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giangiacomo Modal Logic and Model Theory 
Gerla 

and 

Virginia 

Taccaro 

Abstract. We propose a first order modal logic, the QS?E-logic, obtained by 
adding to the well-known first order modal logic QS4 a rigidity axiom sch?mas : A -> O A, 

where A denotes a basic formula. In this logic, the possibility entails the possibility 
of extending a given classical first order model. This allows us to express some impor? 
tant concepts of classical model theory, such as existential completeness and the state 
of being infinitely generic, that are not expressibile in classical first order logic. Since 

they can be expressed in 
I/^-logic, 

we are also induced to compare the expressive 
powers of QS4?E and Lm ?,. Some questions concerning the power of rigidity axiom 
are also examined. 

1. Introduction 

This work represents an attempt to establish a "bridge" between first 

order modal logic and classical model theory. To this purpose, we define 

a new modal system, the QS&E-logic, obtained by adding to the first 
order modal logic QS4* a "rigidity axiom" schema (see also [3] and [4]) 

(E) A->?A 

where A is any basic formula. We prove completeness and compactness 
theorems for QS&E. In the semantics which we propose for QS4E a for? 

mula of the type O A is interpreted as the possibility of extending a given 
model to another model in which A holds. This enables us to express 
some recognized concepts of model theory, such as being existentially 

complete (Prop. 3.1) and infinitely generic (Prop. 4.4) which are not 

expressible in classical first order logic (for example, see [6] Corollary 
3.17^ and Theorem 14.13). Then we can derive the well-known results 

about the inductiveness of the class of infinitely generic models and of 

the class of existentially complete models of a given theory (Prop. 5.4) 
from a more general proposition about QS?E (Prop. 5.3). Other examples 
of the possibility of proving results of classical model theory via modal 

logic, are expressed in Prop. 3.1 (equivalence between (ii) and (iii)) and 

in Prop. 4.4 (equivalence among (ii), (iii), (iv) and (v)). Since existential 

completeness and being infinitely generic are concepts which are axioma 

tizable also in ? (see [6] pag. Ill), we compare the expressive powers 
of ?S4Eand Lm?m, 

Finally, reversing the above point of view, we utilize the stated rela? 

tionship between modal logic and classical model theory in order to prove 
some results concerning the rigidity axiom. 
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2. The 0S4E-Logic 

In the sequel L denotes a classical first order language with equality 
and ML its modal extension. Namely, we assume H, a, v, 3, d to 

be primitive connectives of ML and ->, ?-?, V, 0 abbreviations. QS?E 
is used for the logic obtained by adding to the quantified modal logic 

with equality QSi the axiom schemata 

(E) A~> DA 

where A stands for a basic formula, that is an atomic formula or the nega? 
tion of an atomic formula of L. 

Recall that the following formulas are axioms (or theorems) of QS? 
and hence of QS?E. 

(1) n(A-*>B)->( oA-> DJB) 

(2) nA-+A 

(3) ?A~> D ?A 

(4) lx1 ...oan D-?->D(3a?i ... xnA) 

(5) UA v DJ5-> D(A vB) 

(6) D(A AB) +* ?Aa?B 

Observe also that in QS? the following formulas are consequences of (E). 

(7) x ^y <->n(x =y) 

(8) x ## <->n(x ^y). 

For any Jfi-formula A we define \-q$&-eA 
as usual. If JTis a set of formulas 

of ML, then r\-QmmA 
means that YQS B1 a ... ABn->A for suitable 

J3X,..., Bn e F. Sometimes we shall write Y A and F h A instead of YQSiEA 
and r r-Q8?EA, respectively. Such a definition of "deduction from hypo? 
theses" entails that, even if the necessity rule is assumed, A \- nA does 

not hold, in general. 
An adequate semantics for QS?E is obtained by the following defi? 

nitions. A QSi-frame is a pair ( W, <) where W is a class and < is a reflexive 

and transitive relation on W. A QS -modal structure 8 = 
(~#, W, <) 

for ML consists of a QS4-frame (W, <) and a family M = (Mw)weW of 

classical models Mw 
= 

(DWJ Jw) of L, where Bw is the domain and Jw 

the interpretation of MWJ such that ?? < w' implies Mw ? Jfw, ( Jf^ is 

a submodel of Mw) for every w, w' e W. The interpretation of = is the 

identity in every Mw. