
March 25, 2004 14:39 WSPC/INSTRUCTION FILE gerla2

International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems
c© World Scientific Publishing Company

SIMILARITY LOGIC AND TRANSLATIONS

COSTANZA CRISCONIO, DANIEL DONATO and GIANGIACOMO GERLA

Soft-Computer Laboratory
Dipartimento Matematica e Informatica, University of Salerno, via Ponte Don Melillo

84084 Fisciano, Italy
{gerla,ddonato}@unisa.it

Received (received date)
Revised (revised date)

We propose and examine a simple notion of translation in first order logics to give a

basis to similarity-based fuzzy logic.

Keywords: similarity, fuzzy logic, translation, categorical logic, duality principle.

1. Introduction

A similarity-based fuzzy logic was proposed by M.S.Ying in [10] and successively
investigated in [2]. The basic idea is that we can make ”approximate” reasoning
by allowing an inference rule to work also in the case the antecedent clauses match
only approximately previously proven formulas. Some tentative to applying such an
idea to logic programming was proposed in [1], [6] and [7].

In this note we investigate the possibility of applying the notion of ”translation”
which is on the basis of several abstract treatment of logic (see, for example, [4], [3],
[5], [8]) to the similarity-based logic. This since any similarity relation enables us to
define a family of translations. We refer to classical first order logic as defined, as
an example, by E. Mendelson in [4]. In particular, we define the class of well-formed
formulae (wff ) by assuming that if α and β are wff then (¬α), (α ∧ β), (α ∨ β),
and (∀xiα) are wff too. As usual, sometimes we reduce the number of unnecessary
parethesis.

2. Translations

Let L = (C,F,R, ar) be a first order language whose (finite) set of constants,
function’s names and relation’s names is denoted by C, F , and R, respectively, and
where ar : F ∪R → N is the arity-function. We assume ∧, ∨, ¬ and ∀ as primitives
and we denote again by L both the related set of well formed formulas and the
corresponding first order classical logic. Also, we denote by Ter(L) the set of all
terms of L.

1



March 25, 2004 14:39 WSPC/INSTRUCTION FILE gerla2

2 Authors’ Names

Definition 1. Let L = (C,F,R, ar) and L′ = (C ′, F ′, R′, ar′) be two first order
languages. We call translation from L to L′ any function τ : F ∪R∪C → F ′∪R′∪C ′

such that τ(F ) ⊆ F ′, τ(R) ⊆ R′, τ(C) ⊆ C ′ and ar′(τ(x)) = ar(x) for every
x ∈ F ∪R.

Given a translation τ , we denote by τ(L) the sublanguage (τ(C), τ(F ), τ(R), ar′)
of L′. Any translation can be extended to the set of terms and the set of formulas
as follows. We define the map τ ′: Ter(L) → Ter(L′) by setting:
- τ ′(xi) = xi for every variable xi,
- τ ′(c) = τ(c) for every c ∈ C,
- τ ′(h(t1, ..., tn)) = (tau(h)τ ′(t1), ..., τ ′(tn) for every h ∈ F s.t. ar(h) = n.
Also, we define τ ′′ : L → L′ by setting:
- τ ′′(r(t1, ..., tn)) = τ(r)(τ ′(t1), ..., τ ′(tn)) for atomic formula r(t1, ..., tn)
- τ ′′((α ∧ β)) = (τ ′′(α) ∧ τ ′′(β)) for every α and β in L

- τ ′′((α ∨ β)) = (τ ′′(α) ∨ τ ′′(β)) for every α and β in L

- τ ′′(¬(α)) = (¬τ ′′(α)) for every α in L

- τ ′′((∀xiα)) = (∀xiτ
′′(α)) for every α in L.

An equivalent way to define τ ′ and τ ′′, algebraic in nature, is the following. At first
we interpret Ter(L) as the free algebra of terms by associating any n-ary function’s
name h with the n-ary operation h∗ : Ter(L)n → Ter(L) defined setting

h*(t1, ..., tn) = h(t1, ..., tn)

for any t1, ..., tn in Ter(L). The set of variables and constants is a system of gener-
ators of such an algebraic structure.

Definition 2. Let τ be a translation from L to L′. Then we denote by τ ′ : Ter(L) →
Ter(L′) the homomorphism from Ter(L) to Ter(τ(L′)) such that τ ′(xi) = xi for
every variable xi and τ ′(c) = τ(c) for every constant c.

