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Abstract. Unification plays a central rule in Logic Programming. We "soften” the uni-
fication process by admitting that two first order expressions can be "similar” up to a
certain degree and not necessarly identical. An extension of the classical unification theory
is proposed accordingly. Indeed, in our approach, inspirated by the unification algorithm of
Martelli-Montanari, the systems of equations go through a series of "sound” transformations
until a solvable form is found yielding a substitution that is proved to be a most general
extended unifier for the given system of equations.

1. Introduction

The recent outbursts in the field of data bases and information retrieval caused an ever com-
pelling demand for systems capable to deal with flexible queries and answers. Deductive data
bases, in particular, are requested to cope with approximate reasoning and more flexible queries.
Researches in such a direction was pioneered by [8] with a threshold-based resolution pro-
cess within the semantic framework of a many-valued logic; later, Mukaidono [10] replaced
the threshold-based inference with a graded resolution based on possibility distribution over
clauses. This approach has been followed in [4]. A quite different extension of resolution has
been considered in [3], where an evidential distribution has been used in the unification process
and classical first order terms have been replaced by fuzzy sets; in a more general framework,
Virtannen has proposed a similar approach in [15]. Despite its fallouts and motivations are to
be found mainly in the extensions of logic programming, the extension of unification theory is a
subject of its own, as proved in [14].
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In this work classical unification is turned into a "relaxed” unification which is particularly
significant when, in the classical process, a failure occurs. In particular, let us recall that in the
declarative paradigm of Logic Programming the unification plays a central rule [7]. Moreover,
such a technique could be usefully exploited in the context of deductive databases, so, we will
considered languages where no function symbol occurs.

Now, classical unification fails because of a "mismatch” among constants. Therefore, it
is necessary to fade the concept of "mismatch” and this requires a weakening of the classical
identity. Similarities (see [6],[12]) seem to be a promising candidate to do this. More precisely, in
this paper a basic concept is the one of "extended constant”, replacing the one of usual constant.
Extended constants, we call clouds, are obtained by fading the notion of singleton into that of
set of pairwise "similar” elements. It is worthy to point out that the concept of cloud, lying
on the notion of similarity, does not coincide neither with the notion of fuzzy set nor with the
one of classical set. Clouds have a strong connection with the ”conceptual spaces”, an attempt
to formalize structural analogies among objects [5]. As suggested by [16] and [2], we introduce
a similarity in a first-order language; in our case, constants are clouds. The notion of identity
between constants is replaced with the notion of ”equivalence” between clouds. This allows
us to define an extended version of most general unifier (e-mgu) and supply an algorithm to
compute the e-mgu of a set of equations. Such an algorithm of fuzzy unification provides both an
e-mgu of the set of atomic formulae and an associated numerical value, called unification degree,
intuitively representing the "cost” payed to strike a success in an unification that, classically,
would result into a failure. The proposed algorithm follows the lines of Martelli-Montanari [9],
and it is an extension of the classical case.

The paper, that focuses and extends some ideas sketched in [1], is arranged as follows: in
section 2 we introduce similarity and clouds; in Sections 3 and 4, we describe some operators on
clouds and sets of clouds; in Section 5 we introduce a similarity on a first order language and
we extend the notions of unifier of a system of extended equations; in Sections 6 and 7 we give
a computational way to get an extended unifier; in Section 8 we introduce the notion of e-mgu.
Finally, in Section 9, we give a computational way to complete the information conveyed within
an e-mgu.

2. Similarity Relations and Clouds

The notion of similarity on which is based our approach is a many valued extension of the
classical notion of equality. In the sequel we define two binary operations V and A in [0,1] by
setting £ Ay = min{z,y}, z Vy = max{z,y} for any z,y € [0,1]. Also, we denote by \/ and A
the lowest upper bound and the greatest lower bound operators, respectively.

Definition 2.1. A similarity on a domain U is a fuzzy subset R : U x U — [0,1] of U x U such
that the following properties hold:

i) R(z,z) =1 forany z € U (reflexivity)

ii) R(z,y) = R(y,z) for any 2,y €4  (symmetry)
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i) R(z,z) > R(z,y) A R(y,2) for any z,y,2z €U (transitivity).
For any A € [0, 1], the closed A—cut of R is the classical relation
Ry ={(z,y) €U xU | R(z,y) 2 A}.

If (z,y) € Ry, we say that z is A-similar to y. Such a notion enables us to identify the similarities
with suitable families of equivalence relations.

Proposition 2.1. Let R be a similarity on a domain U and, for any X € [0,1], denote by Ry
the closed A—cut {(z,y) € Ux U | R(z,y) = A}. Then (Rx)repo,1] 5 @ family of equivalence
relations such that

i) A< p=Ry2R, for any pu and X in [0,1]

i) N Ra= Ry for any p in [0,1].
A<p
Conversely, let (Ra)xgoa) be a family of equivalence relations satisfying i) and 1). Then the

fuzzy relation R defined by setting

R(z,y) = V{A €[0,1] | Ry}
s a similarity whose A—cuts are the relations R.
In order to illustrate such a proposition, we give a simple example.

Example 2.1. Let U = {circle, square, polygon, rectangle, ellipse} and consider the following
family of partitions (ITy)g(o,y of U:

I1, = {{square, circle, polygon,rectangle, ellipse}} for A € [0,0.1]

I1, = {{square, polygon, rectangle}, {circle, ellipse}} for X € (0.1,0.5]

I1, = {{square, rectangle}, {polygon}, {circle, ellipse}} for X € (0.5,0.8]

1, = {{square}, {circle}, {polygon}, {rectangle}, {ellipse}} for A € (0.8,1].

We obtain a similarity R on the domain U by considering the family of equivalence relations
(Ra)aefo.1) associated with (ITy),¢(o ) - As an example, we have that

R(square, rectangle) = 0.8, R(square, polygon) = 0.5, R(square, circle) = 0.1.

We can associate to every subset X of U a number pu(X) intuitively expressing the ”worst”
value of similarity between pairs of elements in X,

pX)= N\ Riza).

z,o'eX
Note that, since A R(z,z') =A 0 =1, it is u(@) = 1. For instance, in Example 1 we
x,2 €0
have u({square, polygon,rectangle}) = 0.5 and p(if) = 0.1. We call u(X) co-diameter of X
since the function R'(z,y) = 1 — R(x,y) behaves like a distance whose related diameter is the

function p'(X) = V R'(z,y) = 1-p(X). In the sequel we call clouds the subsets of a domain
T,yeX
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U where a similarity R is defined, and therefore we say that u(X) is the co-diameter of the
cloud X. We stress that a cloud is not a fuzzy subset since no membership function is defined
on the elements. Roughly speaking, we can regard a non-empty cloud X as a point and the
number x(X) as a many valued evaluation of the claim that X is a point. If A € (0, 1], and X
is a nonempty cloud such that u(X) > A, we say also that X is a A-point. Then a A-point is a
part of a complete class of equivalence modulo the A-similarity. The following proposition shows
that ;(X) is the largest level for which the elements of X can be considered pairwise A-similar,
i.e. for which X is a A-point.

Proposition 2.2. Let X be a subset of U. Then
=\{r€[0,1] | X is a \-point}.

Proof:
Indeed
pX) = V{reD1]| a<pX)}
= V{2 e0,1] | X <R(z,y) Yo,y € X}.
0
The following is a simple characterization of the co-diameter of a nonempty cloud.
Proposition 2.3. Assume that c € X, then
= /\ R(z,c).
T€X
n
Consequently, given a finite sequence X, ..., X, of clouds such that (| X; # 0,
i=1
n mn
p(l Xi) =\ u(x).
=1 =1
Proof:
Clearly, A R(z,c) > u(X). Moreover, for any z,y € X
zeX
R(z,y) > R(z,c) AR(c,y) > /\R:Ec
TEX
Therefore u(X) > A cx R(z,c). O

A system of clouds will be a finite set of clouds. Given a system of clouds Z = { X1y oy X }
we call crispness degree of Z the number

n

£(2) = A u(x).

i=1
As usual we have that £(0) = 1. In a sense £(Z) is a many-valued evaluation of the claim
that each element in Z is a point. It is immediate that if Z’ is obtained from Z by deleting the
empty cloud and all the singletons, then £(Z) = £(Z').
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3. The Compactification of systems of clouds

We say that two clouds X and Y overlap if X NY # (. A system of clouds Z is compact
provided that no pair of clouds in Z overlaps. To define a compactification procedure for a
system of clouds, it is useful the following definition.

Definition 3.1. Given a system of clouds Z we set, for M € Z
Tz(M)=|{M'€eZ|MnM #0,}.
Moreover, we define an operator T by setting
T(2) = {Tz(M) | M € Z}.
The following example clarify the previous notion

Example 3.1. Let us consider the domain U = {a, b,¢c,d, ¢, f,p, q}. Given the system of clouds
Z = {{a,c}, {d}, {c,d}} we have that

Tz({a,c}) = {a,¢,d}, Tz({d}) = {c,d}, Tz({c,d}) = {a,c,d}.

Then, T(Z) = {{a,¢,d}, {c,d}}.

Obviously, Z is a compact system of clouds if and only if Z is a fixed point for T. Moreover,
T does not change the crispness degree of a system of clouds, as the following proposition shows.

Proposition 3.1. Let Z be a system of clouds. Then

£(2) = £(T(2)).

Proof:
By Proposition 2.3

§T(2) = N\ ( A H(Y))-
MeZ \YNnM#0,YeZ
Since, for any M € Z, A u(Y) > €(Z), it follows that
YNM#0,YeZ

§(T(2)) =z £(2).

Conversely, since M N M # 0, for any M € Z, A w(Y) < p(M).
YAM#DYEZ
Therefore

£(T(2)) < €(2).
O

The following definition enables us to obtain the least compact system of clouds ”containing”
a given system. As usual, we set T°(Z) = Z and T"(Z) = T(T™(2)).
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Definition 3.2. Let Z be a system of clouds. We call T—degree of Z the number
®(Z) = min{n |T™(Z) = T"*1(Z)}.
Moreover, the operator Compact is defined by setting
Compact(Z) = T*%)(2).

Since Z is a finite system of finite clonds, the T—degree of Z is a finite non-negative integer.
By the given definitions, Z is a compact system of clouds if and only if ®(Z) = 0. Since T*(4)(Z)
is a fixed point for T', we have that Compact(Z) is compact. So Compact transforms a system
of clouds into a compact system. The following properties summarize the main features of
Compact.

Proposition 3.2. Let Z be a system of clouds, then
1) £(Z) = {(Compact(Z))
it) Compact(Compact(Z)) = Compact(Z)
iti) Z is compact if and only if Z is a fized point for Compact
w) Compact(Z) is compact.

Proof:
The proof of ii),#¢) and iv) are immediate. Property i) is a consequence of the fact that

£(2) =¢£(T™(2)).

That, in turn, is a consequence of Proposition 3.1. g

4. The enlargement of a System of Clouds

It is possible to extend a cloud without changing its co-diameter. We will introduce a closure
operator providing the largest extension of a cloud with respect to this property. With this aim,
we define a class of operators associated with the closed cuts R.

Definition 4.1. Let A be any element in [0, 1]. Then the operator Hy : P({) — P(U) is defined
by setting, for every X in P(l)

H)(X)={z elU | zRyz' for some z' € X}.

In other words, H)(X) is obtained by adding to X all the elements in ¢ that are A—similar
to some element in X. Notice that, by Proposition 2.2, if A < u(X) then we have that

Hy(X)={z €U | xRz’ for any z' € X}.

The following example clarify the previous notion
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Example 4.1. Let us consider the domain U = {a,b,e,d,e, f,p,q} and a similarity R such
that R(a,b) = R(d,e) = R(e, f) = R(f,d) = .7, R(p,q) = .5, R(a,c) = R(e,b) = .4, and zero
otherwise.

Then Hg({c,d}) = {c,d,e, f}, and H3({c,d}) = {a,b,c,d,e, f}.

The following result is well known in the literature on rough sets [11].

Proposition 4.1. Let A € [0,1], then H) is a topological closure operator, i.e., for any X and
Y in P(U),

Hy(X)2 X

H\(Y) 2 H)(X) f Y 2 X

Hy(H\(X)) = HA(X)

Hy(0)=10

Hy(X UY) = Hy(X)UHy(Y).

Moreover
Al £ }‘2 = H/\l(X) 2 HJ\Q(X)

The following proposition gives some useful information about the co-diameter of H,(X).

Proposition 4.2. Let X be a cloud and X € [0,1]. Then
#(X) 2 p(Hx(X)) 2 A A p(X).

In particular,
) A > p(X) = p(H)\(X)) = p(X)
i) p(X) 2 A= p(Hx(X)) = A

Proof:

For any z,y € H)(X) there exist «,3' € X such that R(z,z') > X and R(y,y') > A
Then

R(z,y) > R(z,y") AR®Y ,y) > R(z,2') AR, ¥') AR, y) > XA p(X)

and this proves that pu(Hy (X)) > A A u(X). |

From ii) it follows that if X is a A-point then Hj(X) is a A-point, too. Indeed, Hy(X) is
the largest A-point containing X or, equivalently, the complete class of equivalence modulo the
A-similarity containing X.

Proposition 4.3. Let A € [0,1] and let A and B be two A-points. Then the following are
equivalent

i) W(AUB) > A, i.e. AUB is a A\-point

i) Hy(A) = Hx(B) = H\(AU B)

iti) Hy(A) N Hy(B) # 0.
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Proof:
i) = 4i) Since (A U B) > A, by definition it follows that Hy(4) 2 AU B and Hy(B) 2 AU B.

By Proposition 4.1

H)(A) = H\(HA(A)) 2 HA(AU B) and Hx(B) = Hx(H\(B)) 2 Hx(AU B).

Moreover,
H)(A) C Hy(AUB) and Hy)(B) C Hy(AUB).

This proves that
H)(A) = H\(B) = Hy(AU B).

i1) = i11) Immediate.
i11) = 1) Suppose that an element d in Hy(A) N Hy(B) exists. Then there exist two elements

d; and ds in A and B, respectively, such that R(d, d1) > A, R(d,d2) > A. Also, by transitivity
of R, R(dy,dz) > X. Therefore, since u(A) > A and u(B) > A
#(ALJEH = /\ 72h%y)
z,x'€AUB
= A R@yr A\ R@yr A Rizv)
T,yeA z,yeB zeAyeB
> MM A R(zy)
zeAyEB

Since p(A) > X and pu(B) > X and R(dy,dz) > A, it follows that, for any = € A and for any

yeEB
R(ﬂ’?y) _>_ R(I’dl) AR(dlsy) 2 R(&‘:, dl) A’R‘(dludQ) AR(d2!y) 2 A

Therefore A Riz,y) = A 0
reAyEB

The following corollary is an immediate consequence of the equivalence between 7) and i)

in the previous proposition.

Corollary 4.1. Let A € [0,1] and define the relation =\by setting, for any pair of clouds X

and Y
XY= uXUY)2>A

Then = is a relation of equivalence on the set of A-points.
Now we define an operator that allows extending a cloud without changing its co-diameter.
Definition 4.2. The operator H : P(U) — P(U) is defined by setting

H(X) = Hyx)(X).
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The following proposition shows that H(M) is the maximum among the clouds X such that
w(X) = u(M) and X O M.

Proposition 4.4. Let M be a cloud. Then

i) p(M) = p(H(M))
it) if p(X) = p(M) and X O M, then H(M) D X.

Proof:
Let z,z" be two elements of H(M); by definition of H(M), there exist m,m’' € M such that
R(xz,m) > p(M) and R(z',m’) > u(M). Then, since R(m,m') > pu(M),

R(z,z") > R(z,m) A R(m,z') = R(z,m) AR(m,m') AR(m', ") > u(M).

Consequently

wHM) = A Rz 2 pM).
'€ H(M)

Since H(M) 2 M, it is immediate that pu(H(M)) < u(M); then we can conclude that

u(H(M)) = p(M).
Let X be a cloud such that p(X) = (M) and X O M. If £ € X and m is any element in M,
then since R(z,m) > p(X) = u(M), z is an element in H(M). As a consequence, H(M) 2 X.
O

As a consequence, we have the following proposition.

Proposition 4.5. H is a closure operator on P(U), i.e., for every M and M' in P(U),
i) HM) 2D M
i) if M' O M then H(M') D H(M)
iii) H(H(M)) = H(M).

Proof:

i) Immediate.

ii) We note that M’ O M implies u(M') < pu(M). The thesis follows by Proposition 4.1. Indeed,
H(M') = Hynpy(M') 2 Hyapy (M) 2 Hyppy (M) = H(M).
iii) The case M = () is obvious; Assume that M # (. In this case

H(H(M)) = Hyg oy (H(M)) = Hymany) (Hyuany (M)
= Hyny(Hyan (M) = Hyvny (M) = H(M).

The above defined operators can be extended to the systems of clouds.
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Definition 4.3. Let Z = {M}, ..., M, } be a system of clouds and A any element in [0,1]. Then
we set
H)t(z) = {H)\(Ml)a---ﬁﬂA(Mn)}

and
H(Z) = Hez)(Z).

The following proposition shows that H(Z) gives the largest extension of Z preserving the
crispness degree.

Proposition 4.6. Let Z = {M,,..., My} be a system of clouds in U. Then

i) £(H(2)) =€£(2)

it) H(H(Z)) = H(Z)

ii) if Z' = {My,..,M,} with £(Z) = &(Z") and M; D M; then, for any i = 1,...,n,
Heiz)(M;) 2 M;.

Proof:

i) Since M C Hg(z)(M;) for any i = 1,...,n it is sufficient to prove that {(H(Z)) = £(Z2).
With this aim, we prove that, for any ¢ = 1,...,n, u(Hgz)(M;)) = £(Z). Let £ € M;. By
definition, for any = € Hg(z)(M;), there exists an y in M; such that R(z,y) > £(Z). So

R(z,z) 2 R(Z,y) AR(y,z) 2 p(M;) AE(Z) = €(Z).

By Proposition 2.3 the thesis follows.

1) Immediate from the definition of H, by ).

i) Since, p(M!) > £(Z) and M; D M;, we have that, for every m' € M/ and m € M;,
R(m,m') > €(Z). This proves that m' € He(zy(M;). O

Proposition 4.7. Let Z be a system of clouds, then Hy(Z) is compact for any A < £(Z). In
particular, H(Z) is compact.

Proof:
Indeed, by Proposition 4.3, two clouds in Hy(Z) are either coincident or disjoint. )

5. Extending Unification Through a Similarity Relation

Let £ be a function-free first-order language and denote with

- V its set of variables

- C its set of constants

- P its set of predicate symbols.

We assume that V is ordered in a sequence z1,z3, . . . Also, denote by L' the language
with the same variables and predicate symbols as £ but whose set of constants is the set C' of
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nonempty clouds of constants in £ . £ is an extension of £, indeed we can identify any constant
¢ in C with the singleton {c} in C'. In the sequel, we call extended-type (briefly e-type ), with
type€{ constant, term, formula} a type of L'. Also, we denote with Ty ¢+ the set of e-terms | i.e.,
the set VUC'. An eztended substitution (denoted by e-substitution) is a map 6 : V — Ty . We
denote with © the set of e-substitutions.

We assume as primitive a similarity relation eq on PUC UV such that eg(t,t’) = 0 whenever

-t and ¢’ are not both in V or C or P

-t and t' are in V and t # ¢/

-t and ' are predicates with different arities.

In other words, eq is union of a similarity in C, the identity in V and a similarity among
symbols of predicates with the same arities. Given two e-terms t,#, we set

tut' iftand t' € '
{trut iftev,t el
{tiutiftec,t eV

{t,t'} ift,t' e V.

tit =

We define a relation g on the set of atomic e-formulae by setting

W(P(tl, o ,tn),q(t’ o !t;'n)) _ { EQ(p’Q) A (ii\l U(tiutg)) ifn=m

0 otherwise.
Such a relation is not a similarity since it may be not reflexive. Indeed, if ¢ is not a singleton,

w(tUt) = p(t) # 1, in general.

Definition 5.1. An extended equation (briefly e-equation) is an equation between two atomic
e-formulas with the same arity.

