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Abstract. Effective domain theory is applied to fuzzy logic to give suit-
able notions of semi-decidable and decidable L-subset. The connection
with the notions of fuzzy Turing machines and fuzzy grammar given in
literature is also investigated. This shows the inadequateness of these de-
finitions and the difficulties in formulating an analogue of Church Thesis
for fuzzy logic.

1 Introduction

Fuzzy logic is a promising chapter of multi-valued logic whose basic ideas have
been formulated by L. A. Zadeh, J. A. Goguen, J. Pavelka and others (see,
for example, [5], [17] and [12]) and successively investigated by several authors
(see, for example, [7], [11], [6], [4]). The aim of such a logic is to formalize the
”approximate reasoning” we use in everyday life where vague notions, such as
big, slow, near, are constantly involved. This leads to define a deduction operator
associating every fuzzy subset of axioms with the related fuzzy subset of logical
consequences. Now it is evident that a basic task for fuzzy logic is to exhibit the
effectiveness of its deduction apparatus. In particular, it is important to prove
that the fuzzy subset of consequences of a ”decidable” fuzzy subset of axioms
is ”effectively enumerable”. To do this we have to give adequate definitions of
”effective enumerability” and ”decidability” for fuzzy subsets.

On the other hand, in my opinion the phenomenon of the vagueness leads
to assume that the set of truth values is a continuum. More precisely, density is
suggested by the existence of intermediate values. To give an example, assume
that the atomic formula Big(a) is evaluated λ, that Big(b) is evaluated µ and
λ < µ. Then we cannot exclude the existence of an object d such that Big(d) has
a truth value between λ and µ. Also, completeness is suggested by the fact that
the quantifiers are interpreted by the least upper bound and the greatest lower
bound operators. Moreover, the existence of the least upper bounds is necessary
to fuse the different valuations given by different proofs of a given formula (see
[12]).
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Once we accept the hypothesis that the set of truth values is a continuum,
the notion of effectiveness has to be based on endless effective approximation
algorithms (as in recursive analysis) and not on algorithms converging in finite
steps (as in recursive arithmetics). So, as proposed in [3], a natural framework to
define the notion of effectiveness in multi-valued logic is the theory of effective
domains (see also [2], [1]). Obviously, this is not the unique possible choice and it
is possible to refer to the vast and interesting literature concerning a constructive
approach to the continuum.

In this paper we compare the domain-based definition of semi-decidability
for fuzzy subsets with the definitions given in literature based on the notions of
fuzzy grammar and fuzzy Turing machine. This comparison proves that these
definitions are not adequate and it shows the difficulties in formulating an ana-
logue of Church Thesis for fuzzy logic. Also, it emphasizes an open question:
to find adequate definitions of multi-valued Turing machine and multi-valued
grammar.

2 Preliminaries: Effective lattices and semi-decidable
elements

In this paper L always denotes a complete lattice with minimum 0 and maximum
1. Given x, y ∈ L, we say that x is way below y and we write x ¿ y provided
that, for every nonempty upward directed subset A of L

y ≤ supA ⇒ there is a ∈ A such that x ≤ a.

Definition 1. A based continuous lattice, in brief a based lattice, is a struc-
ture (L,≤, B) where L is a complete lattice and B, the basis, is a subset of L
containing 0, closed with respect to ∨ and ∧ and such that, for every x ∈ L,

x = sup({b ∈ B : b ¿ x}). (1)

We have that x ¿ y entails x ≤ y. If L is a finite chain and we set B = L,
then (L,≤, B) is a based lattice such that

x ¿ y ⇔ x ≤ y.

If L is a complete chain and B a dense subset of L, then (L,≤, B) is a based
lattice such that

x ¿ y ⇔ either x = 0 or x < y.

Definition 2. An effective continuous lattice (see [14]), in brief an effective
lattice, is a based lattice (L,≤, B) with an enumeration (bn)n∈N of B such that

- the relation {(n,m) ∈ N2 : bn ¿ bm} is recursively enumerable
- two recursive maps join: N ×N → N , meet : N ×N → N exist such that

bn ∨ bm = bjoin(n,m) , bn ∧ bm = bmeet(n,m).
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In brief, an effective lattice is a based lattice such that in B the relation ¿ is
recursively enumerable and ∨, ∧ are computable operations.

It is evident that every finite chain L is an effective lattice with respect to
B = L. The interval U = [0, 1] is an effective lattice whose basis is the set UQ of
rational numbers in U .

Definition 3. We say that an element x in an effective lattice (L,≤, B) is semi-
decidable if the cut {n ∈ N : bn ¿ x} is recursively enumerable.

In particular, every b ∈ B is semi-decidable and 1 is semi-decidable, too. In a
finite lattice all the elements are semi-decidable. If L = U , then

x is semi-decidable ⇔ {r ∈ UQ : r < x} is recursively enumerable.

Proposition 1. Let (L,≤, B) be an effective lattice, then the following are equiv-
alent:

i) x is semi-decidable,
ii) a recursive map f exists such that (bf(n))n∈N is ¿-preserving and

x = sup
n∈N

bf(n), (2)

iii) a recursive map f satisfying (2) exists such that (bf(n))n∈N is order-preserving,
iv) a recursive map f satisfying (2) exists.

3 Decidable elements

To define the notion of decidability we need to dualize some of the definitions
in the previous sections. Given a lattice (L,≤), we denote by (L,≤d) its dual.
Any order-theoretical concept in (L,≤) is associated with its dual, i.e. the same
concept interpreted in (L,≤d). As an example, we say that y is way above x and
we write x ¿d y in the case y is way below x in (L,≤d). Then x ¿d y if, for
every downward directed subset A of L,

x ≥ inf A ⇒ there exists a ∈ A such thath y ≥ a.

Obviously x ¿d y entails y ≤ x. If L is a finite chain,

x ¿d y ⇔ y ≤ x.

If L coincides with U , then

x ¿d y ⇔ either y = 1 or y < x.

Definition 4. A structure (L,≤, B, B) is called an (effective) ab-lattice, pro-
vided that both the structures (L,≤, B) and (L,≤d, B) are based (effective) con-
tinuous lattices. In such a case we say that B = (bn)n∈N is the basis and
B = (bn)n∈N the dual basis of (L,≤d, B,B).
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Obviously, in an ab-lattice L we have that, for every x ∈ L,

x = sup{b ∈ B : b ¿ x} = inf{b ∈ B : x ¿d b},
i.e. it is possible to approximate x both from below and from above.

Definition 5. Given an ab-lattice (L,≤, B, B), we say that x is decidable if x
is semi-decidable both in (L,≤, B) and in (L,≤d, B), i.e. if both the cuts

{n ∈ N : bn ¿ x} ; {n ∈ N : x ¿d bn}
are recursively enumerable.

Trivially, in all the ab-lattices both 0 and 1 are decidable. The proof of the
following proposition is an immediate consequence of Proposition 1.

Proposition 2. Given an element x of an effective ab-lattice, the following are
equivalent:

i) x is decidable
ii) two total recursive functions h : N → N, k : N → N exist such that
(bh(n))n∈N is ¿-preserving, (bk(n))n∈N is ¿d-reversing and

sup
n∈N

bh(n) = x = inf
n∈N

bk(n) (3)

iii) two total recursive functions h : N → N, k : N → N exist such that (3) is
satisfied, (bh(n))n∈N is order-preserving and (bk(n))n∈N is order-reversing

iv) a nested effectively computable sequence ([bh(n), bk(n)])n∈N of intervals exists
such that

{x} =
⋂

n∈N

[bh(n), bk(n)].

An easy way to obtain ab-lattices is by an involution in L.

Definition 6. A structure (L,≤,−, B) is an effective lattice with an involution
if (L,≤, B) is an effective lattice and − is an involution such that {(n,m) ∈
N ×N : −bn ¿ −bm} is recursively enumerable.

In the case L = {λ0, ..., λn} is a finite chain where 0 = λ0 < ... < λn = 1,
there is a unique involution ¬ defined by setting ¬(λi) = λn−i. In the case L is
the interval U , an involution ¬ is obtained by setting ¬(λ) = 1− λ.

Since an involution is an isomorphism between L and its dual and since an
isomorphism preserves the definable relations, we have that, for every x ∈ L:

x ¿d y ⇔ −y ¿ −x.

The proof of the following proposition is trivial.

Proposition 3. Let (L,≤, B,−) be an effective lattice with an involution and
set B = (bn)n∈N where bn = −bn. Then (L,≤, B, B) is an effective ab-lattice.
Moreover,

x is decidable ⇔ both x and − x are semi-decidable.



Multi-valued Logics, Effectiveness and Domains 5

This proposition entails that a finite chain L is an effective ab-lattice in which
B = B = L and in which all the elements are decidable. The interval U is an
effective ab-lattice in which B = B = UQ. In such a case an element x is decidable
provided that both the sections {r ∈ UQ : r < x} and {r ∈ UQ : x > r} are
recursively enumerable, i.e. x is a recursive real number.

4 The effective lattice of the L-subsets of a given set

Let S be a nonempty set. Then we call L-subset of S every element in the direct
power LS . We denote by ∪ and ∩ the lattice operations in LS and we call these
operations union and intersection, respectively. Then the union and intersection
operations are defined by setting, for every s1, s2 ∈ LS and x ∈ S,

(s1 ∪ s2)(x) = s1(x) ∨ s2(x) ; (s1 ∩ s2)(x) = s1(x) ∧ s2(x).

In an analogous way we define the infinitary unions and intersections. If L = U an
L−subset is also called fuzzy subsets of S. In the case an involution ¬ : L → L
is defined in L, then we call complement the corresponding operation in LS .
Then, the complement of an L-subset s, is the L-subset −s defined by setting
(−s)(x) = ¬s(x). The elements in L are interpreted as truth values in a multi-
valued logic where 0 is interpreted as ”true” and 1 as ”false”. An L-subset is
interpreted as a generalized characteristic function to represent the extension of
a vague predicate. So, for every x ∈ S, s(x) is the membership degree of x to
s. We call crisp an L-subset s such that s(x) ∈ {0, 1} for every x ∈ S. Given
X ∈ P (S), the characteristic function of X is the map cX : S → L defined by
setting cX(x) = 1 if x ∈ X and cX(x) = 0 otherwise. We can identify the classical
subsets of S with the crisp L-subsets of S via the characteristic functions.

Given an L-subset s, we set Supp(s) = {x ∈ S : s(x) 6= 0} and Cosp(s) =
{x ∈ S : s(x) 6= 1}. We say that s is finite (co-finite) provided that Supp(s)
(Cosp(s), respectively) is finite. We call finite also the empty set and co-finite
the whole set S. The classes of finite and co-finite L-subsets of S are denoted
by Fin(LS) and Cof(LS), respectively. Obviously, if a negation is defined in L,
then an L-subset is finite if and only if its complement is co-finite.

In the following we assume that S admits a code. This enables us to identify
S with the set of natural numbers and to prove the following theorems (see [3]).

Theorem 1. Let (L,≤, B) be an effective lattice. Then the class LS of L-subsets
of S is an effective lattice admitting as a basis the class Fin(BS) of finite L-
subsets of S with values in B. Also, for every s1 and s2 in LS,

s1 ¿ s2 ⇔ s1 is finite and s1(x) ¿ s2(x) for every x ∈ S.

Observe that, by definition, an L-subset s is semi-decidable provided that

{n ∈ N : bn ¿ s} = {n ∈ N : bn(i) ¿ s(i) for every i ∈ Supp(bn)}.
is a recursively enumerable set. There are simple characterizations of the semi-
decidable L-subsets.
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Theorem 2. Let (L,≤, B) be an effective continuous lattice and s ∈ LS. Then
the following are equivalent:

i) s is semi-decidable
ii) a recursive function h : S ×N → B exists which is ¿-increasing with respect
to n such that

s(x) = sup
n∈N

h(x, n)

iii) a recursive function h : S ×N → B exists which is increasing with respect to
n such that

s(x) = sup
n∈N

h(x, n).

The following proposition enables us to define the notion of decidable L−subset.

Proposition 4. Let (L,≤, B, B) be an effective ab-lattice. Then LS is an effec-
tive ab-lattice with dual basis the class Cof(BS) of co-finite L-subsets of S with
values in B. If (L,≤, B,−) is an effective lattice with an involution, then LS is
an effective lattice with the complement as an involution.

Trivially, if L is an effective lattice with an involution, then
s is decidable ⇔ both s and its complement −s are semi-decidable.

5 The main cases

In this section we will consider two cases which are basic ones in fuzzy logic:
the finite chains and the interval U . Observe that in these cases the proposed
notions of semi-decidability and decidability for fuzzy subsets are in accordance
with the ones given in [1] and [2].

Proposition 5. Let L be a finite chain. Then the class LS of L-subsets of S
is an effective lattice with the complement as an involution and therefore it is
an effective ab-lattice. Its basis is the class Fin(LS) of finite L-subsets of S, its
dual basis is the class Cof(LS) of co-finite L-subsets of S. Also

s1 ¿ s2 ⇔ s1 ⊆ s2 and s1 is finite
and

s1 ¿d s2 ⇔ s1 ⊆ s2 and s2 is co-finite.

