- [11] G. N. Saridis and H. E. Stephanou, "A hierarchical approach to the control of a prosthetic arm," *IEEE Trans. Syst.*, Man, Cybern., vol. SMC-7, pp. 407-420, June 1977.
- [12] M. Raibert, "Mechanical arm control using a state space memory," SME Tech. Paper MS77-750, 1977.

Sharpness Relation and Decidable Fuzzy Sets

GIANGIACOMO GERLA

Abstract -- The concept of "decidability" for fuzzy sets is defined. We prove that there exist fuzzy sets which do not have a decidable "sharpened" version and fuzzy sets which are not "sharpened" versions of decidable fuzzy sets.

L INTRODUCTION

In this paper we define the decidability concept for fuzzy sets. We prove that a fuzzy set g exists, with $\left\{\frac{x}{g(x)} = \frac{1}{2}\right\}$ infinite, which does not have a decidable sharpened version. We also prove that a fuzzy set g exists, with $\langle x/g(x) = 1/2 \rangle = \emptyset$, which is not a sharpened version of a decidable fuzzy set f with $\left(\frac{x}{f(x)} = \frac{1}{2}\right)$ finite or empty.

II. NOTATION AND MATHEMATICAL PRELIMINARIES

Let X be a set and L a totally ordered set. An L-fuzzy set [1], [3] is a map $f: X \to L$. We denote by $\mathcal{L}(X, L)$ the class of L-fuzzy sets defined in X. If $f, g \in \mathcal{C}(X, L)$, $f \wedge g$ and $f \vee g$ are defined point-by-point by $(f \wedge g)(x) = \inf\{f(x), g(x)\}$ and $(f \vee g)(x) = \sup\{f(x), g(x)\}$. If R and Q denote, respectively, the set of real numbers and the set of rational numbers, we set $[0, 1] = (x \in R / 0 \le x \le 1)$, $Q[0, 1] = (x \in Q / 0 \le x \le 1)$. If $x, y \in [0, 1]$, we set $x \leq y$ if $y \leq 1/2$ and $x \leq y$ or $y \geq 1/2$ and $x \geq y$. If $f, g \in \mathcal{C}(X, [0, 1])$, we set $f \leq g$ if, for every $x \in X$, $f(x) \leq g(x)$. In this case, we shall say that f is a *sharpened version* of g. If $f \in \mathcal{C}$ and for every $x \in X$ it is $f(x) \in \{0, 1\}$, we call f crisp.

Finally, if N is the set of natural numbers and $x \in N$, then φ_x is the partial recursive function of N from N with index x [2].

III. DECIDABLE FUZZY SETS

If X and Y are sets and $f: X \rightarrow Y$, we can pose the problem of the effective computability of f only if X and Y are codified by the elements of N. This happens, for example, if X is a finitely generated language and Yis the rational interval Q[0,1].

Then, in order to define the decidable fuzzy sets, we must give the following definitions.

Definition 1: We call $\mathcal{L}(X, L)$ codified if there exist $c_1: N \to X$ and $c_2:$ $N \rightarrow L$ such that c_1 and c_2 are one-to-one.

Definition 2: If $\mathcal{L}(X, L)$ is codified by c_1 and c_2 , then we set, for every $z \in N$, $f_z = c_2 \varphi_z c_1^{-1}$. We call the fuzzy set *f* decidable if $f = f_z$ by a suitable $z \in N$.

By definition 2, if f, is total, then f, is a decidable fuzzy set.

Definition 3: Let $\mathcal{L}(X, L)$ be codified by c_1 and c_2 . Then we call $\mathfrak{L}(X, L)$ computable if L is a computable lattice; in other words, if the functions f: $N \times N \to N$ and g: $N \times N \to N$ defined by $f(m, n) = c_2^ (c_2(n) \land c_2(m))$ and $g(m, n) = c_2^{-1} (c_2(n) \lor c_2(m))$ are computable.

The following propositions are immediate consequences, respectively, of the s-m-n theorem and Rice's theorem [2].

Proposition 1: Let $\mathcal{L}(X, L)$ be computable. Then there exist two total recursive functions d and c such that, if f_x and f_y are decidable fuzzy sets, then $f_{d(x,y)} = f_x \wedge f_y$ and $f_{c(x,y)} = f_x \vee f_y$.

Note that from Proposition 1 it follows that, if $\mathcal{L}(X, L)$ is computable. then the decidable fuzzy set forms a sublattice of $\mathcal{L}(X, L)$.

Proposition 2: There is not a uniform effective method to decide if $f_x = f_y, f_x \leq f_y$, or if f_x is crisp.

IV. SHARPENED VERSION AND DECIDABILITY

In order to avoid formal complications, we set X = N. Moreover, we examine only the particular case $\hat{\mathcal{L}} = \mathcal{L}(X, Q[0, 1])$. Obviously, \mathcal{L} is computable. It is easy to prove that a function cr(x) exists such that, if f_x is a decidable fuzzy set, then $f_{cr(x)}$ is crisp and $f_{cr(x)} \leq f_z$. In other words, every decidable fuzzy set f can be sharpened to a decidable crisp fuzzy set. This is not always possible if f is not decidable. In order to prove this, we give the following proposition.