The second step is to define τ ′′ as a suitable homomorphism from the free algebra
of the formulas of L into the free algebra of the formulas of L′. Indeed, define the
free algebra of the formulas as the algebraic structure with infinite many operations
A(L) = (L,∧′, ∨′, ¬′, ∀′x1, ...,∀′xi, ...) in which:
– ∧′ is the operation associating any pair of formulas α, β ∈ L with the formula
(α ∧ β),
– ∨′ is the operation associating any pair of formulas α, β ∈ L with the formula
(α ∨ β),
– ¬′ is the operation associating any formula α ∈ L with the formula (¬α),
– for any i, ∀′xi is the operation associating formula α ∈ L with the formula (∀xiα).
Obviously the set of atomic formulas is a system of generators for such a structure.

Definition 3. Let τ be a translation from L to L′. Then we denote by τ ′′ : A(L) →
A(L′) the homomorphism from A(L) to A(L′) that associates any atom r(t1, ..., tn)
with the atom τ(r)(τ ′(t1), ..., τ ′(tn)).



March 25, 2004 14:39 WSPC/INSTRUCTION FILE gerla2

Instructions for Typesetting Camera-Ready Manuscripts 3

We denote by ≡τ , in brief ≡, the congruence defined by τ ′ and if α ≡ α′ we say
that α is a synonymous of α′. In the following we use again τ to denote both the
mappings τ ′ and τ ′′ and we call translation such a map.
Observe that, in accordance with a basic property of the homomorphisms, the quo-
tient A(L)/≡ of A(L) modulo the congruence ≡ is isomorphic with the substructure
of A(L′) defined by the image τ(L). Such a quotient is not an algebra of formu-
las since its elements are classes of formulas. However, the quotient is isomorphic
with an algebra of formulas of a suitable sub-language of L. Indeed, assume that in
F ∪R ∪ C a linear order was fixed. Then we propose the following definition:

Definition 4. We denote by τ : F ∪ R ∪ C → F ∪ R ∪ C the map defined by
associating any x ∈ F ∪ R ∪ C with the first element τ(x) in the class [x] = {x′ ∈
F ∪R∪C|τ(x′) = τ(x)}. Also, we denote by Lτ the language (Fτ , Rτ , Cτ)) obtained
by setting Fτ = τ(F ), Rτ = τ(R) and Cτ = τ(C).

The language Lτ is a sub-language of L, an impoverished version of L, in a sense.
We can imagine that Lτ is obtained from L by deleting the synonymous. The map
τ is a translation from the language L into the impoverished version Lτ . The proof
of the following proposition is immediate.

Proposition 1. Let τ be a translation from L to L′. Then τ is an injective trans-
lation from Lτ to L′. The stuctures A (Lτ ) is a subalgebra of A(L) and τ is an
isomorphism between A(Lτ ) and τ(A(L)). Consequently, A(Lτ ) is isomorphic with
A(L)/ ≡.

We conclude this section by observing that, in accordance with a basic property
of the homomorphisms, a translation preserves also all the connectives we can define
in our logic. As an example,

τ(α ⇒ β) = τ(¬α ∨ β) = τ(¬α) ∨ τ(β) = ¬τ(α) ∨ τ(β) = τ(α) ⇒ τ(α),

and

τ(∃xiα) = τ(¬∀xi¬α) = ¬(∀xi¬τ(α)) = ∃xiτ(α).

3. Translations of the proofs: Categorical Logic

In accordance with Lambek and Scott [2], it is possible to consider any logic L as
a category in which the objects are the formulas of L and, given a formula β, a
morphism π from α to β is a proof of β that employs α as the unique hypothesis. In
this paper we refer to the usual inferential apparatus obtained by adding to Modus
Ponens rule and Generalisation rule a suitable system of logical axioms, e.g. the
following schemas proposed by E. Mendelson in [4]:

1. α ⇒ (β ⇒ α)
2. (α ⇒ (β ⇒ γ)) ⇒ ((α ⇒ β) ⇒ (α ⇒ γ))



March 25, 2004 14:39 WSPC/INSTRUCTION FILE gerla2

4 Authors’ Names

3. (¬β ⇒ ¬α) ⇒ ((¬β ⇒ α) ⇒ β)
4. ∀xiα(xi) ⇒ α(t), if α(xi) is a formula of L and t is a free term for xi in α(xi)
5. ∀xi(α ⇒ β(xi)) ⇒ (α ⇒ ∀xiβ(xi)), if α doesn’t have free occurrences of xi.
Given a set X of formulas of L, a proof of α under hypotheses X is a sequence of
formulas α1, ..., αn with αn = α such that, for every i = 1, ..., n, αi satisfies at least
one of the following conditions:

• αi is a logical axiom
• αi is an hypothesis, i.e. αi ∈ X

• αi is obtained from two previous formulas by Modus Ponens
• αi is obtained from one previous formula by Generalisation.