Given a system of e-equations S, and an e-substitution 8, we define the unification degree
v(S,8) of S with respect to 6 as follows

v(S,0) = /\ eq(f(e),8(e")).
e=e'€S
Finally, the unification degree U(S) of a system of e-equations S is defined as

U(s) =\ v(S.9).
e

The following example clarifies the previous notion

Example 5.1. Let us consider the domain U = {a,b,c,d,e, f,p,q} and a similarity R such that
R(a,b) = R(d,e) = Rle, ) = R(f,d) = .7, R(p,q) = .5, R(a,c) = Rc,b) = 4.
If we consider the substitution 8 = {z/{a}, y/{b}} and the set of e-equations

S = {p(z,{e,d}) = q({a}, {F}), p({a},{y}) = p({a, b}, {b})},

since it is
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eq(0(p(z,{e,d})) = 0(q({a},{f}))) = eq(p,q) A u({a}) A u({e,d, f}) =

SRNIAT=.5

a7 (0(p({a}, {v})) = 0(p({a, b}, {B}))) = calp,p) A u({a,b}) A u({b}) =
LA AL =1

it follows that

v(S,0) =

eq (0(p(z, {e,d})) = 0(q({a}, {f})) AET(O(p({a},{y})) = O(p({a,b}, {b}))) =
Dl s = 8
It is easy to verify that .5 is the maximum possible unification degree, then U(S) = v(S,6) = .5.

Notice that, differently from the classical case, the fact that the left and the right sides of
the equations in S coincide, does not entails that U(S) = 1. As an example, let r be an unary
predicate and a and b two constants such that eq(a,b) # 1. Then, by setting S = {r({a,b}) =
r({a,b})}, we obtain that

U(S) = eq(r,7) A p({a, b}) = eq(a,b) # 1.

Definition 5.2. Given a system of e-equations Ssuch that U(S) # 0 we say that an e-
substitution € is an eztended unifier (briefly e-unifier) for S provided that v(S,0) = U(S).

It is worth noticing that the notion of e-unifier coincides with the usual one of unifier when
S is a system of equations and eq is the identity relation.

6. e-Unifiers of Systems of clouds

In the sequel we consider clouds that are either subsets of CUV or subsets of P. If M is a cloud
inCUYV, we write M = X 1LUD to denote that X is the set of variables and D the set of constants
occurring in M. In our approach, the systems of clouds are exploited to compute e-unifiers for
systems of e-equations. With this aim, we define a function associating to any compact system
of clouds Z = {X; UDy, ..., X, UD,} an e-substitution 8z = Assoc_sub(Z) where, for any z € V
Oz(z) =2 fzg X U..UX,
fz(x) =D; ifz € X;and D; #0
0z(z) = z; if z € X;,D; =0 and z; is thefirst variable occurring in X;.
Also, we consider two functions Trans_t and Trans_p transforming a
system of e-equations into two systems of clouds in CUV and P, respectively. First, we
obtain two systems of clouds by setting

Split p(p(t, - tm) = q(t1, - ) = {{p.a}}
Split t(p(t1,...rtm) = q(th, - ty)) = {1Ut], ..., tm Ut}
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n
Moreover, if S =) {e; = e}, we set

=1
Transp(S) = U Split_p(e; = €;)
i=l..n
Transt(S) = U Split_t(e; = €)).
i=1l...n

Let us stress that both Trans_p(S) and Trans_t(S) are systems of clouds. As an example,

let S = {p(z,{a,c},y) = qla,b,b), r(z,z,y) = s(a,{b,c},c)}.
Then

Trans_p(S)
Trans_t(S)

{{p,q}. {r,s}}
{{z,a},{a,b,c}, {y, b}, {z, b, c}, {y,c}}

As we will prove, an e-unifier of a system of e-equations S is computed through the associ-
ated system of clouds Compact(Trans_t(S)). More precisely, we will prove that the function
Assoc_sub(Compact( Transt(S))) provides an e-unifier of S.

Given a cloud M in VUC and an e-substitution €, we denote by (M) the cloud obtained
by substituting each variable z in M with

-0(z) if @(z) is a variable

-the elements in 6(z) if 6(z) is a cloud of constants.

Obviously, since 8 operates only on the variables, if M = X LI D, then (X UD) = 0(X)UD.
Given a system Z = {M,..., M, } where My, ..., M, are clouds in C UV, we denote with 6(Z)
the system {0(M),...,0(M,)}.

Now, we will extend some definitions given for systems of e-equations to systems of clouds.

Definition 6.1. Given a system of clouds Z, and an e-substitution , the unification degree of
Z with respect to 0 is defined by

v(Z,0) = £(6(2)).

The unification degree of Z is the number

Uz)=\ v(z9).
9c©

If U(Z) # 0, we call e-unifier of Z any e-substitution @ such that v(Z,8) = U(Z).

Definition 6.2. Let M = X UD be a cloud. Then we set Ground(M) = D. If Z =
{M,..., M} is a system of clouds, we set

Ground(Z) = {Ground(M,),...,Ground(M,;)}.

The proof of the following proposition is immediate.
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Proposition 6.1. Let Z be a compact system of clouds such that U(Z) # 0. Then Assoc_sub(Z)
is an e-unifier of Z. Moreover,
U(Z) = &(Ground(Z)).

Proof:
For any e-substitution 6,
£0(2)) = A wO(XuD))
XUDeZ
= A sEX)UD)< A u(D)=E(Ground(Z)).
XUDez XUDezZ
Since &(Assoc_sub(Z)) = £(Ground(Z)), the thesis follows. 0

The following proposition shows that Z and Compact(Z) have the same unifiers.

