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POINTLESS METRIC SPACES
GIANGIACOMO GERLA

§1. Intraduction. In the last years several research projects have been motivated
by the problem of constructing the usual geometrical spaces by admitting “regions”
and “inclusion™ between regions as primitives and by defining the points as suitable
sequences or classes of regions (for references see [2]).

In this paper we propose and examine a system of axioms for the pointless space
theory in which “regions”, “inclusion”, “distance™ and “diameter™ are assumed as
primitives and the concept of point is derived. Such a system extends a system
proposed by K. Weihrauch and U. Schreiber in [3].

In the sequel R and N denote the set of real numbers and the set of natural
numbers, and E is a Euclidean metric space. Moreover, if X is a subset of R, then
\/X is the least upper bound and A\ X the greatest lower bound of X.

§2. Pointless metric spaces. By a pointless pseudomeiric space, briefly p-p-m-
space, we mean any structure 2 = (R, <, 4,| |) where(R, <)is a partially ordered set
and| |: R = [0,00],d: R x R — [0, 0)are functions such that, for every x, y, z € R,
the following axioms hold:

Al. x=y=[x| = |yl

A2, x =y =8y, 2) = d(z,x).

Al d(x,x)=0

Ad. 3(x, ) < d(x,2) + d(z, y) + |2] (generalized triangle inequality).

A similar system of axioms was defined by Weihrauch and Schreiber in [5]. We
call the elements of R regions, the relation < inclusion, the number d(x, y) the
distance between the regions x and y and the number (x| the diameter of x. We say
that an element O of R is the empty region if it is the minimum of (R, <), and we
denote by R, the set of nonempty regions. Notice that if the empty region O exists
then § is constantly equal to zero. Indeed, by A2 4(0,0) = (0, x) and therefore,
by A3, 3(0,x) = 0. Consequently, since by A2 3(z,x) < 8(0, z), we have also that
oz, x)=0

The minimal elements of R, are called atams while the elements of R, whose
diameter is zero are called 2-points. A region x is bounded if | x| # o0; two regions x
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208 GIANGIACOMO GERLA.

and y overiapif 2 € Ry exists such that z < xand z < y. A homamorphism from a p-p-
m-space # = (R, <,4,| |) into a p-p-m-space 2’ = (R’, <’,4',| |} is a map from R
into R’ preserving order, distances and diameters; an isomorphism is an injective and
surjective homomorphism. Notice that, as for the pseudometric spaces, every
(nonempty) subset of a p-p-m-space defines a p-p-m-space.

The p-p-m-spaces generalize the pseudometric spaces; namely, the pseudometric
spaces coincide with the p-p-m-spaces for which every region is an atom whose
diameter is zero, that is the order relation coincides with the identity relation and | |
is constantly equal to zero.

Examples of p-p-m-spaces are obtained when R is equal to a class of nonempty
subsets of a pseudometric space (M, d), < is the inclusion relation and d and | | are
the usual distance and diameter functions defined by

(1) X, Y)=Ald,n|xeX,ye¥} |XI=V{dxy|xeX,ye X}

Indeed Al, A2 and A3 are immediate; to prove A4, let X, ¥ and Z be subsets of M,
xeX,yeY,zeZandz € Z; then

X, YV < d(x,y) <dix,z) + diz,2) + d(z', y) < dix,z) + d(z, y) + | Z|

and therefore 8{X,Y) < 6(X,Z) + 6(Z,Y) + | Z]. We call the spaces of this type
canonical.

The passage from the paointless pseudometric spaces to the pointless metric spaces
is suggested by the following observations. We recall that a metric space is a
pseudometric space such that x = y == d(x, y) = 0; in other words the identity
relation can be defined via the distance function. This suggests calling a pointless
metric space, briefly p-m-space, a p-p-m-space £ = (R, <, 4,| |} such that

AS. x 2 v x| =y and 8(z, x) < d(y,2) for every z € R.
Obviously A5 is equivalent to Al, A2 and the implication
|x| = ¥ and d(z,x) < 8(y,z) foreveryze R = x = y.

The metric spaces coincide with the p-m-spaces such that the regions are atoms
whose diameter is equal to zero. Indeed, in this case if &(x, y) = O then d(z, x) <
d(z, 1) + 8(y,x) + |y] = d(y,2) for every z e R, and therefore x > y. Likewise we
prove that y > x and therefore x = y. A canonical space in a metric space is not a
p-m-space, in general. For example, if R is the class of the open and closed balls of a
Euclidean metric space, y is an open ball and x its closure, then AS does not hold. By
confining ourselves to the class of open balls, we obtain a p-m-space.

The following proposition shows some properties of the p-p-m-spaces.

