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1 Introduction

Unification is crucial in a wide variety of topics, ranging from artificial intelli-
gence to automated theorem proving. In the field of approximated reasoning, an
extended kind of unification assumes the same importance. A widely accepted
and complete definition of fuzzy unification has not been proposed in the liter-
ature yet . Our approach to fuzzy unification lies on the definition of similarity
relation. Several theoretical works have analyzed this relation and its properties.
All these aspects are strictly connected to the specific problem domain. Given a
first order language £, with a set of predicate names R and a set of constants
names C, we define two similarity relations on R and C. We expand the set of
terms of the language by considering a constant as a ”cloud”: a cloud is a set of
constants in C which can be seen as ”undefinetely similar” each other; therefore
we introduce a measure indicating the extent to which a cloud collapses into
a singleton. This degree is used to expand the relation of similarity in C to a
similarity relation on the generalized set of constants.

Starting from the first-order terms unification algorithm defined by Martelli
and Montanari ([15]), we describe a fuzzy extension of this algorithm. The fuzzy
unification algorithm is based on fuzzy similarity relations and the cloud are
arised whenever a ”constants mismatch” occurs. The extended unification algo-
rithm takes a system of term equations as input and gives a system of multiequa-
tions as output. The output system is composed of ”normalized” multiequations
i.e. such that the lefthand side and righ-hand side are respectively disjoint. In
a normalized system of term equations, each variable is bounded to at most a
cloud, so an "expanded” unifier is immediately available. The singleton measure
of the clouds in the normalized system can be seen as the ”cost” one must pay
in order to have a classical solution, i.e. a binding between a variable and a
constant in C.

2 Fuzzy Unification

The unification algorithm of standard logic programming is extended to the
fuzzy context using similarities relations.



2.1 Similarity Relations

A similarity relation is a fuzzy relation that extends in a given multivalued logic
the properties of the classical equivalence relation. Recall that an equivalence
relation on a set S is a model of the system of axioms

r(z,z) =1 (reflexivity )
r(z,y) —,r(y,z) (symmetry)
r(z,y) Ar(y, z) = r(z, z). (transitivity)

Since a formula « is true in a multivalued interpretation I if I(a) = 1, an
implication a => f is true in [ if I(8) > I(a) and I(a A B) = I(a) A" I(B8) =1,
the axiomatic system for classical equivalence turns into the following definition
of ”similarity” relation:

Definition1. A similarity relation on a domain i/ is a fuzzy subset R of i« x U
such that the following properties hold:

1) R(a,a) =1foranyacl
ii) R(a,b) > R(b, a) for any pair of elements a,b € U
iit) R(a,c) > R(a,b) AR(b,c) for any a,b,c € U.

Given a domain & and fuzzy similarity relation R on U, we can associate to
every set of elements of &/ a degree expressing the extent to which the subset
collapses into a singleton. Each set of elements in & can be seen as composed
by elements which are ”undefinetely similar” each other. For this reason we call
clouds the elements of the powerset of P(/).

Definition2. Given a similarity R on U, the R-singleton measure is the fuzzy
subset ug : P(U) — L defined by setting:

pr(X)= N\ R(z,2).if X #0

zxr'eX
pr(0) =1.

As an example, if R is a crisp equivalence relation then pg(X) = 1 if all the
elements in X are pairwise equivalent, uz (X) = 0 otherwise. Is R is the identity
relation, then pr(X) = 1if X is a singleton, 0 otherwise. We have the following

property:

Lemma 3. Assume that X # @ and that c € X. Then

pr(X) = \ R(z,c).

reX
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Let £ be a first order language whose set of constants we denote by C and
whose set of predicate names we denote by R and denote by a : R — N the arity
map. Suppose that both F, and C are finite. Let X4 be a finite set of variables.

We call set of eztended terms the set Tx,c = X4 UP(C) where P(C) is the
powerset of C. We call set of extended closed terms , the set Tec = P(C).