In the category we will define we confine ourselves to proofs whith only an
hypothesis and where such an hypothesis is the first formula. We call normalized
the proofs of such a kind. This is not restrictive. Indeed, let π be any proof, then,
since π uses a finite number of hypotheses α1, ..., αm, π is equivalent to a proof
whose first formula γ1 coincides with α1 ∧ ... ∧ αn and such a formula is the only
hypothesis. In accordance, we write X ` α provided that a normalized proof α1, ...,
αn of α exists such that α1 is a conjunction of formulas in X.

Definition 5. Given a first order language L, we denote by Cat(L), the category
such that:
- the objects are the formulas in L,
- given α and β in L, a morphism from α to β is a normalized proof of β whose
hypothesis is α

- the composition of two morphisms π1: α → β and π2: β → δ is the proof π1π2 we
obtain adding to the deduction π1 the deduction π2 after the deletion of the first
formula in π2.
- given α ∈ L, the identity is the morphism lα : α → α equal to by the one-step
proof α1 = α, where α is assumed as an hypothesis.

In order to show that any translation define a functor, we need the following
lemma:

Lemma 1. Let τ : L → L′ be a translation and α a logical axiom in L. Then τ(α)
is a logical axiom in τ(L). Let β be a logical axiom in the language τ(L), then a
logical axiom α in L exists such that τ(α) = β.

Proof. The first part of the proof is based on the fact that all the logical axioms are
defined by a particular syntactical structure and by the identity of some subformulas
and that both the structure and the identities are preserved by τ . Indeed, an axiom
arising from Schema 1 has the syntactical structure α ⇒ (β ⇒ γ) with γ = α. Its
translation τ(α ⇒ (β ⇒ γ)) is equal to τ(α) ⇒ (τ(β) ⇒ τ(γ)), where τ(γ) = τ(α),
and therefore it is a logical axiom of L′. The same holds for Schemas 2 and 3. An
axiom arising from Schema 4 has the structure ∀xiα(xi) ⇒ α(t), where t is a free



March 25, 2004 14:39 WSPC/INSTRUCTION FILE gerla2

Instructions for Typesetting Camera-Ready Manuscripts 5

term for xi in α(xi) and its translation is ∀xiτ(α(xi)) ⇒ τ(α(t)). Now, τ(α(t)) can
be obtained by substituting τ(t) in all the occurrences of xi in τ(α(xi)) and τ(t) is
a free term for xi in τ(α(xi)). So τ(∀xiα(xi) ⇒ α(t)) is a logical axiom of L′. An
axiom arising from Schema 5 has the structure ∀xi(α ⇒ β(xi)) ⇒ (α ⇒ ∀xiβ(xi))
where α doesn’t have free occurrences of xi. Its translation has the structure
∀xi(τ(α) ⇒ τ(β(xi))) ⇒ (τ(α) ⇒ ∀xiτ(β(xi))) where τ(α) doesn’t have free occur-
rences of xi. This means that this translation is a logical axioms.

Conversely, assume that β is an axiom in τ(L) and assume, for example, that β

is obtained from Schema 1. This means that β is a formula as τ(γ) ⇒ (τ(δ) ⇒ τ(γ′))
with τ(γ) = τ(γ′) and therefore that β is the translation of the logical axiom γ ⇒ (δ
⇒ γ ). Assume that β is obtained from Schema 4, i.e. that β is equal to a formula
as ∀xiτ(α(xi)) ⇒ τ(γ(t)) with τ(α) = τ(γ). Then β is the translation of the logical
axiom ∀xiα(xi) ⇒ α(t). We can work in an analogous way for all the remaining
logical axioms.

The following theorem shows that the translation of a proof is a proof, too.