PROPOSITION L. In any p-p-m-space the following hold:

) a(x, y) = &(y,x),
() x2y=d(px)=0,
(4} x and y overlap = 8{x,y) = 0,

(3) |zl = \{d(x,y) — 8(x,2) — &(z, ¥} | x, ye R} = \/{8(x, V)| x € zand y < z},
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(6) & a p-m-space == gvery &-point is an atom.

ProoF. By setting y = x in A2 we obtain that d(x, z) = 4(z, x) and therefore that
d(x,z) = 8(z, x). To prove (3), set z = y in A2; then by A3 we have 4(y, x) < &(y, y)
= Q. To prove {4), assume that z < x and z < y; then 3(x, ¥) < 8(x,2z) < 0. (5} is an
immediate consequence of A4, To prove (6), observe that if y is an #-point and
x < y, then, for every z € R,

a(z,x) < 0(z,3) + 6{y,x) + |y = 6(y,z2).

Since |x| = [y| = 0, by AS we have x > y. Thus x = y, and therefore y is an atom.
O

§3. Diameter, distance and inclusion relation as derived concepts. In defining the
p-p-m-spaces we have assumed as primitives <, & and | |, but it is also possible to
assume as primitives only two of these notions by defining the remaining one.

In order to show this, we have to give some definitions. Let (R, <) be an ordered
set and | |: R = [0,0] a function; then if x, ye R, we call any finite sequence
b,,....b, of bounded regions such that x overlaps b, b; overlaps b, ,, for i =
l,...,n— 1 and b, overlaps y a path connecting x with y. We define the function
0 ;i R x R~ [0,c0] by

0 if x overlaps y,

? =]
7 910x3) {/\ﬂbll + --- 4 |B,|| by,. .., by s a path from x to y}  otherwise,

The definition of & | was given in [3]. Moreover, for every function é: R x
R — [0, a0} we set

(8) l2[s = \/{8(x, y) — 8(x,2) — 8(z. ¥) [ x, v € R}.

PropPaSITION 2, Let (R, <) be an ordered set and | |1 R —[0,00) a function
satisfying Al; and assume that two regions are always connected by a path. Then
(R, <,8; |,| 1) is a p-p-m-space. If 6: R x R — [0,0) is a function satisfying A2 and
Al then (R, <,8,| |;) is a p-p-m-space.

Proor. Axioms A2 and A3 are immediate consequences of the definition of 4, .
Ta prove A4, assume that z does not averlap x nor y. Then

& (x,2) + 9y ((z,y) + [
= A{Iby] + - + byl |by,- .., b, is a path from x to z}
+ Allbyl + - + bl 45 . By s a path from z to y} + |2
= A{lbyl + -+ 1bl|by,..., b, is a path from
x to yand b; = z for a suitable i }
29 ((x,v).

One proceeds similarly in the case that z overlaps x, y ot both. The rest of the
proposition is obvious. O

PropPoOSITION 3. Let (R, <,8,| |) be a p-p-m-space. Then (R, <,4,| |;) is a p-p-m-
space such that | |; < | |; namely,| |;is the smallest diameter compatible with &. If in
(R, £,8,| |) two regions are always connected by a path, then(R, <,d, |,| |)isa p-p-m-
space such that 8 | = &; namely, 4, | is the largest distance compatible with| |.
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Proor. We limit curselves to proving that d(x, y) < d, [(x, y). Now,if b,...,b,is2
path from x to yp, then by A4 we have

8(x,y) < 8(x,by) + T8(bs by ) + 8B ) + T 1bd = Y 1bd;

hence 8(x, y) < & |(x, y). .
Notice that if # is a p-p-m-space then & # &, | and | | #| |5, in general. This is
due to the very weak connection between é and | | imposed by A4. For example, if
# =R, <,4,] |}is a p-p-m-space, « € [0,1], fe[1,00) and y = 0, then (R, <, a4,
B+ 1+ isap-p-m-space.
The definition of < viadand| |is a bit more complicated. Let R be a set equipped
with two functions &: R x R = [0,00)and | [: R = [0,x]. Then we set

x=y<>|x| =yl and d(y,z) = &(x,2) for every z € R;
(x]={veR|y=x}; R*={[x]|xeR}; 3((x)[y])=0dCxy) [[x]I*=Ix[;
[x] <*{y] <> |x| <|y| and 8(y,z) < &(x, z) for every z € R.

PROPOSITION 4, If R is a set and & R x R —~[(,o0) and | |: R = [0,c0] are two
functions such that

() 8, x) =0, (i) o(x,y) = d(y,x), (i) 3(x,¥) < d(x,2) + Az, y) + ||,

then (R*, <* 8%, [*}is a p-m-space. Consequently, if (R, <,d,| |) is a p-p-m-space,
then B* = (R*, <*,6%,| |*) is a p-m-space such that

(6 x < y=[x] <*[y].

