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Abstract. We define the notion of “potential existence” by starting from the fact that

in multi-valued logic the existential quantifier is interpreted by the least upper bound

operator. Besides, we try to define in a general way how to pass from potential into actual

existence.
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1. Introduction

Let α(x) denote a vague property such as “big”, “high”, “old” in a domain
D and assume that the extension of α(x) is modelized by a fuzzy subset r :
D → [0, 1] of D. Then, since in multi-valued logic the existential quantifier
is interpreted by the least upper bound operator, it is possible that ∃xα(x)
is true at degree 1 and at the same time that no element d in D exists
which satisfies α(x) at degree 1. This occurs when a sequence d1, d2, . . . of
elements in D exists such that Sup{r(dn) : n ∈ N} = 1 in spite of the fact
that r(d) �= 1 for any d ∈ D. In other words, in first order multi-valued
logic it is possible that an existential formula ∃xα(x) is true but that there
is no witness of the existence claimed by this formula. Obviously, we can
consider this a pathological behavior of first order multi-valued logic since the
meaning we have to assign to such a kind of existence is not clear. Instead,
in this note we try to exploit such a pathology in order to define a notion of
“potential existence”. In fact, in the case ∃xα(x) is true but no object exists
satisfying α(x) we can claim that potentially there is an element satisfying
α(x) but that there is no actual element satisfying α(x). This interpretation
suggests the following question:

Is it possible to transform a fuzzy model I into an “equivalent” fuzzy
model I∗ in such a way that any formula like ∃xα(x) is true in I∗ if and
only if α(x) is true for a suitable element?
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In other words
Is it possible to transform a fuzzy model I into an “equivalent” fuzzy

model I ∗ in which any potential existence is an actual existence?
A positive answer to this question should give a method to modelize the

passage from potential existence into actual existence. In some previous pa-
pers we explore this idea in the particular frameworks of pointless geometry
(see [8], [9] and [11]) and set theory (see [7]).

Note that this is only an exploratory paper and that all the results are
either a matter of routine or early established (as an example, see in [4]).
Indeed, its aim is simply to put some questions and to suggest some future
researches. Also, I am aware that the expressions “actual ” and “potential”
have a long tradition in philosophy and, in general, they have a meaning
which is rather far from the one considered in this paper. As an example in
the paper the potentiality is not intended as the capacity that a thing has
to be in a different and more complete state. As a matter of fact in this
paper the expressions “actual existence” and “potential existence” are only
a suggestive way to denote mathematical properties of multi-valued logic.

2. Preliminaries

In this section we recall the main definitions in multi-valued first order logic.
While we refer constantly to the book of Chang and Keisler, we will utilize
the more expressive terminology of fuzzy logic. A first order multi-valued
logic L is defined by a set h1, ..., ht of logical connectives with the related
arity, and by the quantifier ∃. We assume that each hi is interpreted by
an operator hi : [0, 1]n → [0, 1] and that, as usual, ∃ is interpreted by the
Sup operator in the power set P ([0, 1]). We say that a multi-valued logic is
continuous provided that all the functions hi are continuous. A first order
language L is defined by a set C of constants, a set Fun of function names
and a set Rel of relation names with the related arity function ar : Fun∪Rel
→ N . The set F of formulas is defined as usual and we assume that in F
there are also the constants 0 and 1 to denote false and true, respectively.
A multi-valued interpretation or fuzzy model of L is a pair (D, I) where D
is a nonempty set, we call the domain, and I is a map that associates:

- any constant c ∈ C with an element I(c) ∈ D;
- any function name g ∈Fun such that ar(g) = n with an n−ary function
I(g) : Dn → D;
- any relation name R such that ar(R) = n with an n-ary fuzzy relation
I(R) : Dn → [0, 1].
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The interpretation of a term t whose variables are among x1, ..., xn as a
function I(t) : Dn → D is defined as in classical logic. Let α(x1, ..., xn) be
a formula whose variables are among x1, ..., xn and let d1, ..., dn be elements
in D. Then we define the value I(α, d1, ..., dn) by recursion by setting:

I(0, d1, ..., dn) = 0
I(1, d1, ..., dn) = 1
I(R(t1, ..., tm), d1, ..., dn) = I(R)(I(t1)(d1, ..., dn), ..., I(tm)(d1, ..., dn))
I(h(α1, ..., αt), d1, ..., dn) = h(I(α1, d1, ..., dn), ..., I(αt, d1, ..., dn))
I(∃xjα, d1, ..., dn) = Sup{I(α), d1, ..., dj−1, d, dj+1, ..., dn) : d ∈ D}.

If xi is not free in α(x1, ..., xn), then I(α, d1, ..., dn) does not depend on
di. Accordingly, if α is a sentence, we write I(α) instead of I(α, d1, ..., dn).
Given two interpretations (D, I) and (D′, I ′), a homomorphism is a map
f : D → D′ such that

- f(I(c)) = I ′(c)
- f(I(g)(d1, . . ., dn)) = I ′(g)(f(d1), . . ., f(dn))
- I(R)(d1, ..., dn) ≤ I ′(R)(f(d1), ..., f(dn)).

A homomorphism f is a full provided that

- I(R)(d1, ..., dn) = I ′(R)(f(d1), ..., f(dn)).

An isomorphism is a one-one homomorphism whose inverse is a homomor-
phism or, equivalently, a full one-one homomorphism. We say that (D′, I ′)
is an elementary extension of (D, I), if an injective map f : D → D′ exists
such that, for any formula α and d1, ..., dn in D

I(α, d1, ..., dn) = I ′(α, f(d1), ..., f(dn)).

A congruence in (D, I) is an equivalence relation ≡ in D such that

d1 ≡ d′1, ..., dn ≡ d′n ⇒ I(R)(d1, ..., dn) = I(R)(d′1, ..., d′n).
d1 ≡ d′1, ..., dn ≡ d′n ⇒ I(g)(d1, ..., dn) ≡ I(g)(d′1, ..., d′n).

for any relation symbol R and any operation symbol g. The quotient of
(D, I) modulo ≡ is the fuzzy model (D∗, I∗) defined by setting

D∗ = D/ ≡
I∗(c) = [I(c)]
I∗(g)([d1], ..., [dn]) = [I(g)(d1, ..., dn)]
I∗(R)([d1], ..., [dn]) = I(R)(d1, ..., dn),

where, for every x ∈ D, [x] = {x′ ∈ D : x′ ≡ x} and D/ ≡= {[x] : x ∈ D}.
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In this paper we refer only to first order Lukasievicz logic whose con-
nectives, ∧, &, →, ¬ are interpreted by the minimum and the functions
x � y = Max{x + y − 1, 0}, x → y = Sup{z ∈ [0, 1] : x � z ≤ y} and 1 − x,
respectively.

3. Actual and potential existence: the example of wide set
theory

The following definitions play an important role in this paper.

Definition 3.1. Let α(x1, ..., xn) be a formula whose only free variable
is xj and let (D, I) be a fuzzy model. Then we say that the existential
sentence ∃xjα(xj) is actually true if an element d ∈ D exists such that
I(α, d1, ..., dj−1, d, dj+1, ..., dn) = 1. We say that ∃xjα(xj) is only potentially
true if it is not actually true and I(∃xjα(xj)) = 1. We call ground a fuzzy
model (D, I) in which there is no formula which is only potentially true.

We say also that there is an “actual existence” (“potential existence”) of an
object in the case where an existential formula is actually true (potentially
true, respectively). Trivially any fuzzy model in which I assumes its values
in a finite subalgebra of [0,1] is ground. In particular, all crisp models are
ground. Besides, any fuzzy model whose domain is finite is ground.

In order to give an example of a multi-valued model which is not ground,
let denote the usual first order language for set theory by L . Then L contains
the relation symbols =, ∈, ⊆, the constant ∅ and the symbols {.}, ∪, to
denote the singleton and the union operations. Let Le be the language
obtained by adding to L the relation name EQ to denote a graded equipotence
relation. The intended interpretation is that the objects we speak about are
finite sets and that I(EQ)(x, y) is the degree of equipotence between x and
y. Besides, if we denote the formula EQ(x, y) ↔ 1 by x ≡ y, we interpret
≡ as the usual equipotence relation. Finally, in accordance with the fact
that a set x is infinite if and only if it is equipotent with x∪ {x}, we denote
by INF (x) the formula EQ(x, x ∪ {x}). We consider a theory T in such a
language which contains suitable formulas expressing the main properties of
the class of finite sets and the formulas:

A1 EQ(x, x) (reflexivity)

A2 EQ(x, y) → EQ(y, x) (symmetry)

A3 EQ(x, z) ∧ EQ(z, y) → EQ(x, y) (transitivity)

A4 INF (x) ∧ (x ⊆ y) → INF (y) (monotonicity)
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A5 ¬INF (∅) (∅ is not infinite)
A6 (x ⊆ y ∧ ¬(x = y)) → ¬(x ≡ y) (no set is equipotent to a part)
A7 ∃x(INF (x)) (infinity axiom)

Moreover, since we are interested in models in which the relation ¬ and ⊆
are crisp, we assume also that T contains the axioms ¬(x ∈ y ∧¬x ∈ y) and
¬(x ⊆ y ∧ ¬x ⊆ y). Observe that we can interpret indifferently INF (x) as
the vague predicate “to be wide” or the predicate “to be infinite” (which we
also consider as vague). In accordance, we call wide set theory the proposed
theory T . The following proposition was proved in [7].

Proposition 3.2. A multi-valued model for wide set theory exists whose
elements are the finite sets and in which A7 is only potentially satisfied.

Proof. Denote the class of all finite sets of any model of set theory by Fin
and, given a finite set x, denote the cardinality of x by cr(x). Furthermore,
in Fin define the fuzzy relation I(EQ) by setting

I(EQ)(x, y) = 1 if x = y = ∅
I(EQ)(x, y) = Min{cr(x),cr(y)}

Max{cr(x),cr(y)} otherwise.

Then, I(INF )(x) = cr(x)/(cr(x) + 1). It is immediate that such a model
satisfies A1 , A2 , A4, A5, A6 . To prove A3 it is sufficient to prove that

I(EQ)(x, z) + I(EQ)(z, y) − 1 ≤ I(EQ)(x, y).

By observing that it is not restrictive to assume that x, y and z are pairwise
different and that cr(x) ≤ cr(y), we consider three cases:

Case 1. cr(z) ≤ cr(x) ≤ cr(y). Then

I(EQ)(x, z) + I(EQ)(z, y) − 1 = cr(z)/cr(x) + cr(z)/cr(y) − 1
≤ cr(z)/cr(y) ≤ cr(x)/cr(y) = I(EQ)(x, y).

Case 2.(cr(x) ≤ cr(z) ≤ cr(y). In such a case,

I(EQ)(x, z) + I(EQ)(z, y) − 1 = cr(x)/cr(z) + cr(z)/cr(y) − 1
≤ [cr(x)/cr(z)] · [cr(z)/cr(y)] = cr(x)/cr(y) = I(EQ)(x, y)

Case 3. cr(x) ≤ cr(y) ≤ cr(z). In such a case

I(EQ)(x, z) + I(EQ)(z, y) − 1 = cr(x)/cr(z) + cr(y)/cr(z) − 1
≤ cr(x)/cr(z) ≤ cr(x)/cr(y) = I(EQ)(x, y).

To prove A7 , it is sufficient to observe that Supn∈N{ n
n+1 : n ∈ N} = 1.

It is evident that no finite sets satisfy INF.
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We say that the fuzzy model defined in such a proof is a canonical model
of wide set theory.

4. Another example: point-free geometry

The possibility of considering a geometry in which the notion of point is
not assumed as a primitive was extensively examined by A. N. Whitehead
in An Inquiry Concerning the Principles of Natural Knowledge and in The
Concept of Nature. In these books the primitives are the regions and the
inclusion relation between regions. As a matter of fact, as observed by
Casati and Varzi in [3], these books can be a basis for a “mereology” i.e.
an investigation into the set theoretical part-whole relation, rather than for
a point-free geometry. Indeed, the inclusion relation is not geometrical in
nature. So, it is not surprising the fact that later, in Process and Reality,
Whitehead proposed a different approach in which the primitives are the
regions and the connection relation while the inclusion relation is defined.
In [11] one examine the possibility of restating Whitehead primitive approach
by considering a “graded inclusion” instead of a “crisp inclusion” relation.

In this section we will reconsider this approach from the point of view of
a multi-valued logic. To do this, it is useful to individuate a mathematical
model of our intuitive idea of region in the space. This idea includes the
balls and any continuous deformations of a ball and it excludes points, lines,
surfaces and other “immaterial” things. This is in accordance with White-
head’s analysis which emphasizes that abstract objects of such a kind are the
result of an “abstraction process”. A reasonable choice is to refer to the reg-
ular subsets of a metric space (M, δ). Indeed, denote by cl : P (M) → P (M)
and int : P (M) → P (M) the closure and the interior operator, respectively.
Then we define reg : P (M) → P (M) by setting reg(x) = cl(int(x)) and
we call regular closed set, in brief regular set, any fixed point of reg. The
class Reg of regular subsets of M is a complete Boolean algebra. In the case
(M ,δ) is the three dimensional Euclidean space, the points, the lines and
the surfaces are not regular set. Instead, any continuous deformation of a
closed ball is a regular set.

Consider a first order language with a relation name IN and denote by
x ≤ y the formula IN (x, y) ⇔ 1. The intended meaning is that:

- the variables denotes regions in a geometrical space,

- ≤ is the inclusion relation

- IN denotes a graded inclusion relation.
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Denote the formula ∀y(y ≤ x ⇒ IN(x,y)) by PNT (x). We interpret PNT (x)
indifferently either as the vague predicate “to be tiny” or as the predicate
“to be a point” (we regard as vague, too). Then we consider a theory T in
such a language containing the following axioms

A1 IN (x, x) (reflexivity).
A2 IN (x, y)∧IN (y, z) ⇒ IN (x, z) (transitivity).

A3 (x ≤ y) ∧ (y ≤ x) ⇒ x = y (anti-simmetry).
A4 ∃x(PNT (x)) (point existence).

Also, we assume that T contains formulas expressing the main properties of
the class of the regular bounded nonempty subsets of a metric space (where
≤ is interpreted by the set theoretical inclusion). We call such a theory
graded inclusion spaces theory. Let (Re, I) be a fuzzy interpretation and let
incl be the interpretation I(IN ) of the vague predicate IN. Then, (Re, I)
satisfies A1 , A2 , A3 if and only if

a1) incl(x, x) = 1
a2) incl(x, y)∗incl(y, z) ≤ incl(x, z)
a3) ≤ is an order relation

Moreover, if p : Re → [0, 1] is the extension of the formula PNT, then

p(x) = Inf y≤xincl(x, y)

and A4 is satisfied if and only if SupxInf y≤xincl(x, y) = 1, i.e.

a4) for every n > 0 a region dn exists s.t. incl(dn, y) ≥ 1-1/n for every
y ≤ dn.

Instead, I(PNT (x), d) = 1 if and only if d is an atom of (Re, ≤). Indeed,
Inf y≤xincl(d, y) = 1 if and only if, for every region y ≤ d, incl(d, y) = 1 and
therefore y = d. To show the existence of a graded inclusion space, given
any metric space (M, δ) we set, for any P ∈ M and x, y subsets of M ,

δ(P, x) = Inf{δ(P, Q) : Q ∈ x}. (4.1)

D(x) = Sup{δ(P, P ′) : P ∈ x, P ′ ∈ x}. (4.2)

eδ(x, y) = Sup{δ(P, y) : P ∈ x}. (4.3)

Theorem 4.1. A fuzzy model for graded inclusion spaces theory exists in
which the domain is the class of nonempty regular bounded subsets of a
metric space (M, δ). In such a model ≤ is the set-theoretical inclusion and

p(x) = (1 − D(x)) ∨ 0. (4.4)
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Moreover, if (M, δ) is an Euclidean space, A4 is only potentially satisfied.

Proof. Denote the class of all nonempty, regular, bounded subsets by Reg.
Then, we interpret Incl by the fuzzy relation incl : Reg × Reg → [0, 1]
defined by setting

incl(x, y) = 1 − (eδ(x, y) ∧ 1) (4.5)

Then it is immediate that a1) is satisfied. To prove a2), note firstly that

eδ(x, z) ≤ eδ(x, y) + eδ(y, z).

Indeed, given P ∈ x and Q ∈ z,

δ(P, z) ≤ δ(P, Q) + δ(Q, y) ≤ δ(P, Q) + eδ(y, z)

and therefore

δ(P, z) ≤ InfQ∈zδ(P, Q) + eδ(y, z) = δ(P, y) + eδ(y, z).
So,

eδ(x, z) = Sup{δ(P, z) : P ∈ x} ≤ Sup{δ(P, y) + eδ(y, z) : P ∈ x}
= Sup{δ(P, y) : P ∈ x} + eδ(y, z)
= eδ(x, y) + eδ(y, z).

Now in the case that incl(x, y) = 0 or incl(y, z) = 0, a2) is obvious. Other-
wise,

incl(x, z) ≥ 1 − eδ(x, z) ≥ 1 − [eδ(x, y))) + eδ(y, z)] =
1 − eδ(x, y) + 1 − eδ(y, z)) − 1 = incl(x, y) ∗ incl(y, z).

To prove a3), note that, since y is a closed set, x ⊆ y ⇔ eδ(x, y) = 0
⇔ Incl(x, y) = 1. This proves both a3) and that the associated order is the
inclusion relation. To prove (4.4) we observe at first that

D(x) = Sup{eδ(x, x′) : x′ ⊆ x}. (4.6)

Indeed, since x is regular, D(x) = D(int(x)). Let P and P ′ be elements in
int(x) and let n ∈ N so that Bn(P ′) ⊆ x. Then, by observing that eδ is
order-reversing with respect to the second variable, we have

Sup{eδ(x, x′) : x′ ≤ x} ≥ eδ(x,Bn(P ′)) ≥ δ(P,Bn(P ′)) = δ(P, P ′)− 1/n.

This entails that

{eδ(x, x′) : x′ ⊆ x} ≥ limn→∞δ(P, P ′) − 1/n = δ(P, P ′)

and therefore that Sup{eδ(x, x′) : x′ ⊆ x} ≥ D(x). Conversely, since
eδ(x,x′) ≤ eδ(x,{P ′}) for any P ′ ∈ x′,
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Sup{eδ(x, x′) : x′ ⊆ x}
≤ Sup{eδ(x,{P ′}) : P ′ ∈ x} = SupP∈xSupP ′∈xeδ({P},{P ′}) = D(x),

Taking into account (4.6), we have that

p(x) = Inf {incl(x, x′) : x′ ≤ x} = Inf {1- (eδ(x, y)∧1) : x′ ≤ x}
= 1-Sup{eδ(x, x′)∧1 : x′ ≤ x} = 1-(Sup{eδ(x, x′) : x′ ≤ x}∧1)
= (1-D(x))∨0.

To prove a4), in accordance with (4.4), we have to prove that Inf{D(x) :
x ∈ Reg} = 0. To this aim, observe that, for any P ∈ M and k ∈ N , the set
Bk(P ) = cl({P ′ ∈ M : δ(P ′, P ) <1/k}) is regular and that D(Bk(P )) ≤ 1/k.
Then Inf{D(Bk(P )) : k ∈ N} = 0. The fact that A4 is not actually satisfied
in an Euclidean space is a consequence of the fact that there is no atom in
the class of nonempty regular subsets of such a space.

We call n-dimensional canonical Euclidean model the model of graded
inclusion space theory defined in the class of nonempty regular bounded
subsets of the n−dimensional Euclidean space.

5. Witness multi-valued logic and ultrapowers

We call witness multi-valued logic any multi-valued logic L such that any
interpretation (D, I) of L admits an elementary extension which is ground.
We will show that any continuous multi-valued logic is a witness multi-valued
logic. To this aim, we must introduce the notion of ultrapower of a fuzzy
model. Given a nonempty set S, an ultrafilter on S is a class U of subsets
of S such that

i) X ∈ U , Y ∈ U ⇒ X ∩ Y ∈ U
ii) X ∈ U , Y ⊇ X ⇒ Y ∈ U
iii) X ∈ U ⇔ −X /∈ U .

Obviously, ∅ /∈ U and S ∈ U . Moreover any ultrafilter U satisfies the finite
intersection property

X1, . . ., Xn ∈ U ⇒ X1 ∩ . . . ∩ Xn ∈ U
and the implication

X ∪ Y ∈ U ⇒ either X ∈ U or Y ∈ U .

U is principal if an element x ∈ S exists such that U = {X : x ∈ X}. If
U is not principal, then there is no finite set in U and therefore U contains
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all the co-finite sets. Given a nonempty set D and an ultrafilter U on S, we
define an equivalence relation ≡ in DS by setting

f ≡ g ⇔ {x ∈ S : f(x) = g(x)} ∈ U .

We denote by [f ]U = {f ′ ∈ DS : f ′ ≡ f} the complete class of equivalence
defined by an element f in DS and by DS/U = {[f ]U : f ∈ DS} the quotient
of DS modulo ≡. We write also [f ] to denote [f ]U . If d ∈ D, then we indicate
the class defined by the map constantly equal to d by [d].

Definition 5.1. Let U be an ultrafilter in S and f ∈ [0, 1]S . We say that
l is a limit of f with respect to U , and we write l = limUf or l = limUf(i),
provided that {i ∈ S : f(i) ∈ X} ∈ U for every neighborhood X of l.

Such a notion of convergence satisfies the usual properties of the conver-
gence in a topological space. A basic difference is that the limit with respect
to an ultrafilter always exists. The following proposition was proved in [1].

Proposition 5.2. Let U be an ultrafilter in S and f ∈ [0, 1]S. Then there
is exactly one limit of f with respect to U . If U is a non principal ultrafilter
in N, then for any sequence (an)n∈N of elements in [0,1],

limn→∞an = l ⇒ limUan = l. (5.1)

Let g : [0, 1]n → [0, 1] be a continuous function and let f1, ..., fn be elements
in [0, 1]S, then

g(limUf1(i), ..., limUfn(i)) = limUg(f1(i), ..., fn(i)). (5.2)

Now we are ready to give the notion ultrapower.

Definition 5.3. Let (D, I) be a fuzzy model of a first order language and
U an ultrafilter in a set S. Then the ultrapower of (D, I) modulo U is the
fuzzy model (D∗, I∗) defined by setting:

D∗ = DS/U
I∗(g)([f1], ..., [fn]) = [(g(f1(i), ..., fn(i)))i∈S ] for any function name g

I∗(R)([f1], ..., [fn]) = limUI(R)(f1(i), ..., fn(i)) for any relation name R

I∗(c) = [I(c)] for any constant c.

Notice that for function names and constants this definition coincides with
the usual one. This means that, as in the classical logic, for any term t,

I∗(t)([f1], . . ., [fn]) = [(I(t)(f1(i), ..., fn(i)))i∈S ]. (5.3)

To prove the main theorem in this section we need the following proposition.
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Proposition 5.4. Let (F (i))i∈S be a family of nonempty subsets of [0, 1],
then

Sup{limUs(i) : s ∈ Πi∈SF (i)} = limU (SupF (i)) (5.4)

where Πi∈SF (i) is the Cartesian product of (F (i))i∈S .

Proof. We have to prove that

i) limU (SupF (i)) is an upper bound of the set {limUs(i) : s ∈ Πi∈SF (i)};
ii) if l is a “strict” upper bound, i.e. l > limUs(i) for any s ∈ Πi∈SF (i),

then l ≥ limUSupF (i)).

Now, it is evident that for any s ∈ Πi∈SF (i), limUs(i) ≤ limU (SupF (i))
and this proves i). Let l be such that, l > limUs(i), for any s ∈ Πi∈SF (i)
and assume, by absurdity, that l < limU (SupF (i)). Then X = {i ∈ S : l <
SupF (i)} ∈ U . Let s be defined by setting s(i) equal to any element x in
F (i) such that x > l in the case i ∈ X and equal to any element in F (i)
otherwise. Then s ∈ Πi∈SF (i) and {i ∈ S : s(i) > l} ∈ U . This contradicts
the fact that the inequality l > limUs(i) entails {i ∈ S : s(i) < l} ∈ U .

The following basic theorem was proved in [4].

Theorem 5.5. Let (D, I) be a fuzzy model of a first order language and U
an ultrafilter in a set S. Then, for any formula α,

I∗(α, [f1], . . ., [fn]) = limUI(α, f1(i), . . ., fn(i)). (5.5)

In particular, for any d1, ..., dn in D,

I(α, d1, . . ., dn) = I∗(α, [d1], . . ., [dn]) (5.6)

i.e., (D∗, I∗) is elementary extension of (D, I).

Proof. We will prove (5.5) by induction on the complexity of α. In the
case α is either the constant 0 or 1, then (5.5) is evident. Let α be the
atomic formula R(t1, ..., tm), then

I∗(R(t1, ..., tm), [f1], ..., [fn])
= I∗(R)(I∗(t1)([f1], ..., [fn]), ..., I∗(tm)([f1], ..., [fn]))
= I∗(R)([(I(t1)(f1(i), ..., fn(i)))i∈S ], ..., [(I(tm)(f1(i), ..., fn(i)))i∈S ])
= limUI(R)(I(t1)(f1(i), ..., fn(i), ..., I(tm)(f1(i), ..., fn(i)))
= limUI(R(t1, ..., tm), f1(i), . . ., fn(i)).

Assume that (5.5) is satisfied by the formulas α1, ..., αt and let h be a logical
connective. We clam that (5.5) is satisfied by h(α1, ..., αt). Indeed, since the
interpretation h of h is continuous, by (5.2) we obtain that
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I∗(h(α1, ..., αt), [f1], ..., [fn])
= h(I∗(α1, [f1], ..., [fn]), ..., I∗(αt, [f1], ..., [fn]))
= h(limUI(α1, f1(i), . . ., fn(i)), ..., limUI(αt, f1(i), . . ., fn(i)))
= limUh(I(α1, f1(i), . . ., fn(i)), ..., I(αt, f1(i), . . ., fn(i)))
= limUI(h(α1, ..., αt), f1(i), . . ., fn(i)).

Assume that (5.5) is satisfied by α, then, by induction hypothesis,

I∗(∃xjα, [f1], ..., [fn])
= Sup{I∗(α, [f1], ..., [fj−1], [f ], [fj+1], ..., [fn]) : f ∈ DS}
= Sup{limUI(α, f1(i), . . ., fj−1(i), f(i), fj+1(i), . . ., fn(i)) : f ∈ DS}.

Set, for any i ∈ S,

F (i) = {I(α, f1(i), . . ., fj−1(i), f(i), fj+1(i), . . ., fn(i)) : f ∈ DS},
then it is immediate that

F (i) = {I(α, f1(i), . . ., fj−1(i), d, fj+1(i), . . ., fn(i)) : d ∈ D}
and therefore that

Πi∈SF (i) = {s ∈ [0, 1]S : for any i ∈ S there is d ∈ D s.t. s(i) =
I(α, f1(i), . . ., fj−1(i), d, fj+1(i), . . ., fn(i))}.

Then, by (5.4),

I∗(∃xjα, [f1], ..., [fn])
= Sup{limUI(α, f1(i), . . ., fj−1(i), f(i), fj+1(i), . . ., fn(i)) : f ∈ DS}
= Sup{limUs(i) : s ∈ Πi∈SF (i)}
= limU (SupF (i))
= limUSup{I(α, f1(i), . . ., fj−1(i), d, fj+1(i), . . ., fn(i)) : d ∈ D}
= limUI(∃xjα, f1(i), . . ., fn(i)).

So, (5.5) is satisfied by the formula ∃xjα, too.

We conclude this section with the following theorem. Then notion of
axiomatizable multi-valued logic is given in [12] (see also [6] and [2]).

Theorem 5.6. Any continuous logic is a witness multi-valued logic. As a
consequence, any axiomatizable logic is a witness logic.

Proof. Let (D, I) be a fuzzy model of a first order language, U an ultrafilter
in N and (D∗, I∗) the ultrapower of (D, I) modulo U . We claim that (D∗, I∗)
is a ground model. Indeed, let α(x1, ..., xn) be any formula whose only free
variable is xj and assume that I∗(∃xjα) = 1. Then, by (5.6), we have
that I(∃xjα(xj)) = 1 and therefore Supd∈DI(α, d) = 1. This entails that
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a sequence (di)i∈N of elements in D exists such that limi→∞I(α, di) = 1.
Then, by (5.5), I∗(α, [(di)i∈N ]) = limUI(α, di) = limn→∞I(α, di) = 1.
This proves that (D∗, I∗) is a ground model. Finally, since in [2] was proven
that a multi-valued logic is a axiomatizable if and only if it is continuous,
any axiomatizable multi-valued logic is a witness logic.

6. Whitehead’s abstraction processes

The solution proposed in Section 5 is elegant and universal in nature. Unfor-
tunately it is rather unsatisfactory from the point of view we are interested
in, i.e. to represent the passage from potential into actual existence. As an
example, let HUGE be the model of wide set theory defined in Proposition
3.2 and let HUGE ∗ be its ultrapower modulo an ultra-filter U in N. Also,
consider the sequence

In = [n(n − 1)/2, n(n + 1)/2]

of pairwise disjoint intervals in N . Then, since I(INF )(In) = n/(n + 1),
such a sequence enables us to prove that ∃xINF (x) is satisfied in HUGE in
a potential way. Assume that i = [(In)n∈N ], then we have that

I∗(INF )(i) = limUI(INF )(In) = limn→∞n/(n + 1) = 1,

i.e. i is an element of HUGE ∗ satisfying the predicate INF. Unfortunately i
is a very pathological “infinite set” since there is no (standard) element in
it. Indeed, given any m ∈ N , the set {n ∈ N : m ∈ In} contains only an
element and therefore {n ∈ N : m ∈ In} /∈ U .

A similar argument can be formulated in the theory of graded inclusion
spaces. Indeed, let GI be the 1-dimensional canonical Euclidean model and
define a sequence (rn)n∈N of real numbers by setting r1 = 1 and rn+1 =
rn + 1/n. Also, denote by In the closed interval [rn, rn+1]. Then since

p(In) = (1 − D(In)) ∨ 0 = n/(n + 1),

such a sequence enables us to claim that ∃xPNT (x) is potentially satisfied
in GI. Again, consider the ultrapower GI ∗ of GI modulo U and let i be the
complete equivalence class [(In)n∈N ]. Then

I∗(PNT )(i) = limn→∞n/(n + 1) = 1,

and therefore that i satisfies the predicate PNT in GI ∗. On the other hand,
the “point” i is rather unusual since, due to the fact that {n ∈ N : x ⊇ In}
is either empty or finite, no (standard and bounded) region x contains i.
This is very far from our intuition and from Whitehead’s definition of the



82 G. Gerla

“abstraction processes”. In fact, in Whitehead the process leading from a
sequence (dn)n∈N of “concrete” objects to an “abstract” object d is based
on the idea that dn+1 and dn are different approximations of d and that dn+1

is “more close” to d than dn.
Now, we can represent this only by assuming that some kind of order

is defined in the domain D. On the other hand, in both the proposed
canonical examples there is an order relation playing a basic role. In fact,
if we interpret a “big” finite set x as an approximation of an infinite set
(an abstract object), then a finite set y containing x is an improvement of
such an approximation. Likewise, if we interpret a “small” region x as an
approximation of a point (an abstract object), then a region y contained in
x is an improvement of such an approximation. In both the case we write
y � x to denote such a situation. This suggests the following definition
extending the definition given by Whitehead in a geometrical setting.

Definition 6.1. Given an order relation � in a set D we call abstraction
process any sequence (xn)n∈N of elements of D such that

n ≤ m ⇒ xm � xn.

We denote the class of the abstraction processes by D�.

Notice that Whitehead requires also that no region x exists such that
x � xn for every n ∈ N . We skip out this condition since in such a way
the structures we define are an extension of the ordered set (D,�). In fact,
every element x ∈ D is associated with the abstraction process defined by the
sequence constantly equal to x. In order to combine the notion of abstraction
process with the one of ultra-product, let (D, I) be a fuzzy model with an
order relation � in D. Then we say that an operation g is compatible with
� provided that it is order-preserving, i.e.

d1 � d′1, ..., dn � d′n ⇒ I(g)(d1, ..., dn) � I(g)(d′1, ..., d′n).

A predicate R is compatible with �, provided that it is order-reversing, i.e.

d1 � d′1, ..., dn � d′n ⇒ I(R)(d1, ..., dn) ≥ I(R)(d′1, ..., d′n).

Notice that both the graded inclusion in GI and the graded equipotence in
HUGE are not compatible. In spite of that, we can reformulate these models
by focusing our attention only on the vague predicates PNT and INF we
assume as primitive.

If g is a compatible operation and f1, ..., fp are abstraction processes,
then the sequence (I(g)(f1(n), ..., fp(n)))n∈N is an abstraction process, too.
This justifies the following definition.
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Definition 6.2. Let (D, I) be a fuzzy interpretation of a language L and
� an order relation in D. Assume that all the predicates and operations are
compatible with respect to �. Then, given an ultra-filter U , we denote by
(D∗

�, I∗) the fuzzy substructure of (D∗, I∗) defined by the subset

D∗
� = {[(xn)n∈N ] ∈ D∗ : (xn)n∈N is an abstraction process}

In accordance with (5.6), the map associating every d ∈ D with [d], is
an embedding of (D, I) into (D∗

�, I∗). If � is the identity relation, then
the abstraction processes coincide with the constant sequences and (D∗

�, I∗)
coincides with (D, I).

7. Equivalence between abstraction processes

Definition 6.2 is still unsatisfactory. Indeed, the sequences

([−1/n, 1/n])n∈N ; ([−1/n2, 1/n2])n∈N

are not equivalent abstraction processes in the one-dimensional canonical
model of GI. This means that they define two different abstract objects (i.e.
two different points) in spite of the fact that our intuition suggests that both
represent 0. This “pathology” is not surprising, obviously, since it is on the
basis of non-standard analysis. As a matter of fact, the ultrapower process
produces too many abstract objects and we have to try to introduce a further
equivalence relation in D≤ to reduce the number of abstract objects. To do
this, at first we generalize a basic definition of Whitehead.

Definition 7.1. We say that an abstraction process (yn)n∈N W-dominates
an abstraction process (xn)n∈N , in brief (yn)n∈N ≥W (xn)n∈N , if for any yn

there is xm such that xn � ym. We say that (yn)n∈N is W-equivalent to
(xn)n∈N , in brief (yn)n∈N ≡W (xn)n∈N , provided that (yn)n∈N ≥W (xn)n∈N

and (xn)n∈N ≥W (yn)n∈N .

The relation �W is a pre-order in D� and ≡W is its associated equiva-
lence relation. Whitehead interprets an element in the corresponding quo-
tient as an abstract geometrical element. We will utilize such an equivalence
to modify the notion of ultra-power.

Proposition 7.2. Let (D, I) be a fuzzy model with a transitive relation �
and let U be a non-principal ultrafilter in N . Then the relation ≡WU defined
by setting

[(xn)n∈N ] ≡WU [(xn)n∈N ] ⇔ (xn)n∈N ≡W (xn)n∈N

is a congruence in D∗
�.



84 G. Gerla

Proof. To prove that ≡WU is well defined, we prove that the relation ≡U
is contained in ≡WU , i.e. that

(xn)n∈N ≡U (yn)n∈N ⇒ (xn)n∈N ≡W (yn)n∈N .

Indeed, given any yh, since {n ∈ N : xn = yn} ∈ U and {n ∈ N : yh � yn}
is cofinite, the set {n ∈ N : yh � yn} ∩ {n ∈ N : xn = yn} belongs to U and
therefore is nonempty. Then n ∈ N exists such that yh � yn = xn. This
proves that (yn)n∈N dominates (xn)n∈N . In the same way we prove that
(xn)n∈N dominates (yn)n∈N and this shows that (xn)n∈N ≡W (yn)n∈N .

To prove that ≡WU is a congruence, let [f1], ..., [fp] and [g1], ..., [gp] be el-
ements in D∗

� such that [f1] ≡WU [g1], ..., [fp] ≡WU [gp]. Then, given any re-
lation symbol R in L�, since f1, ..., fp and g1, ..., gp are abstraction processes,
the sequences (I(R)(f1(n), ..., fp(n)))n∈N and (I(R)(g1(n), ..., gp(n)))n∈N are
order-preserving. This entails the existence of limn→∞I(R)(f1(n), ..., fp(n))
and limn→∞I(R)(g1(n), ..., gp(n)). Moreover,

I∗(R)([f1], ..., [fp])
= limUI(R)(f1(n), ..., fp(n))
= limn→∞I(R)(f1(n), ..., fp(n))

and

I∗(R)([g1], ..., [gp])
= limUI(R)(g1(n), ..., gp(n))
= limn→∞I(R)(g1(n), ..., gp(n)).

Since each fi dominates gi, we have that, for any n ∈ N , there is m ∈ N
such that f1(n) � g1(m), ..., fp(n) � gp(m) and therefore

I(R)(f1(n), ..., fp(n)) ≤ I(R)(g1(m), ..., gp(m)).

Consequently,

limn→∞I(R)(f1(n), ..., fp(n)) ≤ limn→∞I(R)(g1(n), ..., gp(n)).

In a similar way one proves that

limn→∞I(R)(g1(n), ..., gp(n)) ≤ limn→∞I(R)(f1(n), ..., fp(n)).

Thus,

I∗(R)([f1] ,...,[fp])
= limn→∞I(R)(f1(n), ..., fp(n))
= limn→∞I(R)(g1(n), ..., gp(n))
= I∗(R)([g1], ..., [gp]).
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Let g be an operation and, given n ∈ N , let m ∈ N such that f1(n) �
g1(m), ..., fp(n) � gp(m). Then

I(g)(f1(n), ..., fp(n)) � I(g)(g1(m), ..., gp(m)).

This proves that

(I(g)(f1(n), ..., fp(n)))n∈N ≥W (I(g)(g1(n), ..., gp(n)))n∈N .

In a similar way one proves that

(I(g)(g1(n), ..., gp(n)))n∈N ≥W (I(g)(f1(n), ..., fp(n)))n∈N .

Thus

I(g)(f1(n), ..., fp(n)))n∈N ≡W I(g)(g1(n), ..., gp(n)))n∈N .

Definition 7.3. We denote by (D∗
W ,I∗) the quotient of (D∗

�,I∗) modulo
≡WU and we call �-ultrapower of (D, I) such a model.

It is not clear whether the proposed notion of �-ultrapower is satisfactory
or not with respect to the question we are interested in, i.e. the potential and
actual existence. In any case it seems to give a rather general extension of
the techniques used in graded inclusion space theory and in wide set theory.