Theorem 1. Let L and L′ be two languages and τ : L → L′ be a translation. Denote
by F the map associating any formula α with τ(α) and any proof π = γ1, ..., γn with
the sequence, F (π) = τ(γ1), ..., τ(γn). Then F is a functor from the category Cat(L)
into the category Cat(L′).

Proof. Firstly we have to prove that F is well posed, i.e. that F transforms a
proof π = γ1, ..., γn in L into a proof F (π) in L′. We proceed by induction on the
length n. The case n = 1 is trivial. Let n 6= 1 and π = γ1, ..., γn be a proof in
L. If γn is a logical axiom, by Lemma 1 τ(γn) is still a logical axiom. Thus, being
for hypothesis of induction τ(γ1), ..., τ(γn−1) a deduction, adding the logical axiom
τ(γn) a deduction is still obtained.
Let us suppose, that γn were obtained for Modus Ponens, and so that exist
i, j ≤ n − 1 such that γj = γi ⇒ γn. Then, by definition of translation,
τ(γj) = τ(γi) ⇒ τ(γn). Thus τ(γn) is demonstrated for Modus Ponens from τ(γi)
and τ(γj). Therefore even in such a case from the hypothesis of induction it follows
that τ(γ1), ..., τ(γn) is a deduction in L′. The procedure is finally analogous if γn

were obtained by the Generalisation rule, and so if an index i ≤ n − 1 exists such
that γn = ∀xγi. This proves F transforms morphisms of L into morphisms of L′.

It is immediate that F (1α) = 1F (α), i.e. that F preserves the identity. Consider
two morphisms π1 : α → β and π2 : β → δ. Then, trivially, F (π2π1) = F (π2)F (π1),
i.e. F preserves the composition of two morphisms.

Theorem 2. Let T be a theory and β be a formula, then

T ` β ⇒ τ(T ) ` τ(β).



March 25, 2004 14:39 WSPC/INSTRUCTION FILE gerla2

6 Authors’ Names

As a consequence,

τ(T) consistent ⇒ T consistent.

The converse implications do not hold, in general.

Proof. Let T ` β. Then a finite set {α1, ..., αn} of formulas in T and a normalized
proof π from α1 ∧ ... ∧ αn to β exist. Also, by Theorem 1 e have that F(π) is a
proof from τ(α1∧ ...∧αn) = τ(α1)∧ ...∧ τ(αn) to τ(β), and then τ(T ) ` τ(β). This
proves also that if τ(T ) is consistent, then T is consistent.

To prove that the converse of the first implication is not true, in general, let T

be a theory and α and α′ formulas such that τ(α) = τ(α′) while β = α ∨ ¬α′ is
not a theorem of T . Then, since τ(β) = τ(α) ∨ ¬τ(α′) is a tautology, we have that
τ(T ) ` τ(β) while by hypothesis is not T ` β.

Let α and α′ be two formulas which are not logically equivalent and such that
τ(α) = τ(α′). Then, by setting T = {α, ¬α′}, we have that while T is consistent,
τ(T ) is inconsistent.

Recall that the duality principle for projective geometry says that if α is a
theorem, then the dual formula obtained by reversing the roles of points and lines
is also a theorem. A similar principle holds for the Boolean algebras theory and
lattice theory. The notion of translation enables us to express these principles in a
general way. Indeed the proof of the following Corollary is trivial.

Corollary 1. (duality principle). Let τ be a translation from the language L into
L and T a theory such that τ(T ) ⊆ T. Then, for any formula α

T ` α ⇒ T ` τ(α).

If τ is involutory, i.e. τ2 is the identity, then

T ` β ⇔ T ` τ(β)

.

We conclude this section by considering the impoverished language Lτ .

Theorem 3. Let T be a theory in the language Lτ and β ∈ Lτ ,then

T ` β ⇔ τ(T ) ` τ(β).

Moreover,

T is consistent ⇔ τ(T ) is consistent.

Proof. Denote by τ ′ the map from τ(F )∪ τ(R)∪ τ(C) into Fτ ′ ∪Rτ ∪Cτ defined
by setting τ ′(x) equal to the first element of the set τ−1(x) with respect to the
fixed order. Then τ ′ defines a translation from τ(L) to Lτ and, for any formula x

in Lττ ′(τ(x)) = x. Assume that τ(T ) ` τ(β), where T is a theory in Lτ and β is a
formula in Lτ . Then, by Theorem 1, τ ′(τ(T )) ` τ ′(τ(β)) and therefore T ` β.