Given the terms ¢,,...,t, € Tx¢ and a constant p € R such that a(p) = n,
we call eztended atomic formula the expression p(ti,...,t,). If ¢1,...,t, are
closed terms, then the expression p(ti,...,t,) will be called eztended fact or
ertended ground fact. The extended terms and the extended patomic formulas
will be called eztended first-order expressions.

We assume as primitives two relations of similarity egz and egc on C and R,
respectively, where eq,(f, g) = 0 if a(f) # a(g) for any f,g € R.

We use eq4, €qo, fleqc, Peqr to define a similarity relation on the set of ex-
tended terms 7x ¢. We define a fuzzy binary relation eq as follows:

eq(z, z) = 1

eq(z,t) =eq(t,z) =0 ifz#tandz€ X
eq(t,z) =eq(t,z)=00ifr#£tandz € X
eq(d,d’) = pc(dud) if d,d’ € P(C).

Where pc denote p.q.. For reasons of simplicity, we identify the elements z in
C with the singleton sets {z} in P(C). Therefore, we write eg(z, z') instead of

eq({z},{z'}) Furtherly, we extend the relation eq to the set of extended first-
order formulas by setting

eq(p(t1,...,tn),q(t],...,th)) = Jof eqr (ti, t}) A eqo(p, q)-

The fuzzy relation egq is not a similarity relation on the set of first-order
expressions. In fact, for any d € P(C), eq(d,d) = u(d) # 1 in general. Noneon-
theless, the following proposition shows that the relation eq is transitive:

Proposition4. The binary relation eq is symmetric and transitive.

2.2 Unification through Fuzzy Similarity Relations

We define a “soft” version of first-order unification. Classically, two first-order
expressions ¢ and ¢’ are unifiable if there exists a substitution 8 such that 8(t) =
6(t’). We call system of equations S a finite set of equations over extended first-
order expressions. Given a similarity relation over first- order expressions, we
can define a “degree of unifiability” of a set of term equations by interpreting
in a multivalued logic the connectives of the meta-language used in the classical
definition of unifiability:

a finite system of equations S is unifiable if there exists a substitution
such that 0(t) = 8(t') for any equationt =1 € S.
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Since the soft interpretation of the existential quantifier and of the universal
quantifier is the supremum and the infimum respectively, the degree of unifiability
of a set of equations S is defined by

U(S) = sup{ inf eq(0(t),6(¢')} for any ¢,t' € Tx, ¢} (1)
6cO t=t'eS

Where O is the set of extended substitutions # : X — P(C) U X Besides, for
any substitution 8, we can define an unification indez of 9 with respect to S by
putting

v(,S) = t=i:3‘£s eq(9(t),0(t")).

Remark that from the degree of unifiability of a system of equations S we
can easily define a binary fuzzy relation R, expressing the unifiability degree of
a pair of firs-order expressions: simply set Ry(t,¢') = U({t =t'}) if t,t' € Tx, ¢,
otherwise, if ¢ = p(t1,...,t.),t' = q(t1,...,tn}) then Ry(t,t) = U({t; = t},i =
1...n}) Aego(p, q) where h is a function that yields the head of a predicate.

Many features of the classical unification relation still hold in the fuzzy coun-
terpart; as an example, consider the aspects of unification connnected to com-
putability theory. Assume that L and Tx ¢ are a computable lattice and a com-
putable set, respectively. Then we can apply the concepts of L-computability
theory (see [13]) and state whether or not the fuzzy relation U, seen as a fuzzy
subset of the set of finite equations over Tx ¢, is decidable or less. We have the
following result:

Theorem 5. Let Eq(S) be the set of equations over Tx ¢ Consider the fuzzy uni-
fication degree U as a fuzzy subset of P(Eq(S)). Then, if eqq is an L-computable
subset of C x C, U is L-computable.