In particular, the class P (S) of subsets of S is an effective lattice with an invo-
lution whose basis is the class of finite subsets and whose dual basis is the class
of co-finite subsets of S. Also X1 ¿ X2 ⇔ X1 ⊆ X2 and X1 is finite
and

X1 ¿d X2 ⇔ X1 ⊆ X2 and X2 is co-finite.
Moreover, the proposed notions of decidability and semi-decidability coincide
with the classical ones.
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Proposition 6. Let L be a finite chain. Then an L-subset s is semi-decidable
if and only if there is a recursive function h : S×N → L increasing with respect
to the second variable such that

s(x) = max
n∈N

h(x, n).

Moreover, s is decidable if and only if s is a recursive function.

The following proposition shows that, in the case of a finite chain, the proposed
definition of semi-decidability is the only possible extension of the classical one
such that

- the constant L-subsets are semi-decidable
- the union of two semi-decidable L-subsets is semi-decidable
- the intersection of two semi-decidable L-subsets is semi-decidable.

To show this, given an L-subset s, we call closed λ-cut of s the subset C(s, λ) =
{x ∈ S : s(x) ≥ λ} where λ ∈ L. The equation

s(x) =
⋃

λ∈L λ ∧ C(s, λ)

shows that the lattice of the L-subsets is the lattice generated by the constant
L-subsets and the crisp L-subsets.

Proposition 7. Let L be a finite chain. Then, the following are equivalent:
i) s is a semi-decidable L-subset
ii) all the cuts of s are recursively enumerable.

As a consequence, the lattice of the semi-decidable L-subsets is the lattice gen-
erated by the recursively enumerable subsets and the constant L-subsets.

In the case L = U we can prove a proposition similar to Proposition 5.

Proposition 8. The class of fuzzy subsets of S is an effective lattice with the
complement as an involution. The basis is the class Fin(U S

Q ) of finite fuzzy
subsets of S with rational values. The dual basis is the class Cof(U S

Q ) of co-
finite fuzzy subsets of S with rational values. Moreover

s1 ¿ s2 ⇔ s1 is finite and s1(x) < s2(x) for every x ∈ Supp(s1).

s1 ¿d s2 ⇔ s2 is co-finite and s1(x) < s2(x) for every x ∈ Cosp(s1).

Unfortunately, we cannot extend Proposition 7 to this case since a closed cut
of a semi-decidable L-subset is not necessarily recursively enumerable. More
precisely, we have the following proposition whose proof is an immediate conse-
quence of a series of interesting results about the effectiveness in multi-valued
logic (see for example [7] and [10]).

Theorem 3. A subset of S is a closed cut of a semi-decidable fuzzy subset iff it
belongs to the Σ2−level of the arithmetical hierarchy.
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Observe that such a theorem gives an explanation of an apparent contradic-
tion. In fact the scholars interested in multi-valued logic claim that such a logic
is not effective since the set Val of valid formulas is not effective at all (see for
example [7]). At the same time it is possible to prove that the L-subset of theo-
rems of a decidable L-theory is semi-decidable and therefore, that the fuzzy set
lt of the logically true sentence is semi-decidible (see [1]). This apparent contrast
depends on the fact that Val is a cut of lt and, as claimed in Theorem 3, it is
not surprising that lt is semi-decidable and that such a cut is not recursively
enumerable.

6 Fuzzy machines and fuzzy grammars

A basic question is whether our definition of recursive enumerability is the correct
formal counterpart of the intuition and experience of fuzzy people about fuzzy
computability. In other words:
Is our definition a reasonable proposal for a ”Church Thesis” in multi-valued
logic ?

As an attempt to face this question, we consider the notions of fuzzy Turing
machine and fuzzy grammar given in literature. Then, we assume that in the
effective lattice L an operation ⊗ is defined to interpret the conjunction and
that ⊗ is order-preserving, associative, commutative and such that x⊗1 = x for
every x ∈ L. We assume also that ⊗ is recursive on the basis B. These conditions
are satisfied in all the main multi-valued logics. Firstly, we recall the notion of
fuzzy grammar (see [8] and ([9]))

Definition 7. An L-grammar is a structure G = (T, I, µ, s) where:
- T is a finite set and I ⊂ T ,
- µ : T+ × T+ → B is a finite L-subset (the L-subset of productions)
- s ∈ T − I (the start symbol).