Proor. Obvious. |

The p-m-space #* in Propaosition 4 is called the quotient of #; this extends to
the p-p-m-spaces the well-known notion of quotient of a pseudometric space.

Propositions 2 and 4 show that it is very easy to build up examples of p-p-m-
spaces. For example, if R is a set and f: R x R — [0, 00) is any function, then by
setting d(x, y) = 0if x = yand d(x, y) = (f(x, y) + f(y, x))/2 otherwise, we obtain a
function satisfying (i} and (ii}. Since | |; and & satisfy (iii), by Proposition 4 we obtain
a p-m-space.

§4. The points of a pointless pseudometric space. To define the points in a p-p-m-
space, we utilize a procedure similar to the completion of a metric space via Cauchy
sequences. By a Cauchy sequence of a p-p-m-space % we mean any sequence {p,, > of
nonempty bounded regions such that

a) lim|p,| = 0, and

byVe >03uvh = v Vk2zvd(p,p)<e

Decreasing sequences of nonempty regions with vanishing diameters are
examples of Cauchy sequences. Obviously, it is possible that in a p-p-m-space there
is no Cauchy sequence.

PROPOSITION 5. Assume that the class S(#) of the Cauchy sequences of R is
nonempty, and define d: S(®) x S(#) - [0,00) by

(10} d(<p.>,<q.>) = 1imd(p,.q.) for every {p,) € S(A) and {4, € S(R).
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Then (S(R),d) is a pseudometric space.
Proor. First we have to prove that the sequence {d{p,.q,)) Is convergent, i.e.

(11) Ve >0 3v ¥m = v [3(py, 4} — (P dnll <&
Now, from 8(p,,d,) < 8Dy, Pm) + 3 Prs Gun) + 0(Gmy @) + | Pl + 14l it foliows that

8(Py14) — O(Ps @m) < 3Py, P) + 3(dms G} + [Pl + |-
Since
Ye > 03dv, Ym = v, |p,| < &/4,
¥e > 03v, Y = vy g, < /4,
e > 03vy Y = vy Vv 2 vy 3(p,, Pa) < 8/4,
e >0, Ym = v, Vv 2 v, 84,.4,) < /4,

by setting v’ = max{v,v,,vs,v,} we have that, for every m 2 v, d(p,.q,) —
(P, 4) < & Likewise, since

é(pmﬂ qm] - 5(pvv4v] = (S(pma pu) + 5(‘1‘”%-} + |pu| + |qv|,

an integer v exists such that, for every m > v, 8(p,., 4,) — 3(p,,4,} < & By setting
v = max{¥/,v"}, we obtain ([ 1).

To prove that (S(#),4) is a pseudometric space, we limit ourselves to proving the
triangle inequality. Now, if {p,>, <g,> and {z,) are elements of S(Z), then

A po>,{qy>) = lim&(p,, q,) < lim(3(p,, 2,) + &(24,q) + |2al)
=1limd(p,.z,) + limé(z,,4,) + lim[z,]

= d({ P, (2o} + ALz, {qu))- L

We denote by (M(#),d) the metric space obtained as a quotient of (S(R),d)
modulo the relation = defined by setting {p,> = {(q,> if d{{p,>,{g.>}=0
Moreover each element of M(9) is called a point; as a consequence, a point p is a
class

[<p.>] = {<4.> € S(R)[{gn) = <P},
and d: M(R) x M(2) — [0, 00} is defined by setting, for every p, g € M(Z),

(12) d(p,q) = d({pn).<4q,)) = im &(p,, 4.},

where ¢(p,> € S(#) and {g,) € S(#) represent p and g, respectively. Notice that a
p-p-m-space & and its quotient #* determine the same metric space.

To every #-point r we can associate the point represented by the sequence
constantly equal to r. In a p-m-space different %-points represent different elements
of M(#).

If & is the p-m-space with zero diameters associated to a metric space (M, d}, then
(M{(@),d)} is the completion of (M, d), obviously. If £ is the canonical p-m-space of
the open balls of a Euclidean space E, then (M(),d) coincides with E.

If p € M{®)and r € R, we say that p belongs to r,in brief p £ r, provided that there
is a sequence ¢ p, ) representing p with p, < r for every n & N. Let P(r) denote the set
of points belonging to r.
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Notice that these definitions are different from the analogous ones given in [1]
and [5]. We examine them in §6.
It is also possible to define the distance between a point and a region by

(13) d(p.r) = d(r,p} = limd(p,,r},  pe M(Z),reR,.