3 A Fuzzy Unification Algorithm

In this section we give an extension of the Martelli-Montanari algorithm for first-
order terms unification ([15]). For a detailed description of this algorithm, see
appendix A. We describe an algorithm taking a set of equations as input and
giving a set of clouds and an extended unifier § as output, i.e. a unifier whose
range is the set of extended terms Tx ¢. The degree of unifiability of the unifier
@, written as v(f), is assumed as the infimum among the eqq and ego-singleton
measures of the clouds.

In our algorithm the clouds are originated by an equation of the kind a = b
where a and b are constants in C; mismatches of this kind are caused either by the
equations in input, as the one above, or by the links produced by the variables.
To clarify this latter case, consider the equations z = @,z = y, y = b. Clearly, the
variables z,y are linked in such a way to cause a "clash” among the constants -
a and b. While classical unification does not provide solutions for this case, in
our approach we set up an extended unifier of the form 6 = {z = {a,b}}. The
cloud {a, b} will be increased each time a cloud containing a or b will be formed,
or a link among variables instantiated with a or b will be produced. At the end
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of the algorithm, each cloud will be made up of constants that, if equal, would
enable the algorithm to give a classical solution. For this reason, the unification
index v(f) can be interpreted as the degree with which the classical unification
algorithm would have found a solution. In other words, v(theta) is the ”cost”
one must pay to solve the classical unification problem for the input system of
term equations.

The following example illustrates the main differences between the classical
Martelli-Montanari unification algorithm and our extension.

Ezample 1. Let S = {p(a,d,¢c),p(z,z,z)}. In this case the Martelli Montanari
unification procedure would yield the system of multiequations Z = {z=a=
b = c}. Clearly, there is a constant mismatch, causing the algorithm to fail. In our
approach, the multiequation a = b = ¢ is dealt as a cloud; therefore, a solution to
the unification problem still exists, i.e. the extended unifier § = {{z} = {a,},¢}},
whose degree of unifiability v(8) is preq,({a, b, c}), that could be assumed as the
cost one must pay to collapse the cloud {a, b, c} into a singleton set, say {a} and
allowing a solution to the classical unification problem for S.

The generalized unification algorithm is applied to a system of equations S.
Such equations are converted in a “normalized” set S’ such that &' = {X; =
Dy,...X: = D;} where X; is a (posibly empty) set of variables and D; a cloud,
respectively. The set S’ is called normalized provided that the left-hand-side
members and the right-hand-side members of its equations are respectively dis-
Joint. A normalized set of multiequations has a straightforward implicit gener-
alized unifier: for any equation of the kind X = D, simply take {z = D} for
any variable z € X. If D = 0, the extended unifier is obtained by linking the
variables in X one another. The extended unifier 8 is associated to a ”degree
of unifiablility”, given by »(S) = A;_, u(D;). In accordance with the kind of
the clouds, u can be peq, or peq,. In the following subsection we will prove
some important properties of such a degree. Furtherly, we extend the general-
1zed unifier by trying to expand the clouds without altering the cost payed for
unification, i.e. the degree v(S). This is a thoroughly algebraic operation, and
involves only the fuzzy binary relation eq. We get the system S” which is of the
kind {X; = Dj,...X: = D;} where D} D D; for any i and v(S") = v(S'). Fi-
nally, we normalize S” and take v(S") as the degree of unificability of its implicit
generalized unifier. Such an operation is called algebraic lifting.

To clarify this concept, the following example performs the algebraic lifting
of the extended unifier of example 1.

Ezample 2. Let C = {a,b,c,d,e}, where eqq is given as follows: egq4(a,b) =
eqda(a,d) = eqa(b, d) = eqq(b, c) = eqa(c,d) = 0.9

egd(a,c) = 0.6,eqa(e,z) = 0,Vz € C. Consider the set of term equations S =
{p(a,d,c), p(z, z,z)}.Its normalized formis S” = {{z} = {a, b, c}} and p({a, b, c} =
0.6. Since egq(d,a) = 0.9 > 0.6, the cloud {a, b, c,d} has the same egq-singleton
measure 4 of {a, b, c}. This means that the extended unifier ¢ = {z — {a,b, ¢, d}
solves the unification problem for S at the same cost of the unifier . Moreover,
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the unifier ¢’ is a more significative unifier for S than 6, since it gives a huge
clouds ad the same eg4-singleton measure.