Given λ 6= 0 and two words w, w′, we say that w′ is directly derivable from w
with degree λ if x, y ∈ T+ and a, b ∈ T ∗ exists such that w = axb, w′ = ayb and
λ = µ(x, y). We say that a sequence π = (w1, ..., wp, λ1, ..., λp−1) is a derivation
for w at degree λ(π) = λ1 ⊗ ... ⊗ λp−1 provided that w1 = s, wp = w and, for
i = 1, 2, ..., p− 1, the word wi+1 is directly derivable from wi with degree λi.
Since it is possible that there are different derivations of the same word, the
L-language generated by an L-grammar is defined as follows.

Definition 8. Let G = (T, I, µ, s) be an L-grammar, then the L-language gen-
erated by G is the L-subset s : I+ → L defined by

s(w) = sup{λ(π) : π is a derivation of w}. (4)

There are various attempts to formalize of the notion of fuzzy algorithms
in terms of Turing machines. The first ones are dated in late 1960s when this
notion was introduced by L. A. Zadeh (see [16]). The following definition is an
obvious extension of the one proposed by E. S. Santos in [13] (see also [15]).
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Definition 9. An L-Turing machine is a structure F = (S, T, I, b, q0, qf , µ,⊗),
where

- S is the finite set of states;
- T is the finite set of tape symbols;
- I ⊂ T is the set of input symbols ;
- µ is an L-subset of S × T × S × T × {−1, 0, 1} with values in B (we call

L-transition function)
- b ∈ T − I is the blank symbol;
- q0 and qf are the initial and accepting states, respectively.

Symbol -1 (+1) denotes a move by one cell to the left (right) and 0 denotes
no move. The tape symbols can be printed on a tape that has a left-most cell
but is unbounded to the right. A move is an element m = (s1, t1, s2, t2, d) in
S×T ×S×T ×{−1, 0, 1} and this move is realized provided that if the current
state is s1 and the tape symbol scanned by the machine’s head is t1, then F will
enter the new state s2, the new tape symbol t2 will rewrite the previous symbol t1,
and the tape head will move in accordance with d. The value µ(m) is a valuation
of correctness (possibility) of the move m. The notion of computation is defined
as usual with the help of instantaneous descriptions (IDs). An instantaneous
description Qt of F working on input w at time t is a unique description of
the machine’s tape, of its state and of the position of the machine’s head after
performing its tth move on input w.

Definition 10. If Qt and Qt+1 are two IDs we denote by D(Qt, Qt+1) the last
upper bound of the set of correctness degrees µ(m) of the moves m leading from
Qt to Qt+1.

We can interpret D(Qt, Qt+1) as the valuation in a multi-valued logic of the
claim ”there is a correct move leading from Qt to Qt+1”. Observe that if no move
exists leading from Qt to Qt+1 then D(Qt, Qt+1) = 0, otherwise D(Qt, Qt+1)
is a maximum and we can calculate it in an effective way. On input w whose
length is n, the machine starts its computation in an initial ID, we denote by
Q(w), describing the tape holding a string of n input symbols (the so-called
input string, or input word), one symbol per cell starting with the leftmost cell.
All cells to the right of the input string are blank. The head is scanning the
leftmost cell and the current state is q0. From this ID the computation proceeds
to an ID, we denote by Q1 which is reachable in one step from Q0, etc.

Definition 11. A computation is a sequence Q0, ...Qk of IDs. We extend the
function D to any computation Q0, ..., Qk, by setting

D(Q0, ..., Qk) = D(Q0, ..., Qk−1)⊗D(Qk−1, Qk).
Moreover, if Q and Q∗ are two IDs, we set

d(Q, Q∗) = sup{D(Q0, Q1, ..., Qt) : Q0 = Q,Qt = Q∗}.

We can interpret D(Q0, ..., Qk) as the valuation in a multi-valued logic of the
claim ”the computation Q0, ...Qk is correct” and d(Q,Q∗) as the valuation of
the claim ”there is a correct computation leading from Q to Q∗”.
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Definition 12. Let F be an L-Turing machine and w ∈ I+. Then we say that
Q0, Q1...Qk is an accepting computation for w, if Q0 = Q(w) and Qk is an ID
containing the accepting state qf . Moreover, the L-language accepted by F is the
L-subset e : I+ → L of I+ defined by setting

e(w) = sup{d(Q(w), Q∗) : Q∗ is an accepting ID for w}. (5)

The following theorem shows that the notion of effectiveness for multi-valued
logic proposed in this paper is in accordance with just given notions of L-
grammar and L-Turing machine.

