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Introduction

Since the times of Euclid, the concept of point has been assumed as the main primitive
term for an axiomatic foundation of geometry. Is this choice a necessary one? The
answer is ‘no’, and in this chapter I shall expose some attempts that have been made to
build up geometry by assuming as primitive the notions of region or solid, and thereafter
defining the points in a suitable way.

In pointless geometry, regions are considered as individuals, i.e. in the vocabulary of
logic, first order objects, while points are represented by classes (or sequences), i.e. sec-
ond order objects. Obviously, expressions like ‘pointless geometry’ or ‘geometry without
points’, as used in the literature and in the title of this chapter, should be understood as
contractions of ‘geometry without the point as a primitive concept’. As a matter of fact,
the authors of the papers that will be examined just aim at giving a good definition of
‘point’.

The choice of considering the concept of ‘region’ as primitive makes me exclude the
most famous pointless geometry: the Von Neumann Continuous Geometry, which is
based on the concept of closed subspace. The same reason makes me discard category
theory, although this theory can be viewed as a no-point approach of the whole field of
mathematics.

In Section 1, I shall sketch some historical information about pointless geometry. In
Section 2, I shall examine pointless topology, and in Section 3 connection structure.
Section 4 is devoted to pointless metric spaces and Section 5 to the physical geometry
of H.J. Schmidt.

1. Historical remarks
1.1. The first attempts

The literature on pointless geometry is not too large and each author usually ignores the
previous attempts at the subject.

As soon as 1835, Lobachevsky gives an example of pointless geometry, assuming as
primitive the notions of solid and contact between two solids. Several types of contact,
superficial, linear and pointwise, define the surfaces, lines and points, respectively. Unfor-
tunately, Lobachevsky’s definitions are a little obscure and far from a rigorous treatment.
No subsequent paper on pointless geometries quotes Lobachevsky’s geometry.

Several years later, Whitehead [1919] and [1920] analyses how the objects (e.g., vol-
umes) and the relations (e.g., inclusion of volumes) supplied by nature can be combined
in order to obtain an absiract notion of point. In Nicod [1930] such philosophical anal-
ysis is assumed as a starting point for a new approach to pure geometry. Later on,
Whitehead {1929}, following an idea of De Laguna [1922], introduces the connected-
ness relation between regions to replace the inclusion relation. In Grzegorczyk {1960}
and Clarke {1981] precise axiom system for the connection relation are proposed (see
Section 3).
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In 1927, Tarski, in the framework of Lesniewski’s mereology, sketches a solution to the
problem of a geometry of solids based on the notions of sphere and inclusion between
spheres. The concentricity relation is defined and enables us to define the points as
complete classes of concentric spheres.

.

1.2. More recent proposals

The works of Ehresmann {1957/58], Benabou {1957/58], Papert and Papert [1957/58]
give rise to pointless topology, i.e. an abstract treatment of a class of lattices (the frames)
extending the class whose members are the lattices of open subsets of the topological
spaces. Such lattices are interesting in the frameworks of topology, computability and
intuitionistic logic (see Section 2).

Schmidt [1979] gives a complete treatment of pointless geometry in which, in addition
to regions and inclusion between regions, the translations and rotations are assumed as
primitive concepts (see Section 5). Weihrauch and Schreiber [1981] proposes a suitable
system of axioms for the partial orders with weight and distance. Although such struc-
tures are examined in the framework of abstract computability theory, they turn out to be
a promising starting point for a metrical approach of pointless geometry (see Section 4).

Finally, one may notice that a large number of papers related to time logics can
perhaps be viewed as a chapter on pointless one-dimensional geometry. The periods of
time (the regions) are assumed as primitive together with the inclusion relation and the
temporal order, while the instants (the points) are defined in a suitable way (see, e.g.,
Hamblin {1971]). I do not consider these works in this chapter.

2. Pointless topologies
2.1. Frames

The class 7 of open subsets of a topological space constitutes a complete lattice such
that

T A (Vx,) = V(:t:Axi)

holds for every € T and every family (z;)icy of elements of 7. In literature the com-
plete lattices satisfying such distributive laws are called frames or locals and extensively
examined. In the following, if R = (R, <) is a frame, we call regions the elements of R
and inclusion relation the relation < .