In the following we give a procedural description of the extended Martelli-
Montanari algorithm of unification.

procedure mgu(S, 6, D)
use mgul(Z, 6, D);
lifting(S, T, D, Dz);

begin
T:=0; D:=0;0 =e¢
D' =068 =0;

split(S,S', D, D');
Z := compact(convert(S’));
D:=DuU D;
mgul(Z, 4, D);
end;

procedure mgu(Z,#6, D);

begin
for all S=0€Z doT:=Tu{S=0};Z:=2\{S=0);
forall #=(ay,...,an)€Z doZ:=2Z\{0=(ay1,...,an)};
D :=Du{(ay,...,an)};
forall S=MeZ do begin(*plug-in*)
T:=Tu{S=M};
Z :=7Z\{S = M},
end(*plug-in_end*)
lifting(S,T,D,Dz)
D := Dgz; 6 := solve(T)
end;
Algorithm 1
procedure lifting(S,S’,D,D’)
begin
S = 0;
A= Agep #(d)
forall X=DeS do

S =S u{X =H\D)Y};
S’ := convert(S’);
D = UX:DGS’{D};
end
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Algorithm 2

Split(S,S’, D, D) is a procedure that takes a pair of systems of term equa-
tions S and S’ over the set of first-order expressions, and a pair of sets of clouds
D and D’ as arguments and, when it terminates, S’ is a system of equations
obtained by decomposing along its arguments any equations of the kind p = ¢
where p and ¢ are predicates with the same arity; D’ is the normal form of the
set of clouds produced by splitting any equation of the form ¢ = ¢’ along its
arguments; whenever an equation of the kind ¢ = ¢’ is encountered, such that
a(t) # a(t’), the algorithm Split yields a failure state failure := true that is
inherited by the whole unification algorithm.

Convert(S) is a function whose output is a system of multiequations. A

multiequation is an expression of the foom z; =23 = ... =2, = a; = a3 =
... = am which can be conveniently represented in the form {z;,z,,..., zp} =
(al, as, ..., am).

The function convert simply maps each term equation ¢t = ¢’ into an equiva-
lent multiequation of the kind X = D, where X is a set of variables and D is a
cloud. Either X or D could be empty. The procedure is specified as follows:

'{t,t'}:ﬂ ift,t' € X4
{t}=¢ ift € Xq4,t' € P(C)
Convert (¢,t') = { {t'} = (2) ift' € X4,t' € P(C)
d=tut if t,t' € P(C)
| Bift,t’ eP(C)and t =¢

- Compact(Z) is a function that takes a system of multiequations as input and
yields a ”compactified” version of it. The compactification is performed through
a merging of equivalence classes of multiequations generated by the following
binary relation R

(S=M)R(S' = M) iff (SNS' # 8) or (M N M’ # ) (2)

Let R be the transitive closure of R. The relation R partitions a set of multi-
equations Z into a set of equivalence classes.

As a result, the function Compact gives a set of multiequations, each one
made up of the merging, member by member, of the multiequations in the cor-
responding class. ‘

Solve(S) is a function that takes a triangular set of multiequations as argu-
ment and derives an extended substitution as follows:

solve({z1,...,,z.} =M ={z; > M,...,z, - M}
solve({z1,...,zp} =0) = {2, = 22,...,2n-1 — z,}

Where M is a cloud of constants in P(C).
The following example illustrates the behaviour of Algorithm 1:
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Ezample 3. Let S = {p(a,b,c),p(z,z,z)}. In this case Split(S) yields the set of
equations S’ = {z = a,z = b, z = c}. The function compact(Convert(S’)) yields
the set of multiequations {{z} = {a,b,c}}, where {a,b,c} is a cloud. Then, the
mgu({{z} = {a,b,c}},, D) is called, with T = @ and D = @. At the end of
the main procedure mgu, the variable D is set with the cloud {a,b,c} and
is the generalized substitution {z — {a,b, c}}. Considering the fuzzy similarity
relation of example 2, we apply the operator Ho ¢ to the cloud {a,b, c}, getting
the cloud {a,b,c,d}. So the compactified version of S’ is {{z} = {a,b, ¢, d}}.
Finally, the cloud produced by the algorithm is {a, b, c, d}.