Proposition 6.2. Let Z be a system of clouds. Then, for any e-substitution 0

v(Compact(Z),8) = v(Z,8).

Proof:
We first prove that

§(0(T'(2))) = £(6(2)). (1)
We begin by proving that, for i = 1,...,n,

w(8(Tz(M;))) > £(6(2)). (2)
Indeed, since from M; N M; # 0 we have that 8(M;) N O(M;) # 0,

by Proposition 2.3
z 9( U
M;OM;#0

_ ﬂ( U e(Mj))= A 605)

MJ'HM.'?‘-'@ MjﬂM,‘?‘-’@

(0 (Tz(M;)))

n

A 1 (0(M;)) = £(6(2)).

i=1

v

That proves inequality (2).
From (2), it follows that

£(0(T(2))) /\,u ) 2 £(6(2)).
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On the other hand, since for any i = 1,...,n M; C Tz(M;),
=\ 1(0(M;)) >\ w0 (Tz(M;)) = E(6(T(2))).
=1 =1

And this completes the proofs of (1).

We proceed by induction on the T'—degree ®(Z) of Z.

-If ®(Z) = 0 then Z is compact and therefore the thesis follows.

-If ®(Z) = n, then ®(T(Z)) = n — 1. Therefore, by induction hypothesis

£(0(Compact(T(Z)))) = £(0(T(Z))).

Since Z has T—degree n, it is Compact(Z) = T™(Z) = T" " YT(Z)) = Compact(T(Z)).
Then, by (1), £(8(Compact(Z))) = £(8(Z)). g

7. Computing e-unifiers of systems of e-equations

Now we are ready to prove that the unification degree of a system of clouds or e-equations is an
invariant with respect to the transformations Compact and Trans, as stated by the following

theorem.

Theorem 7.1. Let S be a system of e-equations. Then, for any extended substitution 0
i) v(S,8) = v(Trans_t(S),0) A &(Transp(S))
and therefore
i) v(S,8) = v(Compact(Transt(S)),8) A E(Compact(Trans_p(S))).

Proof:

'i-) Observe that, if g = p(tl,...,tn) and ¢ = q( ‘i’,t;) then, since it is Spiit_t(t?(ei) =
0(el)) = 0(Split_t(e; = €})) for any i = 1,..,n

eq(fe),0(¢)) = (/\# (t:)L6( )/\CQ(P:Q)

= (/\u (t:L1t7) )Aeq(p,q)

£(0(Split-t(e = €'))) A E(Split_p(e = ¢')).

Il

Therefore

v(S,0) = N eg(b(e),0(e))

e=e'€S

= A\ &@(Splitte=€))A N E(Splitple =)

e=e'eS§ e=e'€S
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Il

¢ (9 ( U Split-t (e = *‘-"))) nE ( U Splitp (e = e’))

e=¢' e=e'

= £(0(Transt(S))) A&(Trans_p(S)).

it) Follows immediately from 7) and Proposition 6.2. a

Given a system S of e-equation, we set
Cond(S) = Ground(Compact(Transt(S))) U Compact(Trans_p(S)).

and we say that Cond(S) is the system of conditions for the unification of S. If every cloud
in Cond(S) is a singleton then S admits a classical unifier. Otherwise, as we will prove in the
next theorem, the degree of crispness of Cond(S) gives the degree of unification of S. In other
words, £(Cond(S)) is the "cost” we have to pay to allow the unification process.

Theorem 7.2. Let S be a system of e-equations, then
U(S) = &(Cond(S)).
Moreover, if U(S) # 0 then
fs = Assoc_sub(Compact(Trans_t(S)))
is an e-unifier of S.

Proof:
It is an immediate consequence of Theorem 7.1 and Proposition 6.1. a

This just proven theorem gives an effective procedure to compute the unification degree of
a system of e-equations S, and, at the same time, an e-unifier of S.

Corollary 7.1. Let S be a system of e-equations, then 6 is an e-unifier of S if and only if
either

- @ is an unifier of Compact(Trans_t(S))

or

- £(6(Compact(Trans_t(S)))) = &(Compact(Trans_p(S))).

Another characterization of the class of e-unifiers of a system of e-equations is given by the
following proposition.

Proposition 7.1. Let S be a system of e-equations such that U(S) # 0. An e-substitution 0 is
an e-unifier of S if and only if

£(8(Compact(Trans_t(S)))) = U(S).
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Proof:
= Since @ is an e-unifier, ¥(S5,8) = U(S). Then, by theorem 7.1,

U(S) = v(Compact(Trans_t(S)),0) A &(Compact(Trans_p(S))).

As a consequence, v(Compact(Trans_t(S)),0) = U(S).
<= Since £(8(Compact(Trans_p(S)))) = U(S), by Theorem 7.1, v(S,0) > U(S). The thesis
follows immediately. 0

Example 7.1. Consider the system of e-equations

S= {p(c,w,c) = Q(Iaxa y)a p(m,z,;r:) = T(d$ {a!e}:b)}'

Then,
Transp(S) = {{p,q},{p,7}},

Transt(S) = {{z,c},{w,z}, {c,y}, {z,d}, {2, a, e}, {z,b}}

and therefore,
Compact(Trans p(S)) = {{p,a,7}},

Compact(Trans1(S)) = {{z,y,w, ¢, b,d}, {2,a,e}},
This entails that
Cond(S) = {{p,q,r},{c,b,d}, {a,e}}
and therefore
U(S) = p({p,q,7}) Ap({e,b,d}) A p({a,e}).
Finally, if U(S) # 0, the e-substitution

0s = {z/{c,b,d},y/{c,b,d}, w/{e,b,d}, z/{a, e}}

is an e-unifier of S.