The frames may be organized into a category FR by suitably defining morphisms. The
definition is given in order to obtain a category extending that of topological spaces.
Now, if f is a continuous map from a topological space (X, T) into another (X', T"), it
determines, via f~!, a map from 77 to T preserving infinite joins and finite meets. This
suggests calling frame-morphism from a frame R into a frame R’', any lattice morphism
from R’ into R which preserves infinite joins.
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2.2. Points of a frame

In the famous Birkhoff—Stone representation theorem for distributive lattices (see John-
stone [1982]), the points are identified with the prime filters. This is unsatisfactory from
a geometrical point of view, because the built-up spaces always are totally disconnected,
compact spaces, so that the usual geometrical spaces are excluded. As a matter of fact, by
identifying the points with the prime filters, we obtain too many points, and in pointless
geometry, a good definition of ‘point’ leads to consider some other types of filters.

In the case of frames, we define a point as any completely prime filter, i.e. a filter P
such that, for every family (z;)ic;, \/z: € P implies z; € P for a suitable z;. The
points of a frame R are just the elements of R in the category FR. We denote by IP the
set of points and say that a point belongs to a region r, briefly P € r, provided r € P.

The following proposition shows that it is possible to identify P with the set of the
A-irreducible elements of R. Remember that an element u of a distributive lattice L is
A-irreducible provided that, for every z,y € L, u 2> z A y implies that either u >  or
u 2> y. In the lattice of the open subsets of a Euclidean space E, u is A-irreducible if
and only if it is the complement of a point of E.

PROPOSITION 1. A class P of elements of R is a point if and only if there is a \-irreducible
region up, such that P is the complement of the ideal generated by u.p, i.e.

P={zeR zgup}.
The map m: R — P(IP) defined by putting
n(r)y={PeP: Per}={PecP:reP}

preserves infinite joins and finite meets and 7(R) is a topology on P. If there are enough
points in R, then 7 is a lattice isomorphism between R and the topology 7(R).

PROPOSITION 2. For every frame R, the following propositions are equivalent.
(i) R is spatial, i.e. it is isomorphic to the lattice structure of a suitable topology;

(ii) every element x of R is a meet of A-irreducible elements.

Proposition 1 shows that the choice of open sets as primitive terms is somewhat
unsatisfactory from the point of view of pointless geometry. Indeed, in a sense, the
points are present directly in a spatial lattice under the form of (complements of) A-
irreducible elements, while it should be desirable to define them by an abstraction process
as suggested by Whitehead. This leads to consider as ‘privileged model’ of the concept
of region some particular type of open sets; e.g., regular open sets (a subset z is called
regular open, or regular if z is the interior of its own closure).
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3. Connection structure
3.1. Whitehead's axioms

In the following we call connection structure any pair (R, C) where R is a set and C a
binary relation on R. The elements of R are called regions, C is a connection relation
and if zC', then we say that z is connected with y. For any z € R, the set of all z’s such
that 2Cz is denoted by C(z). Several binary relations can be defined in a connection
structure. Namely, by setting

z<y © Clx) CCy)

we obtain a preorder relation < that we call inclusion. The overlapping relation () is
defined by setting

z(Qy & zexists such that z € = and z < y.
Finally, the nontangential inclusion < is defined by
<y & C) C O

where, for any z € R, ()(=2) is defined as C(z).

Connection structures were first considered in De Laguna [1922] and successively in
Whitehead [1929] where a very large sequence of properties that the connection structures
had to verify is exposed (in Chapter 2, Whitehead exposed 31 assumptions!). The aim
was to analyze the abstraction process leading to the notions of point, line and surface.
No attempt was made by Whitehead to frame his analysis into a mathematical theory.
In particular, no attempt was made to reduce his system of assumptions and definitions
to a logical minimum. Also, it is not clear whether such a system is able to define the
Euclidean geometry or not. The following set of axioms is equivalent to the first 12
assumptions (see Gerla and Tortora [1992]).

(A1) C is symmetric.

(A2) There is no maximum for C .

(A3) For every = and y there exists z connected with both z and y.
(A4) C is reflexive.

(AS) C@)=Cy) =>z=y.

(A6) Any region z contains two regions z and y that are not connected.

The points are defined by the basic notion of abstractive set. An abstractive set is a
set a of regions such that

— «a is totally ordered by the nontangential inclusion,

— there is no region included in every element of o.
Intuitively, an abstractive set can ‘converge’ either to a point, a line or an area. We
say that an abstractive set a covers an abstractive set 3 if every region in o contains a
region in 3. A corresponding equivalence relation is defined by setting o =  provided
that a covers 3 and 3 covers «. Any complete class of equivalence modulo = is called
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a geometrical element. The covering relation induces an order relation in the class of
geometrical elements: any minimal geometrical element is called a point.

Whitehead, in order to define the concept of straight segment, assumed that a class
of regions exists whose clements are called ovals. The idea was that the ovals are the
convex regions of the Euclidean space. Obviously, suitable properties were assumed for
the class of ovals. The straight segment between two points P and @ is defined as
the minimal geometrical element defined by an abstractive set covering P and ) whose
elements are ovals.

3.2. Grzegorczyk’s axioms

Grzegorczyk [1960] added to the primitive <, the relation of being separated. In order
to emphasize the similarity with Whitehead’s ideas, I assume as primitive the negation
of this relation, namely the relation C' of being connected.

Then, Grzegorczyk’s axioms become:

(Go) (R, <) is a mereological field, where a mereological field is the structure obtained
by deleting the zero element in a complete Boolean algebra.

(Gy) C is reflexive.

(Gy) C is symmetric.

(Gs) If z < y then C(z) is included in C(y).

We say that a set p of regions is representative of a point if:

(i) p is without minimum and totally ordered with respect to <;

(i1) given any two regions u and v, v () = and v O z for every x € p implies uCv.

We denote by S the class of representatives of points and we call a point the filter P
generated by an element p of S. Notice that two elements p and p' of S define the same
point provided that, for every = € p there exists ¥ € p’ such that = > y, and for every
y € p there exists a T € p such that y > . \”

Moreover, we say that a point P belongs (is adherent) to a region r provided that r
is an element of P (r overlaps with every element of P). We denote by P the set of
points and by P(r) the set of points belonging to r. The following two axioms deal with
the existence of points.

(G4) Every region has at least one point.
(Gs) If zCl, then there is a point P such that P is adherent to both z and y.

Grzegorczyk proves the following two basic theorems.

THEOREM 1. Let T be a Hausdorff topology, R the class of nonempty regular elements
of T and put, for every z,y € R, zCy if TN # . Then (R, C, C) satisfies (Go)~(G3).
Moreover, if every point is the intersection of a decreasing (with respect to <) family of
open sets, then (R, C, C) also satisfies (G4)~(Gs).

THEOREM 2. Assume that (R, C, C) satisfies (Go)—(Gs), and let T be the topology on P
generated by {n(z): ¢ € R}, then:
(i) {w(z): = € R} is the class of the nonempty regular elements of T
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(i) z <y & w(x) C w(y);

(i) z < y & () C 7(y);

(iv) zCy & w(@) N7(Y) # 2;

(v) P is adherent to z & P € 7(z).

Let 7 be a topology and (R, <,C) the connection structure associated with it by
Theorem 1. It is an open question as to whether the topological space obtained in
Theorem 2 coincides with T (at least for the most usual topological spaces).

3.3. The system of B.L. Clarke

A more direct reference to Whitehead [1929] can be found in Clarke {1981, 1985].
Clarke considers structures of type (R, C) for which the following axioms hold.

(Ay) C is reflexive.
(Ay) C is symmetric.
(A3) If C(z) = C(y) then z = y.
(A4) If X C R and X is nonempty, then X admits fusion, where z is the fusion of X
provided that C(z) = | J(C(2): z € X).

A point is defined as a nonempty set P of regions such that:

(i) if z € P and y € P then zCly;

(i) fzeP,yePandzQy, thenz Ay € P;

(i) if re Pand y 2 x theny € P;

(iv)ifzrvyePthenz e Poryec P.

As usual, we say that a point P belongs to a region x, and write P € z, provided that
z € P. Clarke suggests the following existence axioms:
(As) if zC'y then there exists a point P such that Pczand Pc y

which is the reciprocal of (i).