March 25, 2004 14:39 WSPC/INSTRUCTION FILE gerla2

Instructions for Typesetting Camera-Ready Manuscripts 7

4. Relaxed logic

To find an opposite of Theorem 1, we define a new logical apparatus where the
Modus Ponens rule is ”relaxed”, in a sense. Indeed, we admit that from α and
α′ ⇒ β we can infer β also in the case α′ 6= α provided that τ(α) = τ(α′). By
denoting with ≡ the congruence defined by τ , we can picture this rule as follows:

α, α′ ⇒ β, α ≡ α′

β

(Relaxed Modus Ponens, in brief RMP)

In a sense such a rule arises from the usual MP rule by replacing the identity relation
with the congruence induced by τ (see also [2]). We call τ -logic the resulting logic,
τ -proof any proof in τ -logic and we set T `τ α if a τ -proof of α exists under
hypotheses T . We can also consider a new rule, we call the equivalence rule as the
rule defined by the schema

α, α ≡ α′

α′

(Equivalence Rule, in brief ER)

Proposition 2. The Equivalence rule is equivalent to the Relaxed Modus Ponens
rule.

Proof. Assume that β is obtained by RMP from α and α′ ⇒ β, where α ≡ α′.
Then we can obtain β also by proving, by ER, α′ from α and, successively, by
applying the usual MP to α′ and α′ ⇒ β. Conversely, assume that α′ is obtained
from α by ER. Then we can obtain a τ -proof of α′ by considering a classical proof
of the tautology α′ ⇒ α′ and by applying RMP to α and α′ ⇒ α′.

Theorem 4. Let T be a theory, then, given any formula α,

T `τ α ⇔ τ(T ) ` τ(α) ⇔ τ(T ) ` τ(α).

Proof. To prove the implication T `τ α ⇒ τ(T ) ` τ(α), we prove that if α1, ..., αn

is a τ -proof of α under hypotheses T , then τ(α1), ..., τ(αn) is a proof of τ(α) under
hypotheses τ(T ). Indeed:

• if αi ∈ T then τ(α1) ∈ τ(T ),
• if αi is a logical axiom, then by Lemma 1 τ(αi) is a logical axiom
• if αi is obtained by RMP, from the formula αj and the formula αk = α′

j ⇒ αi,
then τ(αj) = τ(α′

j) and therefore, τ(αi) is obtained by MP from τ(αj) and
τ(αk) = τ(α′

j) ⇒ τ(αi)



March 25, 2004 14:39 WSPC/INSTRUCTION FILE gerla2

8 Authors’ Names

• if αi is obtained by Generalisation from αj , then αi = ∀xαj and therefore, since
τ(αi) = ∀xτ(αj), τ(αi) is obtained by Generalisation from τ(αj).

To prove the implication τ(T ) ` τ(α) ⇒ T `τ α, firstly we prove that if β1, ..., βn

is a proof in the language τ(L) under hypotheses τ(T ), then a τ -proof α1, ..., αn

exists under hypotheses T in the language L such that βi = τ(αi), i = 1, ..., n. We
proceed by induction on n.

Consider the case n = 1 and assume that β1 is an hypothesis, i.e. β1 ∈ τ(T ).
Then α1 ∈ T exists such that β1 = τ(α1). Assume that β1 is a logical axiom, then
by Lemma 1 a logical axiom α1 exists such that β1 = τ(α1). In both the cases α1

is a τ -proof under hypotheses T such that τ(α1) = β1.
Assume that n 6= 1. Then, since β1, ..., βn−1 is a τ -proof in the language τ(L)

under hypotheses τ(T ), by induction hypothesis a τ -proof α1, ..., αn−1 under hy-
potheses T exists such that βi = τ(αi), for i = 1, ..., n − 1. If βn is a logical
axiom, then going on as above we obtain that a logical axiom αn exists such that
βn = τ(αn). By adding to α1, ..., αn−1 the formula αn we obtain the τ -proof we
need. Assume that βn were obtained by MP from βi, and βj = βi ⇒ βn where
i, j ≤ n − 1. Then, since βj = τ(αj), αj has the structure δ ⇒ γ where τ(δ) = βi

and τ(γ) = βn. Consequently, by setting αn = γ, we have that αn can be obtained
by RMP from αi and αj = δ ⇒ γ. Thence, α1, ..., αn is a τ -proof under hypothe-
ses T such that βi = τ(αi), i = 1, ..., n. Finally, suppose that βn were obtained by
Generalisation, i.e. that an index i ≤ n − 1 exists such that β

n
= ∀xβi. Then, by

setting αn = ∀xαi, since τ(αn) = ∀xτ(αi) = ∀xβi = βn, we have that α1, ..., αn is
a proof under hypotheses T such that βi = τ(αi), i = 1, ..., n.