This definition does nat depend on the sequence ¢ p, > representing p; moteover,
for every p, g € M(#) and r, s € R,, the following hold:

(14) per=dip,r)=0,

(15) d(p,r) < d(p,q) + d(q,7),
(16) dip,q) < d{p,r) + d(r.q) + [r],
(1n d(r,s) < dir,p) + d(p,s).

PROPOSITION 6. If S(R) is nonempty, then (M(R),d) is a complete metric space and,
for every r € R, P{r) is a closed subset. Moreover, for every r,s € R,

(18) r<s= P(r)c P(s),
and, if P(r) and P(s) are nonempty,

(19) a(r,s) < S(P(r), P(s)},
(20) [P < |rl; < 7.

Proor. To prove the completeness, we first observe that
(21} Vpe M(A)Ve > 03se R |s| < ¢and d{p,s) < &

Moreover, if pe P(r) then s < ¢. Indeed, if p is represented by (p,>, then for
every ¢ > O there exists v such that 3(p,, p,) < £ and |p,| < ¢ for every n = v. Since
d(p,,p) = limd(p,, p,) < &, by setting s = p, we obtain (21).

Now, let {p"> be a Cauchy sequence of ¢clements of M{2), and let s, be a region
such that d(s,,p") < l/rand |s,| < 1/n. Then

O(Sus Spe) < 05, p") + d(p", ™) + d(p™,3,) < I/n+ d(p", p™) + U/m
and (s, > is a Cauchy sequence of 2 representing a point p. Since
dip,p") < d(p,s,) + d(s,,p") + |s,| < d(p,s,) + 1/n+ 1/n,

we have that limd(p, p") = 0.

To prove that P(r) is closed, observe that if in the above proof we assume that
p" € P(r) for every n e N, then s, < r and therefore p € P(r).

{18} is obvious. To prove (19), observe that, for every p € P(r) and g € P(s),

o(r, 8} < d(r, p) + di(p, q) + &(g,s) < d(p,q).
To prove (20), observe that, if p, g € P(r), since &(p,, 1} = d(r.q,} = O, then
d(p, @) < \/&(pa,4.) < \/{3(x,3) — 80x,r) — 3(r,3) | x, ¥} = Irl;. O

§5. Existence of points. Axioms Al-A3 do not assure the existence of pointsina
p-p-m-space. To obtain this, we have to add some new axiom. For example, we can
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assume that every nonempty region contains arbitrarily small nonempty regions:
A6, Ve>0¥xeRyIx e Ry x" < x,|x'| <&

Obviously, A6 is equivalent to saying that every nonempty region r has points, i.e.
P(r) # 5 for every r € R,,. As a consequence, if R, is nonempty, the class P(#£) =
{P(r) = M(#)|r € Ry} of subsets of M(Z) defines a canonical p-p-m-space #’,
the canonical p-p-m-space associated to A.

From A6 it follows also that every atom of (R, <) is an #-point. Then in the p-m-
spaces satisfying A6 the #-points coincide with the atoms.

It is very natural to investigate the relationship between a p-p-m-space and its
associated canonical p-p-m-space.

PROPOSITION 7. Assume that the p-p-m-space & satisfies A6. Then

(22)  8(r,s) < &(P(r), P(3)) < 9y ((r,s) and |P(r)| = V{8, v)ju < v, 0 <r}

Jor every pair of nonempty regions r and s.

PraoF. If r and s overlap, then &, (v, s) = 0, and, since P(r) n P(s) # &, we have
aiso that 8(P(r), P(s)) = 0.If r and sdo not overlap, letr,...,r, be any path from r to
s and let p,,...,P.+; be a sequence of points such that p, € P(r) ~ P(r,), p,s1 €
P(r) ~ P(s),and p,e P(r,_ )~ P(r)fori=2,...,n Then

O(P(r), P(s) < d(py, pur ) < Zd(!?npiﬂ) = Z|rn|
This proves that 8(P(r), P(s) < d, |{r,s). Since (19) holds, the fiest part of (22) is
proved.

Let # < rand v < rand, by A6, let p and g be two points of u and v, respectively.
Then d(u, v} < d(p,q) < |P(r})| and this proves that

V(G v)|u<ro<r} <{PU)
Conversely, let p and g be two points of r; then
d(p.q) = \V(pu, ) <\ {8, 0)[u <r,v <r}

and therefore
[P} <\ {S(u,0)|u<r o<r}

The proof of (22) is thus completed. | 0
PROPOSITFION 8. If & is a p-p-m-space (a p-m-space) satisfying A6, & = d, | and

| =1 ls, then

(23) 3(r,s) = 8(P(r), P(s) and |r|=|P®#)|, r,seR,.