The following proposition (see Biacino and Gerla {1991]) shows that, in a sense,
the system (A;)—(As) characterizes the mereological fields, i.e. the complete Boolean
algebras.

THEOREM 3. If (R, C) satisfies (A1)~(As), then (R, <) is a mereological field, and C
is the overlapping relation. Conversely, if (R, <) is a mereological field and C is the
overlapping relation, then (R, C) satisfies (A1)~(As).

The fact that the connection relation coincides with the overlapping relation seems far
from Whitehead’s purposes, but it is in accordance with Leonard and Goodman [1940].
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4. The metrical approach
4.1. Pointless metrical spaces

In the previous sections we were still at a topological level, to justify the word ‘geometry’
we have to consider richer structures. In this section this is achieved by considering met-
rical concepts. We call a pointless pseudometric space, briefly ppm-space, any structure
R = (R, <,d,||) where (R, <) is a partial order and ||: R — [0,00], §: RX R — [0, 00)
are functions satisfying, for every z, y, z € R, the following axioms.

(A) If z > y then |z| 2 |y|-

(A)) If z > y then 6(y, 2) > 8(z, ).
(A3) 8(z, ) = 0.

(A4) 8(z, ) < 8(z, 2) + 8(2, y) + |2].

A similar set of axioms was first defined by Weihrauch and Schreiber [1981] in the
framework of computability theory (see also Pultr {1984a,b,c, 1989]). We call the number
8(z, y) the distance between z and y, and |z| the diameter of z, and we say that z is
bounded if |z| is finite. If there exists in (R, <) a minimum region, say O, we call O the
empty region. Notice that, as with the pseudometric spaces, every (nonempty) subset of
a ppm-space defines a ppm-space. From (A;)—~(Ay) it follows that &(z, y) = &(y, z) and
that if = and y overlap, then &(z,y) = 0.

If R is equal to a class of nonempty subsets of a pseudometric space (M, d), taking <
as the inclusion relation and § and || as the usual distance and diameter functions defined
by

§(X,Y)=inf{d(z,y): z€ X, ye Y}
and
|X| = sup{d(z,y): z € X, ye X},

we then obtain a ppm-space. We call canonical any space obtained by these means.
We call pointless metric space, briefly pm-space, any ppm-space satisfying

(As) if |z]| > |y| and 6(z, x) < 8(y, 2) for every z € R, then z > .

Notice that ppm-spaces (pm-spaces) generalize pseudometric (metric) spaces; the pseu-
dometric (metric) spaces being the ppm-spaces (pm-spaces) in which every region is an
atom whose diameter is zero.

4.2. Definition of diameters and distances
Let (R, <) be an ordered set and |: R — [0,00] be a function. For z,y € R, a path

from z to y is any finite sequence by,.. ., b,, of nonempty bounded regions such that
b;y1 overlaps b; for each ¢ = 1 to n — 1, x overlaps by and y overlaps b,. We say that
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(R, <, ||) is connected if for every pair of nonempty elements of R there is a path from z
to y. We define the function §;: R x R — [0,00] by 6y(z,y) = 0if 2Oy, and

6y (x,y) =inf {|b1] + --- + [bu|: b1 ...by is a path from z to y}

otherwise. This definition was given in Weihrauch and Schreiber [1981]. Moreover, for
every function 6: R x R — [0, 00) we put:

|215 = sup {8(z,y) — 6(x, z) — 6(2,9): =,y € R}.

PROPOSITION 1. Let (R, <) be an ordered set together with a function ||: R — [0, 00)
satisfying (A1) and assume that (R, <, ||) is connected. Then (R,<,6y,|)) is a ppm-
space. If 6: R x R — [0, 00) is a function satisfying (Az) and (A3), then (R, <, 6, ||s) is
a ppm-space.

PROPOSITION 2. If (R, <, 6, ||) is a ppm-space, then (R, <, 6, ||5) is a ppm-space such that
lls < |, that is, ||s is the smallest diameter compatible with 6. If (R, <, ||) is connected,
then (R, <,8y,)l) is a ppm-space such that & > 6, that is, &) is the largest distance
compatible with ||.