Assume that τ(T ) ` τ(α). Then a proof β1, ..., βn of τ(α) exists under hypothesis
τ(T ) and is not restrictive to assume that all the formulas β1, ..., βn are in the
language τ(L). Let α1, ..., αn be a τ -proof under hypothesis T such that τ(α1) =
β1, ..., τ(αn) = βn = τ(α). Then, since αn ≡ τα, by the ER, T ` τα.

To prove the equivalence T `τ α ⇔ τ(T ) ` τ(α), we observe that from the just
proved equivalence we have that T `τ α ⇔ τ(T ) ` τ(α) and that, since τ and τ

define the same equivalence relation in L, the relation `τ coincides with the relation
`τ .

5. Similarity-Based Logic

The main task of such a note is to contemplate the possibility of defining a similarity-
based logic by the notion of translation. To do this, we recall some basic definitions
in fuzzy set theory. Let [0,1] the real numbers interval we consider as a lattice
whose operations we denote by ∧ and ∨, as usual. Then a fuzzy subset of a set
S, or more simply a fuzzy set, is a map s : S → [0, 1]. We denote by F (S) the
class of all fuzzy subsets of S. Given a fuzzy set s, for every λ ∈ [0, 1], the subset
C(s, λ) = {x ∈ S : s(x) ≥ λ} is called the (closed) λ-cut of S. A fuzzy relation is
any fuzzy subset R : S × S → [0, 1] of the Cartesian product S × S. A basic class
of fuzzy relations are the similarities.



March 25, 2004 14:39 WSPC/INSTRUCTION FILE gerla2

Instructions for Typesetting Camera-Ready Manuscripts 9

Definition 6. A similarity is a fuzzy relation Sim : S × S → [0, 1] such that, for
any x, y, z ∈ S,
(i) Sim(x, x) = 1 (reflexivity)
(ii) Sim(x, y) = Sim(y, x) (symmetry)
(iii)Sim(x, y) 6= Sim(x, z) ∧ Sim(z, y) (transitivity)

Observe that while the similarities can be defined in correspondence with any
triangular norm, we confine ourselves to the minimum ∧ since in such a case, in
accordance with the following proposition, we can work by the cuts.

Proposition 3. Sim : S × S → [0, 1] is a similarity if and only if every cut
C(Sim, λ) is an equivalence relation.

Proof. Trivial.

Let L = (F∪R∪C) be a first order language and Sim : (F∪R∪C)×(C∪F∪R) →
[0, 1] be a similarity such that, for any pair x and y in L such that Sim(x, y) 6= 0,
1. either x, y ∈ F and ar(x) = ar(y) or
2. x, y ∈ R and ar(x) = ar(y),
3. or x, y ∈ C.

In other words, Sim is the union of a similarity in F , a similarity in R and
a similarity in C. According with Proposition 3 we have that, for any fixed λ ∈
[0, 1], the λ-cut C(Sim, λ) is an equivalence relation we denote by ≡λ. So, we
can consider the quotients Fλ = F/ ≡λ, Rλ = R/ ≡λ and Cλ = C/ ≡λ as new
sets of function’s names, relation’s names, and costants, respectively. We denote
by Lλ = (Cλ ∪ Fλ ∪ Rλ) the related first order language and we consider the
function τλ : (C ∪F ∪R) → (Cλ ∪Fλ ∪Rλ) defined by setting τλ(x) = [x]λ for any
x ∈ C ∪ F ∪R. Such a function defines a translation from L into the language Lλ,
we call λ-translation, and therefore we can apply all the notions and results about
the translations exposed in the previous sections.

Definition 7. Given a similarity Sim and λ ∈ [0, 1], we call λ-relaxed logic the
τλ-logic. Also, we write T `λ α instead of T `τ

λ α.

Then in the λ-relaxed logic we have that the Modus Ponens rule is relaxed by
admitting that from α and α′ → β we can infer β provided that Sim(α, α′) ≥ λ,
i.e. provided that α′ is ”sufficiently similar” with α. Now we are ready to propose
a deduction apparatus based on the notion of similarity.