8. Some questions

How to select the order relation? We have to be careful in such a choice.
As an example, consider the sequences ([−1/n, 0])n∈N and ([0, 1/n])n∈N of
regions in the canonical model of point-free geometry in the real number set.
These processes are not equivalent and therefore they define two different
“points” which we denote by -0 and +0, respectively. On the other hand
([−1/n, 1/n])n∈N is a third abstraction process defining a new point which
we denote by 0. It is evident that 0 > −0 and 0 > +0 and that -0 and +0
are not comparable. Again, the proposed method creates too many points
for people interested in restating the usual mathematica entities. This is the
reason why Whitehead in Process and Reality refers to the non-tangential
inclusion �, topological in nature, whose interpretation in the canonical
models is that x � y provided that x is contained in the interior of y. This
eliminates sequences as ([−1/n, 0])n∈N and ([0, 1/n])n∈N (note that in our
formalism we have to set � equal to the reflexive extension of �).

Another question is whether the compatibility hypothesis is too restric-
tive or not. Now, in spite of the appearance, there is a large class of models
satisfying such an hypothesis. Indeed we can consider the possibility of man-
aging fuzzy models with incomplete information about the elements of the
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domain D under consideration. This means that we have to refer to a new
domain D′ whose elements are pieces of information on the elements in D.
Moreover, we have to assume that these pieces of information are ordered
with respect to a relation x � y whose meaning is that “the information x
extends the information y”. More precisely, if we assume that a piece of in-
formation on an element of D is a subset of D and if we admit the possibility
of a “fusion” of different pieces of information, then we have to assume that
D′ is a closure system. In accordance, given a fuzzy model (D, I), we can
consider the fuzzy model (D′, I ′) defined by assuming that:

- D′ is a closure system in D,

- I ′(g)(X1, . . ., Xn) is the element in D′ generated by the set
{I(g)(x1, . . . , xn) ∈ D : x1 ∈ X1, . . ., xn ∈ Xn},

- I ′(R)(X1, . . ., Xn) = Inf{I ′(R)(x1, . . ., xn) : x1 ∈ X1, . . ., xn ∈ Xn},
where X1, . . ., Xn are in D′. Moreover, we assume that a vague monadic
predicate C exists representing the completeness of the information. If we
denote by � the inclusion relation, then it is natural to assume that the
interpretation of C is order-reversing with respect to � and therefore com-
patible. Then, in the so obtained fuzzy interpretation all the predicates and
operations are compatible. As an example, interval analysis originates in
this way from the field of real numbers, by assuming that D′ is the class of
nonempty closed intervals and by interpreting C through the fuzzy subset s
defined by setting s([a, b]) = 10a−b.

Finally, a basic question is whether it is correct to use classical mathe-
matics to give a model for the notion of potentiality or not. Indeed, classical
mathematics deals with actual objects only and it looks to be contradic-
tory using actual objects to define objects whose existence is claimed to be
potential! Nevertheless this is not too surprising if we look at the history
of mathematics. As an example, all the models of non Euclidean geome-
try where defined on the inside of Euclidean geometry. So, if we consider
non-Euclidean geometry as a philosophy, it is contradictory to base it on Eu-
clidean geometry, a totally different philosophy. Instead, if non-Euclidean
geometry is only a mathematical theory, then the discovery of these mod-
els is only a proof of its consistence once we admit the consistence of the
Euclidean geometry. The same argumentation holds true for the models of
intuitionistic logic which are defined inside classical set theory (as an exam-
ple by the Kripke-style semantics or by the Heyting algebras). On account of
these considerations, the task of defining the notion of potential existence by
starting from a mathematics in which only the actual existence is admitted
is perhaps acceptable. In fact, our aim is not to define a philosophy which
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is in an alternative with classical mathematics. Also, perhaps we can accept
that the potential existence is related to a level of our mental processes and
that it becomes actual existence in a successive level.

In any case these questions are very hard and far from the aim and
the ambition of this paper. In fact the paper can be simply taken as a
contribution to the theory of witnessed models in fuzzy logic and, in a sense,
the concept of “potential existence” can be completely avoided.
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[6] Hájek, P., Metamathematics of Fuzzy Logic, Kluwer Academic Publishers, 1998.

[7] Formato, F., and G. Gerla, ‘Grasping Infinity by Finite Sets’, Math. Log. Quart.

44:383–393, 1998.

[8] Gerla, G., ‘Pointless geometries’, in F. Buekenhout (ed.), Handbook of Incidence

Geometry, Elsevier Science, 1994, pp. 1015–1031.

[9] Gerla, G., ‘Pointless metric spaces’, J. Symbolic Logic, 55:207–219, 1990.

[10] Gerla, G., Fuzzy Logic: Mathematical Tools for Approximate Reasoning, Kluwer

Academic Publishers, 2001.

[11] Gerla, G., and A. Miranda, ‘Graded inclusion and point-free geometry’, Interna-

tional Journal of Pure and Applied Mathematics, 11:63–81, 2004.

[12] Novak, V., I. Perfilieva, and J. Mockor, Mathematical Principles of Fuzzy Logic,

Kluwer, 1999.

[13] Pavelka, J., ‘On fuzzy logic I: Many-valued rules of inference’, Zeitschr. f. math.

Logik und Grundlagen d. Math., 25:45–52, 1979.

[14] Whitehead, A. N., An Inquiry Concerning the Principles of Natural Knowledge,

Univ. Press. Cambrige, 1919.

[15] Whitehead, A. N., The Concept of Nature, Univ. Press. Cambrige, 1920.

[16] Whitehead, A. N., Process and Reality, Macmillan, 1929.

Giangiacomo Gerla
Dipartimento di Matematica ed Informatica
University of Salerno
Via Ponte Don Melillo
84084 Fisciano (SA), Italy
gerla@unisa.it



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