Notice that if R is a ppm-space, then, in the general case, § and § are not the same,
neither are J| and Jfs.

4.3. The points

In Weihrauch and Schreiber {1981], points are defined as in Section 3.2, except that <
is defined by stating that z < y if there exists a positive A such that §(z, 2) + |2] < A =
z < y. In Gerla [1990], 1 define the points by a procedure similar to the completion of a
metric space using Cauchy sequences. We call a Cauchy sequence every sequence (p,)
of bounded regions such that

(i) lim|p,| = 0 and (jii) Ve > 0 3v: 6(ph,pk) <e YVh2v, Vk2> .

Decreasing sequences with vanishing diameters are examples of Cauchy sequences.
There is no need to have any Cauchy sequence in a ppm-space.

PROPOSITION 3. Assuming that the class S of Cauchy sequences of R is nonempty and
defining d: S x S — {0,00) by d((pn),{gn)) = lim 8(pn, gn) for every (p,) € S and
(gn) € S, (S,d) is a pseudometric space.

We denote by (P, d) the metric space obtained as a quotient of (S, d) by the relation
= defined by (pn) = (gn) if d((pn), {gn)) = 0. Moreover, we call a point every element
of P. As a consequence, a point P is a class

[(Pn)] = {(qrx} €S <qn) = (Pﬂ)}
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and d: P x P — [0, 00) is defined by putting, for every P,(Q in P:
dP,Q)= d((pn), (qn)) = lim 6(pn, gn)

where (p,) € S and (g) € S represent P and @, respectively.

If the pm-space R is a metric space, then the associated metric space (P, d) obviously
is its completion. If R is the canonical pm-space of open balis of a Euclidean space F,
then (P, d) coincides with E.

If Pe P and r € R, we say that P belongs to r, briefly P € r, provided that there
is a sequence (p,) representing P with p,, < r for every n € N. We denote by n(r) the
set of all points belonging to r.

Axioms (A1)}+As) do not guarantee the existence of points in a ppm-space. In order
to get this, we have to add some new axiom. For example, we may assume that every
region contains arbitrarily small regions.

(As) Ve>0 VreR Ir' <7 such that [r'| <e.

Obviously, (Ag) is equivalent to saying that every region has points. In this case, the
class R' = w(R) = {n(r): r € R} of subsets of P defines a canonical ppm-space R’,
the canonical ppm-space associated with R.

THEOREM 4. Assume that R is a ppm-space satisfying (A¢). Then:
(i) (P,d) is a complete metric space;
(ii) for every r € R, w(r) is a closed subset;
(iil) if r < s, then w(r) C w(s);
(iv) 8(r,s) < &(m(r), m(s)) < 8y(r,s) and |n(r)| = sup{S(u,v): u <, v <}
Moreover, if & = & and || = ||5, then the function : R — R’ is an isomorphism
between R and its associated canonical space R’.

We conclude this section by noting that, since many classical geometries may be
defined in terms of axioms about metric spaces, pointless metric geometry leads to
complete axiomatizations of these geometries without the primitive notion of ‘point’.

5. Physical geometry
5.1. The first axioms

Schmidt {1979] proposed perhaps the most complete treatment of Euclidean pointless
geometry. The term ‘physical geometry’ means that this geometry is understood as a
theory of the physical space. As a consequence, axioms are thought as empirical laws
governing the behaviour of rigid bodies, rather than as a mathematical device to produce
the desired theorems. The goal is to construct a set P of points, a topology N'*? on
PP and a group T of transformations of P such that (P, N*?,T) is isomorphic to the
Euclidean space E equipped with the usual topology and the group generated by the
translations and the rotations.
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The following are the first two axioms of physical geometry:

®R)) (R,X) is a weakly distributive lattice (ie. r Az = 0 and v A z = 0 implies
(r V ') A z = 0) with an empty region 0, and R # {0}.
(Ry) T is a group of antomorphisms of (R, ).

Let r and 7’ be two regions. If » contains each overlapping displacement of 7/, i.e. if
71! < r for every 7 € T such that v’ A 7/ # 0, then we say that ' is a kernel of r.

(R3) Every nonempty region has a kernel.