As a conseguence, if in R there is no empty region, the function P:R - R’ is a
hamomorphism (isomorphism) from & onto the canonical space &'
Proor. The first equality in (23) is an immediate consequence of (22). Moreaver,
since Ad holds for canonical distances and diameters,
[P = \/{S(P(u), P(v)) — 3(P(u), P(r)) — 8(P(r), P(v}) |1, v e R}
= \/{8(u,0) — &, ¥) — S(r, v}, v € R} = |r|5 = .

Then (23) follows from (20) of Proposition 6.
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By {23) and (18), P: R - R’ is a homomorphism. If # is a p-m-space and P(x) =
P(y), then from (23) it follows that |x| > |y| and &(z, x) = §{P(z), P(x)) < o(P(2),
P(y)) = 8(z,y). By A5, this proves that x > y. Thus P: R — R’ 15 an isomorphism.

Q

Naotice that also in the case that A1-A6 are satisfied, the map P: R — R’ is not
injective, in general, and it may happen that two different regions have the same
points. For example the canonical space defined by the family [—1/n, 1/n] of
subsets of the real line satisfies Al—A6 but P([ —1/n, 1/n]) = {0}. This leads to a
search for other existential axioms. The following is proposed in {1].

A7 Yy <pd(y,x)=0=yp=<x

In other words, A7 assures that if y is not contained in x, then a subregion y’ of y
exists such that §(y, x) # 0. A7 implies A5. Indeed, assume that d(z, x) < &(y, z) for
every z € R, Then, forevery y’ < y we have 6(y',x) < 8(y,¥') = Gand, by A7,y < x.
From A7 it follows also that a minimum @ exists in R if and only if R = {0}.

PROPOSITION 9. If R satisfres Al-A7, then

r< s P(r) < P(s).

In other words, the map P: R — R’ is an order-isomorphism.

Prook. Assume that P(r) = P(s) and that ris not contained in s. Then by A7 there
exists ¥ < r such that é(r',s) # 0. By A6 P(+') and P(s) are nonempty, and by
(19} 3(P(r), P(s)) = 8(r',s) > 0. Since P(r') < P(r), this contradicts the hypothesis
P(r) = P(s). 1

§6. Two further definitions of point. More restrictive definitions of point are
proposed in [1] and [5]. Namely, in [ 1], we consider the set S, (£) of the decreasing
sequences ¥, > r, > --- of nonempty regions such that lim,|r,| = 0, and only those
elements p of M{9) that can be represented by elements of §,(4) are called points.
We denote the set of those points by M, (%) and we set P {r) = P(r) n M, (#). Notice
that if A6 holds then P,(r} is nonempty for every nonempty region r. If 42 is the
canonical p-m-space of the open balls of a Euclidean space E, then M, (%) = M(£)
= E. But, in general, (M, (2), d}is a proper subspace of (M(#),d). For example, if #
is the p-m-space with zero diameters associated to a metric space (M,d), then
(M, (#),d) coincides with (M, d) while (M(%),d) coincides with the completion of
(M,d). If Ris the set of intervals(a, b} in R with @ > 0 or b < 0, then M(£%) = R while
M;(#) =R — {0}. These two examples show that (M,(#),d) is not complete, in
general, while, as proven in Proposition 6, (M (£), d) is complete.

PROPOSITION 10. Assume A6G. Then (M(R),d) is the completion of (M,(#),d) and,
for every r € R, P(r) is the closure of P((r) in (M(#),d).

PROOF. Let p € M(%) be represented by {r,> and let p, € M,(#) be a point of r,.
Then, since

d(p,p.) < d(p,r,) + dlra, p,) + [r| = d(p,ra) + |1,

we have limd(p, p,) = 0. Thus, every element of M{%) is a limit of a sequence of
elements of M (R); and therefore, by the completeness of (M(Z),d), the space
{M(2), d) is the completion of (M, (%), d). If p € P(r), since the above-defined points
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D, are elements of P(r), p belongs to the closure of P,{r). Since P(r) is closed, this
completes the proof.
Another definition of point is proposed in [5] via the relation « defined by

(24) raere=r<rand (34> 0Ve(d(r,e) + |e| < 4 = e < 7).