8. The Most General Unifier

A further step is to prove that the unifier 85 furnished in the previous section is the best one
and that, in a sense, it represents the whole class of unifiers for S. To this purpose, we have to
extend the classical concept of most general unifier (mgu). Recall that, given two substitutions
# and @', we say that @' is more general than 8, and we write ' < 0, if there exists a substitution
7 such that, for any variable z, 8(z) = 7(#'(z)). In order to extend such a notion, we replace
the identity with the relation =, . As usual, if 7 and @ are two e-substitutions, we define 6r
as the e-substitution which sets 87(z) = 0(z), if 8(z) is a ground e-term, and 67(z) = 7(8(z))
otherwise.
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Definition 8.1. Let A € (0, 1],we say that # is a A-substitution if and only if 8(z) is a A-point
for any variable z.

Obviously, if both 7 and @ are A-substitution then 67 is a A-substitution, too. Also, we
extend 22, to A-substitutions in a pointwise manner by setting 6 =, 6’ whenever 6(z) =, 6'(z)
for any = € V.

Definition 8.2. Let A € (0,1] and let # and 6’ be two A-substitutions. Then we set 8 < ' if
a A-substitution 7 exists such that, 8 =, 7. In this case we say that @ is more general than '
(w.r.t. the level ).

Proposition 8.1. For any X € (0,1], the relation <) is a pre-order over the set of A-substitu-
tions.

Proof:

Since =) is reflexive, it is immediate that <,is reflexive. Let 6,68" and #" be A-substitutions such
that @ <, 8" and ' <, 8". By definition, there exist two A-substitutions 7 and 7’ such that, for
any variable z in V, @'(z) =, 7(0(z)) and 8"(z) =, 7'(¢'(z)). We claim that 8" (z) =) 7'(7(0(z)))
and therefore that 8 <) 8". Indeed, if &'(z) is ground then

" (z) = 7'(0'(z)) = 0'(z) =x 7(6())-
If @'(x) € V then, since A # 0, 7(6(x)) is a variable, too, and #'(z) = 7(6(z)). By substituting in
0" (z) =y 7'(6'(2)) we obtain 8"(z) =) 7'(7(6(z))). O
The following is a characterization of <) that does not use e-substitutions.

Proposition 8.2. Let 0 and @' be two A-substitutions. Then 0 <y 8’ if and only if the following
conditions hold

i) 6(z) ground = €'(z) =) 6(z)
ii) 0(x) variable = [0(z) = 0(y) = &'(z) =) 0'(y))-
Proof:
Suppose that 6 <, & and therefore that an e-substitution 7 exists such that 6'(z) =, 7(6(z)).

Then, if 6(z) is ground, #'(z) =, 7(6(z)) = 6(z). Assume that 6(z) € V and that 9( ) = 0(y).
Then
§'(z) =\ 7(8(z)) = 7(6(y)) = 6'(y).
Conversely, suppose that conditions i) and ii) hold. Then, the substitution 7, defined as

follows
(2) { @' (y) if y is the first variable such that z = 6(y)
T =

z if no variable y exists such that z = 6(y)

is well defined. Moreover, for any z in V, #'(z) =, 7(6(z)). In fact, if (z) is a variable, then
there exists the first variable y such that #(z) = 6(y). By construction, 7(6(z)) = 6'(y) and by
property i) 7(6(z)) =\ 8'(z). If 6(z) is ground, it is immediate that 7(6(z)) = 6(z) and, by
property ), 7(8(z)) =, ¢'(z). O



F. Formato et al. / Similarity-based Unification 411

Given a system of e-equations S, we focus our attention upon the relation <y (g) -

Definition 8.3. Let S be a system of e-equations with U(S) # 0 and 6 an e-substitution.
Then @ is an extended most general unifier (denoted with e-mgu) for S if

- 0 is an e-unifier of S

- for any e-unifier « for S, 8 =<y s) 7-

It is easy to see that the e-unifier in the Example 5.1 is an e-mgu.
We can conclude this section by showing that the unifier furnished in the previous section is
the best one.

Theorem 8.1. Let S be a system of e-equations such that U(S) # 0 and
05 = Assoc_sub(Compact(Transt(S))).

Then 85 is a most general e-unifier of S.

Proof:
Set
Compact(Transt(S)) = {X1 U Dy, ..., Xp U Dy},

and let @ be an e-unifier of S. Let = be a variable such that fg(z) is ground. Then X; exists
such that z € X; and D; # 0. Since @ is an e-unifier of S, by Proposition 7.1, u(8(z) U D;) >
p(0(X;) U D;) > U(S) # 0, then 6(z) is ground, too and therefore 8(z) =y (s) 0s(z).