Theorem 4. Let s be an L-language either generated by an L-grammar or ac-
cepted by an L-Turing machine. Then s is a semi-decidable L-subset.

Proof. Assume that s is generated by an L-grammar and therefore that s satisfies
(4). Then, since for every input w we can enumerate in an effective way the class
of derivations for w, s is semi-decidable. A similar argument holds true for the
L-Turing machines.

The following theorem shows that, in the case L is a finite chain, the domain-
based, the grammar-based and the machine-based notions of effectiveness all
coincide.

Theorem 5. Assume that L is a finite chain and let s be an L-subset. Then the
following are equivalent:

- s is semi-decidable,
- there is a suitable L-grammar able to generate s,
- there is a suitable L-Turing machine able to accept s.

Proof. Let L be the finite chain whose elements are 0 = λ0 < ... < λn = 1 and
assume that s is semi-decidable. Then all the cuts C(s, λi) of s are recursively
enumerable. For every 0 < i ≤ n, let Gi = (T, I, Mi, s) be a grammar able to
generate C(s, λi) where, as usual, Mi ⊆ T+ × T+. Denote by G the L-grammar
(T, I, µ, s) obtained by setting µ(x) = sup{λi : x ∈ Mi} and assume that ⊗ is
the minimum. Then it is easy to see that the L-language generated by such a
machine coincides with s.

Likewise, denote by Fi a Turing machine (S, T, I, b, q0, qf ,Mi) able to accept
C(s, λi) where Mi ⊆ S×T ×S×T ×{−1, 0, 1}. Let F be the L-Turing machine
(S, T, I, b, q0, qf , µ,∧) such that µ(x) = sup{λi : x ∈ Mi}. The it is easy to see
that the L-subset accepted by F coincides with s.

In order to examine the case L infinite, it is useful the following proposition
whose proof is in [15].

Proposition 9. Let (M,⊗, 1) be a finitely generated sub-monoid of (L,⊗, 1).
Then every nonempty subset of M admits a maximal element. If L is totally
ordered, every nonempty subset of M admits a maximum. As a consequence, for
every word w, the supremum in (4) and in (5) is a maximum.
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The following theorem shows that the L-languages generated by an L-grammar
(accepted by an L-Turing machine) satify very particular properties.

Theorem 6. Assume that L is totally ordered and let s be an L-language gen-
erated by an L-grammar (accepted by an L-Turing machine). Then the values
assumed by s are in B and all the closed λ-cuts with λ ∈ B are recursively
enumerable .

Proof. Assume that s is generated by an L-grammar and therefore, by Proposi-
tion 9, that s(w) = max{λ(π) : π is a derivation of w}. Then,

C(s, λ) = {x ∈ S : there is a derivation π such that λ(π) ≥ λ}
and therefore, to prove that C(s, λ) is recursively enumerable, it is sufficient to
observe that that the map λ(w) is effectively computable and that the relation
λ(π) ≥ λ is decidable.

In the case of the L-Turing machines we can go on in a similar way.

Such a theorem cannot be extended to the case L is an infinite chain. For
example, if L = U , then every semi-decidable L-language assuming irrational
values gives an example of semi-decidable L-subset such that there is no L-
grammar able to generate it and no L-Turing machine able to accept it. A more
interesting example is furnished in the following theorem.

Theorem 7. Assume that L is the effective lattice defined by the interval U and
let big : I+ → U be the fuzzy subset of the ”big words” defined by setting

big(w) = 1− 1/length(w) (6)

for every word w. Then big is a decidable L-language such that
- big assumes only rational values
- the cuts of big are all decidable
- no L-grammar is able to generate big
- no L-Turing machine is able to accept big.

Proof. The proof is trivial. We observe only that, since there is no maximum
in the co-domain of big, no L-grammar is able to generate big and no L-Turing
machine is able to accept big.

Since should be hard to deny that big is decidable from an intuitive point of
view, we can conclude that the existing definitions of L-grammar and L-Turing
machine are not adequate. This corroborates the domain-based definition of the
effectiveness for multi-valued logic and a formulation of the following ”Church
Thesis” for fuzzy set theory:

”the domain-based definitions give the adequate formalization of the intuition
and experience of fuzzy people about the effectiveness in the fuzzy framework.”

Once we accept such a thesis, it is an open question to find adequate defini-
tions of multi-valued Turing machine and multi-valued grammar.
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