Definition 8. Given a similarity Sim, the similarity logic is the logic whose de-
duction operator D : P (L) → F (L) is defined by setting

D(T )(α) = Sup{λ ∈ [0, 1] : T `λ α}, (1)

for any theory T and α ∈ [0, 1].



March 25, 2004 14:39 WSPC/INSTRUCTION FILE gerla2

10 Authors’ Names

We have to interpret D(T ) as the fuzzy subset of formulas we can prove from
formulas which either are in T or are ”similar” to formulas in T . The similarity
logic is an extension of the classical logic. Indeed if T ` α, then T `λ α for every
λ ∈ [0, 1] and therefore D(T )(α) = 1. In accordance with Theorem 4, we have the
following equivalent way to define D(T )(α).

Proposition 4. In the similarity logic,

D(T )(α) = Sup{λ ∈ [0, 1] : τλ(T ) ` τλ(α)} (2)

and

D(T )(α) = Sup{λ ∈ [0, 1] : τλ(T ) ` τλ(α)}. (3)

6. Questions and future works

Several questions arise from the ideas exposed in this note. The first one is seman-
tical in nature. Let τ be a translation from a language L into a language L′ and let
(D, I) be an interpretation of L:

Is there a natural way to define an interpretation (D′, I ′) of L′ in such a way
that τ is, in some sense, meaning-preserving?

Another question is about a possible definition of a similarity-based logic pro-
gramming in accordance with the definition of the previous section. As an example,
assume that P is a program and Sim a similarity. Then we can define the least fuzzy
Herbrand model of T given Sim as the restriction of the fuzzy set D(P ) of theorems
to the set of facts. In other words, the least fuzzy Herbrand model is the fuzzy set
of facts we can prove by (1). To this purpose observe that, for any λ ∈ [0, 1], τλ(P )
is a program we denote by P (λ). Assume that the (finite) co-domain of Sim, is
{λ0, λ1, ..., λh} where 0 = λ0 < λ1 < ... < λh = 1. Then, given a fact α, we can
calculate D(T )(α) as follows:
1. we rewrite T into h programs P (λ1), ..., P (λh) where P (λi) is obtained by substi-
tuting each symbol x ∈ C∪F∪R occurring in P with the first element x′ ∈ C∪F∪R

such that Sim(x, x′) ≥ λi;
2. we activate h parallel processes π1,...,πh corresponding with the goals τλ1(α), ...,
τλh

(α) and the programs P (λ1), ..., P (λh) in accordance with the usual resolution
technique;
3. we give as an output the value Max{λi : πi converges in a positive way}.
Obviously, such a procedure has the same computational difficulties of the usual
resolution process.

References

1. F. Arcelli, F. Formato and G. Gerla, “Extending unification trough similarity relations”,
BUSEFAL 70 (1997) 3-12.

2. L. Biacino, G. Gerla and M. S. Ying, “Approximate reasoning based on similarity”,
Math. Log. Quart. 46 (2000) 77-86.



March 25, 2004 14:39 WSPC/INSTRUCTION FILE gerla2

Instructions for Typesetting Camera-Ready Manuscripts 11

3. W. A. Carnielli and M. E. Coniglio, “Transfer between Logics and their Applications”,
Studia Logica to appear.

4. M. E. Coniglio and W. A. Carnielli, “A model theoretic approach to transla-
tions between logics”, Proceedings of 7th WoLLIC, Natal, Brazil, August 2000,
pp. 55-65

5. M. Cerioli and J. Messeguer, “May I Borrow You Logic? (transporting Logical Struc-
tures along Maps)”, manuscript.

6. F. Formato, G. Gerla and M. Sessa, “Similarity-based unification”, Fundamenta Infor-
maticae, 41 (2000) 393-414.

7. G. Gerla and M. I. Sessa, “Similarity in Logic Programming”, in Fuzzy Logic and Soft
Computing, eds. G. Chen, M.Ying and K.-Y. Cay, (Kluwer Ac. Pub., 1999).

8. J. Lambek and P. J. Scott, Introduction to Higher Order Categorical Logic (Cambridge
University Press, 1986).

9. E. Mendelson, Introduction to Mathematical Logic (D. Van Nostrand Company, Prince-
ton 1964).

10. M. S. Ying, “A logic for approximate reasoning”, J. Symbolic Logic 59 (1994).