3.1 Algebraic Extension of Unifiers

The unifier supplied by the normalization of the input system of equation S goes
through the process of algebraic lifting. This process is described as follows.
Given a normalized system S, suppose S = {X; = Dy,...,X; = D} and
u(D;) = Ai,i=1,...,t. Consider the infimum \ = A\i = 1*);. We now partition
the set of indexes 1...¢ into a family of indexes Iy,...,J, such that, for all
J=1...5s H\(Dm) N HA(Dy,) # @ for any n,m € I;. Consider the set K; =
Us,en, #x(Djy),- - Ky = U,,er. Hx(Dj,). We have the following lemmas:

Lemma6. Let Hx(X) be an operator from P(C) into itself, defined as follows:
Hy\(X) = {y € Cleg(y,z) > A for some z € X}.
Then H), is a closure operator, i.e.

i) H\(X) 2 X for any X in P(C).
ii) H\(Y) 2 Hx(X) f Y D X.
i) Hy(Hx (X)) = Hx(X)

Lemma7. Let D be a cloud in P(C). Suppose that u(D) = X. Then the following
properties hold:

(1) p(HA(D)) = A
(1) Hx(Hx(D)) = Hx(D).

Lemma8. Foranyi=1...t, u(Hr(D;)) > A

Given the element J, it is reasonable to ”close” the clouds of bindings Dy, . .., D;
by means of the operator H), since ) is the ”minimum cost” one must pay for
having a solution to the unification problem. Such process is called solution lift-
ing, since the cloud is maximized according to the criterion of the ”similarity
cost”. The system S = {X; = Ky,..., X, = K,} is the normalized version of
the system S'. Remark that the normalization involves only clouds, since the
sets of variables are already disjoint in S’. At this point, the lifting process pro-
ceeds along an alternate use of application of operator Hy and a compactification
operation, according to an algorithm of the following kind:
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So =5

Do = A= Ai_y p(Dy);
Until A; = Aj41 do begin
Si+1 = compact(Hy,(S;))
Ai+1 = Apes, #(D)

end until

Sl o e

Algorithm 3
The following theorem shows that Algorithm 3 is a process that is performed
in an uniform number of steps

Theorem9. Let S = {X; = Dy,...,X; = D,} be a normalized system of term
equations, such that /\:=1 p(D;) = A. Let Ky,...,K,,s < t, be defined as above.
Let S = {X{ = Ky,..., X, = K,} be the lifted and compactified version of S.
Then the following properties hold

i) H\(K;) =K, foranyi=1,...,s

i) Ni_y (K:) = A
i11) S; = S1, i = A foranyi < 1.

Theorem 9 shows that Algorithm 3 is actually a two-steps procedure. In other
word, the system S; = compact(H»(S’)) = S’ and A\; = Ao = . Therefore, the
lifting process is simplifies into a one-step application of the operator H) and
the compactification of the resulting system of equations, as implemented into
algorithm 1.

4 Conclusions and Future Developments

The modelization of similarity-based reasoning is a useful tool, both from the
theoretical point of view, since it enhances the scope of the classical logical
systems, and for practical purposes, since Al-based applications deeply benefit of
the features provided by tools that manage similarity. Our extension of first-order
unification using a fuzzy relation of similarity supplies an elegant and powerful
unification procedure that can be suited for resolution-based inferential engines
to be used in deductive-data bases. We are aiming at extending this algorithm
to the full-fledged algebra of first-order terms.
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