
←−−−

β0

L− CSI(G) .

Theorem 35. The pair (α2, β2) is a Galois connection from CPM(G) to
L− SG(G)

CPM(G)

α2

−−−−−−−→
←−−−−−−−

β2

L− SG(G) .

Theorem 36. The pair (α′2, β
′
2) is a Galois connection from PM(S) to

L− SG(SS)

PM(S)

α′2
−−−−−−−→
←−−−−−−−

β′2

L− SG(SS) .
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8 Examples.

The results in this papers enable us to find several examples of fuzzy sub-
monoids and fuzzy subgroups (and therefore of fuzzy orders, quasi-metrics,
similarities and distances).

Fuzzy code theory Let A be an alphabet and denote by A∗ the related free
monoid. An important class of submonoids of A∗ are the free submonoids,
i.e. the submonoids M such that

xy ∈ M, yx ∈ M, y ∈ M ⇒ x ∈ M.

The interest of these submonoids is that the set M −M2 of words is a code
(see, for example [17]). Further classes of codes are obtained by consider-
ing the pure, very pure, left unitary submonoids, i.e. the submonoids M
satisfying the following implications:

- xn ∈ M ⇒ x ∈ M,

- x · y ∈ M, y · x ∈ M ⇒ x ∈ M,

- y · x ∈ M, y ∈ M ⇒ x ∈ M,

respectively. In accordance with [9], and [13] we extend these definitions as
follows.

Definition 37. An L-submonoid m of A∗ is called free, pure, very pure, left
unitary, provided that

a) m(x) ≥ m(x · y) ∗m(y · x) ∗m(y),

b) m(xn) = m(x),

c) m(x) ≥ m(x · y) ∗m(y · x),

d) m(x) ≥ m(y · x) ∗m(y),

respectively.

In the case ∗ is the meet operation ∧, m is a free L-submonoid if and only if for
any λ ∈ L, the cut C(m, λ) = {x ∈ A∗ : m(x) ≥ λ} is a free submonoid. So,
in such a case, any free L-submonoid gives a whole family of codes depending
on the parameter λ. Analogous considerations hold true for the pure, very
pure, left unitary L-submonoids.

In [10] the following proposition was proved.
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Proposition 38. The class of free (pure, very pure, left unitary) L-submonoids
of A∗ is a closure system.

In [10] and [9] we proposed some formulas for the free (pure, very pure,
left unitary) L-submonoid generated by a given L-subset.

The just considered L-submonoids of A∗ are related with suitable of L-
preorders and quasi-metrics, obviously. For example, we say that a compat-
ible L-preorder r in A∗ is free, pure, very pure, left unitary, provided that

a) r(e, x) ≥ r(e, x · y) ∗ r(e, y · x) ∗ r(y),

b) r(e, xn) = r(e, x),

c) r(e, x) ≥ r(e, x · y) ∗ r(e, y · x),

d) r(e, x) ≥ r(e, y · x) ∗ r(e, y),

respectively. In accordance with the results in this paper we obtain the
following proposition.

Proposition 39. The pair (α1, β1) is a Galois connection from the lattice of
the compatible free (pure, very pure, left unitary) L-preorders into the lattice
of the free (pure, very pure, left unitary) L-submonoids of A∗.

We conclude this section by observing that we can define in a simple way
the L-preorder associated with a given L-submonoid of S∗.

Proposition 40. Define the partial operation y/x in A∗ by setting y/x = z
if x is a right factor of y and z · x = y. Then the fuzzy preorder β1(m) m be
an L-submonoid of A∗.can be obtained by setting

β1(m)(x, y) = m(y/x)

if x is a right factor of y and β1(m)(x, y) = 0 otherwise. Moreover, for any
z ∈ A∗,

β1(m)(x, y) = β1(m)(xz, yz).
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The L-submonoid of the easy to compute functions. Further exam-
ples of fuzzy submonoids and therefore of fuzzy preorders are suggested by
Kolmogorov’s complexity theory (see, for example [18]). As an example, let
Comp the set of one-variable computable functions from N to N and con-
sider the monoid (Comp, ◦, i). Also, for any f ∈ Comp, let l(f) be the length
of a shortest program to compute f in an universal programming language.
More precisely, we refer to programs starting with an input instruction like
Read(x) and terminating with an output instruction Write(y) and we do not
consider these two instruction in computing the length of a program.

Proposition 41. Assume that L = [0, 1], let h be an additive generator and
define m : Comp → [0, 1] by setting

m(f) = h[−1](l(f)).

Then m is an L-submonoid of Comp with respect to the t-norm generated by
h.

Proof. See [12].

We interpret m as the L-monoid of the easy to compute functions. Such an
L-submonoid is associated with an L-preorder r = β1(m) defined by

r(f, g) = sup{m(t) : t ◦ f = g}.

We interpret the value r(f, g) as a valuation in a multivalued logic of the
claim ”there is an easy to calculate function able to obtain g from f by
composition”. Also, assume that L = [0, 1] and that h(0) = ∞. Then we
can obtain the quasi-metric d = β2(m) associated with m. Obviously,

d(f, g) = inf{l(t) : t ◦ f = g}.

Transformation distances and DNA evolution. In literature there are
examples of quasi-metrics which are related with the question of the evolu-
tion. Indeed, evolution acts in several ways on DNA : either by mutating a
base, or inserting, deleting or copying a segment of the given sequence. So,
the general situation is that if we denote by S the set of DNA-words, then
a set of possible operations in S is fixed. Once a cost is fixed to each of
these operations, the total cost of a list of operations (a script) is calculated
simply by adding the costs of the single operations (see [24]). Under these
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hypotheses, given an initial DNA-word x and a target DNA-word y, a non
symmetric distance d(x, y) from x to y is defined as the minimum cost among
all the scripts able to generate y from x. Such a notion was suggested by
algorithmic information theory.
Now, we can translate such an approach in terms of generated L-submonoids
and L-orders. Indeed, let s be an L-subset of SS we interpret as an L-subset
of possible transformations. Then, we can consider the L-submonoid s of SS

generated by s and therefore, in accordance with (3), the L-preorder β1(s)
defined by setting

β1(s)(x, y) = sup{s(f1) ∗ ... ∗ s(fn) : f1(...fn(x)...) = y}.

The quasi metric d defined in [24] is obtained as a particular case by assuming
that L = [0, 1] and by considering β0(β1(s)).

Obviously it is not clear if such an approach is more convenient than
the usual one of the transformation distances. A reason in favour of the
L-submonoids (equivalently, the L-preorders) is the remarkable generality of
such a notion. Indeed, we can start from residuated lattices L which are not
necessarily based on the set of real numbers.
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