In a sense r' <« ¢ means that ¢’ is contained in r but is not internally tangent to r.
The relation <« is transitive, namely

Farandr' <r =1 «r, Forandr «r = «r

Denote by S,(#) the set of strongly decreasing chains of nonempty regions
r, 3 Fy > oo With vanishing diameters, and by M,(4) the set of the elements of
M(Z) that can be represented by elements of 5,(%). If £ is the p-m-space of the
open balls of a Euchdean space E, then M{(#) = M,(#) =M(Z)=E If R=
{(a,b)| b < Qora = 0} then M(R) = M,(#) = Rwhile M,(Z) = R — {0}.1f Ris the
zero diameter p-m-space associated to a metric space (M, d), then M,(#) is the set
of the isolated points of (M, d). This shows that also in the case that A6 and A7 are
satisfied, it is possible that M,(£) is empty.

Namely, in [ 5] one proceeds in a slightly different way by considering in 5,(#) the
equivalence relation =* defined by setting {p,> =* {q,> provided that

(25) Vidjp,zq, and Yidig,=p,.

The points are the equivalence classes p = [{p,>]* modulo =* determined by the
elements {p, > of §,(#). The distance d* is defined as usual via the equahity (12). We
denote by {(M*(#),d*) the metric space defined in this way. The following
proposition shows that this space coincides with (M,{22), d).

PrarpasitioN L. If <p,> and {q,> are elements of S,(R) and {p,> =*q,>, then
(pa> = <g,>. Then the equality h([<p,>1*) = [(p.>] defines a map h: MM) -
M,(R), and this map is an isomorphism between (M*(R), d*) and (M,{(R),d).

PrOOE, We limit ourselves to proving that h is injective. Indeed, assume that
[<p.>] = [{ga>] with {p,), {q.> & S:(). Then, since {(p;,¢;}> s increasing and
liméd(p;,q;) =0, we have that &(p,,q;) = 0, for every i € N, and therefore 8(p;,q;)
= for every i, j e N. Let i be any index and let 4 > 0 be a real number for which
a(piv,€) +]e] <i=e<p,. From lim|g,| = 0 it follows that there is an integer j
such that [g,| < 4and, since d(p;.,4;) + |9,| = |4;| < 4, we have that g; < p;. Thus
we have proven that Vi Jf p, = ¢;; in the same way one proves that Vi 1f ¢, = p,,
and this entails that {p,> =* {g,>. The surjectivity of h is immediate.

As a consequence of Proposition 11, the definition of the equivalence =*
proposed in [$] can be simplified. For example, we can require merely that for every
i € N there exists j ¢ N such that p; overlaps ¢,. Indeed, in this case, lim é(p,,4,) =0
and hence, by the injectivity of k, (p,> =* (zj,,).

Weset pe, r,for p e M,y(#)and r € R, provided that p is represented by a strongly
decreasing sequence p, » p, » ---with p, < r.Inthiscase, from (25)it follows thatf
q, » ¢, » ---is another representative of p, then thereisi e Nsuch thatg, < p; <vr.
This means that an equivalent way of defining e, is to set p e, # iff for every sequence
p; > p; » -+ representative of p there is i € N such that p, < r. We set By(r) =
{pe M,(R)|pe,r}foreveryreR. :
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Noatice that ¢z, is different from the restriction of & to M,(#) and that P,(r) is
different from P(¥) n M,{R), in general. As an example, let
R={©01/m|ne N} {(—1/n,1/n)|neN};

then M(#) = M,(#) = {0}, but P((0, 1)} = {0} and P4((0,1)) = &.
The following praposition examines the connection between P and P,.
PrOPOSITION 12. [f ¥' « ¥, then P(r') < (P{r)°. Moreover,

(26) Po(r) = L{P() n My(R) | ¥ «< r}
and this implies Py(r) S (P(M)? n M,(R). If R satisfies A6 and A7, then
27) Py(r) = (P(1)° n M(2R).

ProoF. Let ' « r and let 1 be as in {24). We will prove that, for every c € P(r'},
the open ball Bic, A/2) with center ¢ and radius A/2 is contained in P{r). Now,
assume that {c,> represents ¢, with ¢, < ¢, and that p = {p,> € B¢, 4/2). Then
there is v € N such that 8(p,,c,) < 4/2, ] < 4/2, for every n > v. Thus d(p,.7') +
[9,] < 8(pasCa} + |pal < 4 and, by (24), p, < r for every n > v. This proves that
pe Pir).

To proave (26), let p be an elerment of Py(r) represented by {p,»> € §,(#) withp, < r.
Letr = p,. Obviously p € P(r')and r' « r, and this proves that P,(r) is contained in
U{P(r) n My(3R)| r' <« #}. Conversely, if pe P(r') n Py(#) with ¥’ « r, then p is
represented both by {p,> € S with p, <+’ for every ne N, and by {p,) € S;(Z#).
Since liméd(p,,p,) =0 and lim|p,] =0, a natural oumber v exists such that
(P, i) < A2 and {p,} < 4/2 for every n = v. Thus d(p,.r’) + [p.f < 0(p., pu) +
{p.| < 4, and therefore p, < r for every # > v. This proves that p € P, (r).