Proposition 3: If, for every $a \in Q[0, 1]$, we set

$$g_a(x) = \begin{cases} 1 - f_x(x) & \text{if } f_x(x) \text{ is convergent and } f_x(x) \neq 1/2 \\ a & \text{otherwise,} \end{cases}$$

then: a) a total recursive function h exists such that, for every decidable fuzzy set $f_z, f_z(h(z)) \leq g_a(h(z))$; b) for every decidable fuzzy set f_z , the set $\left\{x/f_{z}(x) \leq g_{a}(x)\right\}$ is infinite; and c) for every decidable fuzzy set f_{z} , if $g_a \leq f_z$, then $\langle x/f_z(x) = 1/2 \rangle$ is infinite.

Proof: In order to prove a), let h be an injective total recursive function such that

$$f_{h(z)}(x) = \begin{cases} 0 & \text{if } f_z(x) \text{ is convergent and } f_z(x) \leq 1/2 \\ 1 & \text{if } f_z(x) \text{ is convergent and } f_z(x) > 1/2 \\ \text{divergent if } f_z(x) \text{ is divergent.} \end{cases}$$

By hypothesis, f_z is total; hence, $f_{h(z)}$ is total and $g_a(h(z)) = 1 - 1$ $f_{h(z)}(h(z)) \in \{0,1\}$ for every $z \in N$. If $g_a(h(z)) = 1$, then $f_{h(z)}(h(z)) = 0$ and $f_z(h(z)) \le 1/2$. If $g_a(h(z)) = 0$, then $f_{h(z)}(h(z)) = 1$ and $f_z(h(z)) > 0$ 1/2. Hence, it is always $f_z(h(z)) \leq g_a(h(z))$.

In order to prove b), we recall that the set $X_i = \{i/f_i = f_i\} = \{i/\varphi_i = \varphi_i\}$ is infinite. Moreover, for every $i \in X_2$, $f_2(h(i)) = f_i(h(i)) \leq g_a(h(j))$. Since h is injective, b) is proved.

In order to prove c), let f_z be a decidable fuzzy set such that $g_a \leq f_z$. Then also $g_a(z) \leq f_z(z)$. If we suppose that $f_z(z) \neq 1/2$, then $g_a(z) = 1 - 1$ $f_z(z)$, and therefore $1 - f_z(z) \leq f_z(z)$. If $f_z(z) < 1/2$, then $f_z(z) \geq 1 - f_z(z) \leq 1/2$. $f_z(z)$, and hence $1/2 \leq f_z(z)$, while $f_z(z) > 1/2$ implies that $1 - f_z(z) \geq 1/2$ $f_z(z)$, and hence $1/2 \ge f_z(z)$ is absurd. Then it is $f_z(z) = 1/2$ and, for every $i \in X_2$, $f_i(i) = 1/2$. It follows that, for every $i \in X_2$, $f_2(i) = f_i(i) =$ 1/2. In conclusion, the set $\left\{ x/f_z(x) = 1/2 \right\}$ is infinite.

Corollary: A fuzzy set g exists, with $\{x/g(x) = 1/2\}$ infinite, which does not have a decidable sharpened version. Moreover, a fuzzy set g exists, with $(x/g(x)=1/2)=\emptyset$, which is not a sharpened version of a decidable fuzzy set f with $\{x/f(x) = 1/2\}$ finite or empty.

Proof: It suffices to set $f = g_a$ with a = 1/2 and, respectively, $a \neq 1/2$. Note that the fuzzy sets g_a have interesting properties. For example, $a \leq b$ implies that $g_a \leq g_b$. Moreover, a partial recursive function h exists such that, for every $y \in Q[0,1]$, if $y \neq 1/2$, then $g_a(h(y)) = y$. To prove this, it is sufficient to suppose that h is a function such that $f_{h(y)}$ is the total recursive function constantly equal to 1 - y. Then $g_a(h(y)) = 1 - y$ $f_{h(y)}(h(y)) = y$. It is also easy to prove that the set $\{x/g_a(x) = y\}$ is infinite

REFERENCES

- J. A. Goguen, "L-fuzzy sets," J. Math. Anal. Appl., vol. 18, pp. 145-171, 1967.
- H. Cogers, Theory of Recursive Functions and Effective Computability. New York: McGraw-Hill, 1967.
 L. A. Zadeh, "Fuzzy sets," Inform. Contr., vol. 8, pp. 338-353, 1965.

Manuscript received February 16, 1982; revised April 20, 1982. This work was performed under the supervision of the Italian C.N.R. (GNSAGA).

The author is with the Istituto Mat. R. Caccioppoli, 80134 Naples, Italy