Assume that @g(z) is a variable, and that 6s(z) = 0g(y), then X; exists such that both z
and y belong to X; and D; = (. In this case, since u(6(z)U60(y)) > p(0(X;)) = U(S), we can
conclude that 8(z) =y (s) 0(y). |

9. The structure of the set of e-unifiers

Unlike the classical case, an instantiation of an e-unifier is not an e-unifier, in general. As an
example, § = {z/y, z/b} is an e-unifier of the system S = {r(z,z) = r(y,b)}, and U(S) = 1.
By composing 6 with the e-substitution 7 = {y/{a,b}}, we obtain the e-substitution 8’ =
{z/{a,b},2z/b,y/{a,b}}. If we assume that eg(a,b) # 1, then it is immediate that ' is not
an e-unifier of S. The following proposition shows that if the instantiation was made by a
U(S)—substitution then we obtain an unifier, too.

Proposition 9.1. Let S be a system of e-equations and 0 an e-unifier of S. Then, for every
U(S)-substitution T, 07 is an e-unifier of S.

Proof:

On account of Proposition 7.1, we have to prove that u(7(8(X)) U D) > U(S) forany X UD €
Compact(Trans_£(S)). Since 6 is an e-unifier only two cases are possible. In the firt one 8(z) € ('’
for any z € X. Then 7(6(z)) = 6(z) and, since @ is an e-unifier

p(r0(X) U D) = u(8(X) U D) = U(S).
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In the second case, 6( X ) reduces to a variable z and D = (), then, since 7 is a U(.S)-substitution,

w7 (0(X))) = p(r(2)) = U(S).
O

In the following proposition we show that every e-substitution U(S)-similar to an e-unifier is an
e-unifier.

Proposition 9.2. Let 0 be an e-unifier of a system of e-equations S and assume that 6 2y 9
then @' is an e-unifier of S.

Proof:
Let M = X U D be a cloud in Compact(Trans1(S)) and observe that, since Hy(g)(8(z)) =
Hysy(0'(z)) for every z € V, it is

Hys)(0'(X)UD)) = Hy)(D)) U{HU(S) 0'(z)) | z € V})
Hys)(D)) U (J{Hu(s)(0(2)) | = € V})
— HU(S}(B(X) uD).

Now, since 6 is an unifier, on account of Proposition 7.1, u(0(X)U D) > U(S) and therefore, by
i) in Proposition 8, u(Hys)(0(X) U D)) > U(S). Thus,

1(6'(X) U D) > p(Hys)(0'(X) U D)) = u(Hys)(0(X) UD)) > U(S),
and therefore, by Proposition 7.1, ' is an unifier. 8]

As an immediate consequence of the definition of e-mgu and of the just proved propositions,
we have the following basic theorem.

Theorem 9.1. Let S be a system of e-equations and @ an e-mgu of S. Then €' is an e-unifier
of 8 if and only if 0 <y s ¢/

We conclude by observing that the unifier 85 furnished by the proposed algorithm is still
unsatisfactory. In fact, consider the Example 7.1 and assume that

EQ(aﬂe) = eq(c, b) = EQ(d’C) = 0.6, eq(fs d) = 09: EQ(Pa Q) = e(I(q’T) =1

Then
U(S) = v(S,0s) = £({{c,b,d}, {a,e}}) = 0.6.

Since eq(f,d) = 0.9 > 0.6, we have also that u({f,b,¢,d}) = pu({¢,b,d}). This means that

the e-unifier
0 = {z/{f,c,b,d},y/{f,c,b,d}, 2/{a, e}, w/{f,c,b,d}}

solves the unification problem at the same ”cost” of §. Moreover, #' is more significative than 6
from the point of view of the information conveyed. Indeed, if we admit the threshold of validity
0.6, then no reason exists in distinguishing f from the elements in {c, b, d}.

In account of these observations, we present a manner of expanding the clouds in an unifier
without altering the cost payed for the unification.
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Definition 9.1. Let 6 be an e-substitution and A € [0,1]. We call A—completion of 6 the
e-substitution 6, defined by setting 6, (z) = H,(8(z)).

Obviously, if # is a A-completion then 8) is an A-substitution A-similar to #. The proof of
the following proposition is straightforward.

Proposition 9.3. Let S be a system of e-equations such that U(S) # 0, and let 05 be the
A-completion of Os = Assoc_sub(Compact(Trans_t(S))). Then s is an e-mgu for S.

On account of Proposition 9.3, given a system of e-equations S, the completion of an e-mgu
can be actually computed and it is still an extended mgu of the system S.

10. Conclusions and Future Developments

In this paper we introduced a similarity in a function-free first order language and we defined
an extended unification theory, accordingly. Then, the first perspective is to use the proposed
relaxed unification for a relaxed resolution rule in Logic Programming and automated deduction.
At this time we are working actively in this direction. Whenever, we envisage its use in equational
unification and rewriting systems, as well. Also, we will extend unification theory in such a way
that similarity can be introduced in a first order language with a full-fledged set of function
symbols.

In this paper the min-transitive similarity relation has been considered as starting point to
study a similarity-based extension of the crisp notion of unification. However, in many applica-
tions it is useful to consider similarities related with T-norms different from the minimum. The
usual product between real number or the Lukasievicz product look to be the natural candidates.
Then the question arises to analyze the behavior of the proposed extended unification also in
these cases. Finally, the obtained results could be framed in the general approach to fuzzy set
theory based on similarity (see, e.g., [13]).
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