As usual, the group T determines an equivalence relation in R; we call shapes the
related equivalence classes.

(R4) Each region can be covered by finitely many regions of any given shape (with
possible overlappings).

5.2. Points and Cauchy filters

To define the points, Schmidt uses a construction similar to the completion of a uniform
space by the use of minimal Cauchy filters. The points are defined as suitable filters of
(R, <) as is usnal in lattice theory. Now, it is very natural to require that a point may be
represented by regions as small as we wish and therefore to only consider filters F' such
that, for every nonempty region r, there exists s € F such that s < 7r for a suitable
7 € T. Since F is a filter, this is equivalent to require that 7r € F. We thus have the
following definition:

DEFINITION 1. A Cauchy filter (briefly, C-filter) is any filter of R containing regions of
every shape.

Now, the C-filters are not suitable candidates for a definition of ‘point’. In fact, it
is possible that, in a sense, two different C-filters F' and F’ be infinitely close, i.e. for
every r # 0 there is 7 € T such that 77 € F and 7r € F'. A similar situation arises
when we complete a metric space: it is possible that two different Cauchy sequences
represent the same point. This leads us to identify two infinitely close filters F' and F/
and to call ‘point’ any complete equivalence class of the relation ‘is infinitely close to’.
Equivalently, it is possible to identify the points with suitable filters representative of
such classes; such filters are the minimal C-filters. Indeed, two minimal, infinitely close
C-filters coincide, and one may prove that every C-filter contains an infinitely close
minimal filter. Thus we get the following definition.

DEFINITION 2. A point P of (R,<,T) is any C-filter, minimal in the class of the
C-filters.

We denote by P the set of points, and put n(r) = {P € P: r € P}.
The following proposition shows that n: R — P(IP) is a lattice representation in a
weak sense.
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PROPOSITION 1. For every r,s € R:
() if r < s then w(r) < w(s);
(i) 7(r)=0ifand only if r =0,

(iit) w(r A s) = w(r)N=w(s);
@(iv) w(r Vv s) 2 w(r) U n(s).

Notice that, since a C-filter is not always prime, in general in (iv) the equality does
not hold. In other words, it is possible for P to be a point of the union r V s of two
regions r and s while being neither a point of r nor a point of s.

5.3. Topological and metric structures

The next step is to define a suitable topology on P. Schmidt proceeds as follows: re-
member that a uniform structure, or uniformity, on a set X is a filter U of X x X such
that:

(Uy) every element of U contains the diagonal of X X X;
Unif VeUthen V! €U,
(Us) foreachV € U thereexistsa W € U suchthat Wo W C V.

Each element V' of U is then called an entourage. If z,y € X and (z,y) € V, we
say that z and y are V-close. A fundamental system of entourages for U is any set B
of entourages such that every entourage contains an element of B. Every uniformity
induces a topology, in which the filter of neighbourhoods of a point z is defined by the
sets Viz)={y €z (z, ) eV} with VeU.

Schmidt defines an uniformity on P with a fundamental system of entourages

N = (N') reR’

where
N, = {(P, Q) e P xP: P,Q € 7r for a suitable 7 ¢ T};

N™P is defined as the topology induced by this uniformity. One may prove that the
elements of w(R) are open and relatively compact with respect to this topology.

On account of the very rich structure of a physical space, it is also possible to define a
metric in PP by utilizing chains of regions. A chain of shape [v] is a sequence sy,..., S,
of regions of the same shape [v] such that each s; overlaps s;+;. If P is a point of s;
and @ a point of s,,, we say that sy,..., S, 1S a chain between P and (). Given a shape
[v], we denote by A(P, @, v) the minimal length of the chains of shape [v] between P
and @, if such exists. If we choose as unity of length a pair of points, say « and ', and
set 8(P, Q,v) = MNP, Q,v)/ M(u, ¢, v), then the distance d(P, Q) is defined by

d(P, Q) = lim §(P, Q.1).
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where this equality means that for any € > 0 there exists a 7 # 0 such that for all v < r
we have |6(P,Q,v) — d(P, Q)| < e.

Obviously the above definition of distance is meaningful only if, given any shape [v],
the following two statements hold:

— for every pair of points p and g, there exists a chain of shape [v] between p and ¢;

— for every pair of points p and g, the above mentioned limit exists.