Ta prave (27), assume p € (P(1)}° n Po(#). Then A > 0 exists such that B(p, 1} &
P(n. If pis represented by {p,> € S,(#), then v > 0 exists such that |p,| < A. Since
from g € P{(p,) and (20} it follows that d(p,q) < !P(p,)| <|p,] < 4, we have that
P(p,) € B(p, 4) = P(r). By Proposition 8 this implies p, < r, and therefore p is an
element of Pylr). a

PROPOSITION 13. If M,{(#) is nonempty, then every Py(r) is open and the family
{Py(r)|r € R} is a base for the topology of (M,(#),d).

Proor. To prove that each P,(r) is open, let p € Py(r); then p 1s represented by a
strongly decreasing sequence {p, > such that p, < r. Since p, « p,, a suitable 4 > 0
exists such that 8(p,,e) + |e| < Aimplies e < p,.

We will prove that the ball of M,(#) with center p and radius 4/2 is contained in
Py(r). Now, let ¢ be an element of M, (2} such that d(q, p) < 4/2, and assume that
g is represented by an element (g, ) of S,(#). Let m be a natural number such that
1g,.| < 42 and 8(pp.g,) < A/2. Thus

Py, am) + 1aml < HPrrd) + qm] < 4,

and this proves g, < p, < ¥ and therefore g € Py(r).

To prave that {P,(r}| ¥ € R} is a base, we have to prove that for every open ball
Ble, p) of (M,(2),d) and p € B(c, p), there is r € R such that p e Py(¢) and P(r) =
Ble, p). Now, let {p,> be an element of $,(2) representative of p. Since p — d(p, ¢}
>0 and {im}p,} =0, an index h exists such that [p,| < p — d(p,¢). We have that
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p € Py(p,); mareover, Py(p,) € Ble, p). Indeed from g € Py(p,) it follows that
d(g,¢) < d(g,p) + d(p,c) < |py] + d(p,0) < p —d(p,g) + d(p,o)=p. [

7. Seme examples. In this section we give some examples of p-p-m-spaces. Let X
and Y be two nonempty sets, and denote by F(X, Y the class of partial functions
from X to Y. If fe F(X,Y) we denote by D, the domain of f. Given a finitely
additive measure u: (X} — [0, 1], we set, for every f, ge F(X, ¥),

Sfipy=u({xe X|xeD nDyand f(x) #g(x)}),  |f] = pul{xe X|x¢D})
Moreover, we define an order relation < by
S <g<=D,cDandg(x) = f(x}VxeD,

In asense 8( f, g) is 2 measure of the contrast between f and g,| f| a measure of the
indeterminateness of f,and f < gmeans that f is an extension of g. Notice that two
elements f and g of F(X, ¥)overlap if and only if they admit a common extension, if
and only if there is no x € X such that f(x) # g(x). Moreover, f is an atom if and
onlyifitis totally defined, while | f[ = 0if and anly if f is almost-everywhere defined.
Finally, the empty function is the maximum of F(X, Y).

PROPOSITION 14. Let € be a nonempty class of partial functions. Then (€, <,4.] |)
is a p-p-m-space.

Proor. Al, A2and A3 are obvious. To prove A4, observe that, forevery f, g, k, €%,
the set

{x e D, D f(x) % g(x)}

is contained in
{xeD; n D, | fix) # Wx)} w {xe Dy D|h(x) # g(x)}  {xe X|x¢D,}). O

PROPOSITION 15. Let y be a measure on the denumerable set X such that u({x}) # 0
Jorevery x € X, and assume that there are at least two elementsin Y. If 4 is the class of
the finite partial functions from X into Y, then the space (%, <,8,| |) satisfies A1-A7,
| 1 =1 lsand & =&, |. The same holds if ¥ = F(X,Y).

PROOF. Let x,,x,,... be an enumeration of the elements of X, and set X, =
{Xy,...,%,}. To prove A6, let f € % and ¢ > 0. Since \/pu(X,) = p(X) = 1 and D, is
finite, an integer m exists such that u(X,) = 1 —¢and D, < X,,. Let h be any exten-
sion of f whose domain is X,,; then b < f and |k| = p(— X)) < =

Ta prove A7, assume g # f. Then, in the case D, = D;, an ¢lement a € D, exists
such that g(a) # f(a), and therefore 8(f,g) > u({a}) # 0. If D, is not contained in
Dy letae D, — Dyand ye Y — {g(a)}. Then if h = f © {(a,1)} we have h < fand
d(h.g) = p({a}) # 0.