This forces us to retain two additional axioms. The first one specifies that every
transport can be made of arbitrarily small transport, and so enables us to prove that two
points always are connected by a suitable chain:

(Rs) For every o € T and every si,...,$, € R\ {0}, there exist 7i,..., 7, € T such
that s;, 715;, T28i, - - - » TmSi> 0S; i a chain of shape [s;] fori =1 to n.

The formulation of axiom (Rs) requires a previous definition of the group T of con-
gruent mappings of P. Now, every element 7 of T induces a map

7: P—> P defined by 7T(P)={rz: z€ P}.

The map ~ is a homomorphism from T into the permutation group on P. Unfortunately,
the group T’ = {7: 7 € T'} is not an adequate candidate to represent the whole congruence
group of P. Indeed, T operates only almost transitively, and not transitively, in general.
This means that, for every point P, the set {TP: 7 € T} is dense in P but different
from P, in general. Moreover, T may be incomplete. Let us define the topology ¢ on T',
whose open subbase is constituted by the sets

Try={reT: mrATr#£0}, 1#0,

and their images by translations. T is a topological group with respect to £, and ¢
determines a topology £ on T by the way of the homomorphism ~. One may prove that £
coincides with the topology of compact convergence c; however, T' is not complete with
respect to this very natural topology. _

Consequently, Schmidt builds up a completion T of T. Let us define by c* and c® the
left and right uniformities determined by c, and set ¢* = ¢* V c?. Then the group T is
defined as the c*-completion of T'.

It is possible to give the following further axiom ensuring the existence of
lim,_¢ (P, @,v). Remember that, given two points P and Q, the orbit JpQ is the
subset {7Q: 7€ T, TP = P}.

(Rg) There exist two points P, Q@ € P such that the orbit JpQ dissects the space P, i.e.
P\ JpQ is not connected.

Axioms (R;)—(Re) enable us to prove that the pair (P, d) is a complete, locally compact
metric space and that, if another unity of length is chosen, the corresponding metric
coincides with d, up to a constant factor.

5.4. The basic theorems of physical geometry

By (R;)—-(Rg) we are able to prove the following basic theorem.



Pointless geometries 1029

THEOREM 2. (P, N' '°P) is a connected, locally compact, uniform Hausdorff space. More-
over, T is a complete group of uniform homeomorphisms acting transitively on P and
at least one of its orbits dissects the space (P, N'P).

In accordance with the results of Freudenthal [1955/56], such properties guarantee that
(P, N*?, T) belongs to a very small class of possible geometries. Euclidean geometry
could be obtained by adding two axioms asserting that the curvature vanishes and that
the space has dimension 3.

We first have to define the dimension of a physical space. Given a nonempty region r
(the radius), we say that a set V' of regions is r-approximately overlapping if there is a
nonempty region c (the centre) such that every element v of V overlaps with a suitable 7r
containing c¢. The dimension of R is the smallest number /V such that each region can
be covered by a finite number of arbitrarily small regions such that at most IV + 1 are
r-approximately overlapping. The following is a precise definition.

DEFINITION 3. The number dim R is the smallest number N such that, given two
nonempty regions s and v, a covering vy,...,v, of s and a nonempty region r exist
such that:

(i) for every i, v; £ 7v for a suitable 7 € T';

(ii) at most N + 1 elements of v, ..., v, are r-approximately overlapping.

(R7) dimR = 3.
The vanishing of the curvature is guaranteed by the following.

(Rg) There exists a neighbourhood U € N'™P such that if u,v,z,y,z are points of U
then d(z, u) = d(z, u), d(zx, v) = d(y,v), d(z, 2) = 2d(u, z) and d(z, y) = 2d(v, y) imply
d(z,y) = 2d(u,v).

Axioms (R;)—(Rg) enable us to prove the main theorem of Schmidt [1979].

THEOREM 3 (Schmidt [1979]). The structure (I°, N**®,T)) is isomorphic to the Euclidean
structure (E,T,Is), where E is the Euclidean three-dimensional space, T its natural
topology and Is the group generated by the translations and rotations of E.
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