To prove that & = 9; |, let f, g € € and let y be any element of ¥. We set

h* = {(x, f(x)}|x € D; n Dyand f(x) = g(x)} v {(x,g(x))|x € D, — Dy}
ulfix, f(X)|xeD, — D} o {(x,p)|xe X, — Dy U D}

The partial function h" belongs to % and overlaps both f and g. Consequently,
h"is a path from [ to g and, since {x € X | A" is not defined in x} is contained in
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{xe Dy m D f(x) # g(x)} v (—X,), we have

8 (fig S < p({x € Dy ~ D] f(%) # g(x)}) + (—X,) = 5 f,9) + p(— X,).

Since lim p(— X,) = 0, we obtain &, (f,9} < (f,g), and this proves, by Proposi-
tion 3, that §, | = 4.

Likewise, if /€€, let y, and p, be two different elements of ¥ and set i =
{(,y)xeX, — D} w {(x, f(x)|x e D,}. Then hf € €, h < fand

[fls 2 ok, h3) = \/ulX, — Dy) = p{( (X, ~ D) = u(—Dy) = | f1.

By Proposition 3 this proves that [ f|; = | f1. The case ¥ = F(X, ¥} is obvious. [J

In the case ¥ = {0, 1} the elements of F(X,Y) may be interpreted as partiaily
defined subsets of X Interesting classes of partially defined subsets are furnished by
mathematical logic. Namely, let X be equal to the set of the sentences of a first order
language and let T be a theory, i.e. a consistent set of sentences closed with respect to
the logical deductions. Then we ideatify T with

fr=1{x1|xeT}u{{(x,0fxeT}

where —1x denotes the negation of the formula x. In [3] we prove that, if u({x}) # 0
for every x € X, then the class of the {partial functions associated to the)
axiomatizable theories defines a p-m-space satisfying A1-A7. In this space:

s HT,TY=pu{{xeX|xeT and ixe T or "ixe T and x € T'}) represents
a measure of the contrast between the theories T and 7.

o T} = u({xe X|xe T or xe T})is a measure of the degree of incomplete-
ness of the theory T.

» The relation < is the oppaosite of the inclusion relation between theories,

« The Z-points coincide with the axiomatizable complete theories.

+ The points coincide with the complete theories.

« The points of a region are its completions.

« Two theories overlap if and only if they are consistent.

Pointless metric spaces of this type are proposed [3] in connection with Papper’s
verisimilitude problem. Namely, since the truth is represented by a point V, the
verisimilitude of a theory T is defined as a suitable decreasing function of §(T, ¥}
and |T|. A precise definition of convergence to the truth for sequences of theories is
also possible.

The second example of p-p-m-space is related to fuzzy set theary. Let (M,d} be a
metricspace. Then a fuzzy subset of M isany map s: M — [0, 1] (see {4]). Given two
fuzzy subsets s and s', we set s < s’ provided thats(x) < s'(x) for every x € M. A fuzzy
subset 5: M — [0, 1] is crisp if s(x) € {0, 1} for every x e M. We identify the crisp
fuzzy subsets with the subsets of M via the characteristic functions. With respect to
<, the class of the fuzzy subsets of M is a lattice extending the lattice of the subsets of
M. We say that s: M — {0, 1] is nonempty if there is x € M such that s(x) = 1. If
a € [0, 1), the open a-cut O(s, a) of sis the set {x € M| s(x) > «} [4]. Let R be the class
of nonempty fuzzy subsets of M and set, for every s,5" ¢ R,

(28} 5%(s,5') = j 0(0(s,4), O(s", a)de,  |s|* = _[l [O(s, )| da,
3]

Ju]
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where § and | | are defined by (1) and we set §5|O(s,a)f da = co whenever there is
a & (0, 1) such that [O{s, )} = <c.

PROPOSITION 16. The structure # = (R, <,8*,| |*) determined by a class of non-
empty fuzzy subsets is a p-p-m-space. The points of this space are elements of the
metric space (M, d).

Proor. Al, A2 and A3 are immediate. Let s, s' and ¢ be nonempty fuzzy subsets.
Then by integrating both the sides of the inequality

3(0(s, ), O(s",9)) < 8Os, ), O(t, )} + 5(0(t, &), O(s", ) + |02, &)

we obtain A4. The rest of proposition is obvious. O

Recall that a fuzzy number is defined as a nonempty fuzzy subset of the real line
whose cuts are intervals. These numbers generalize the interval numbers via a
suitable extension of the arithmetical operations. Proposition 16 suggests that,
when passing from real numbers to fuzzy (interval) numbers, it seems useful to pass
fram metric spaces to p-p-m-spaces.
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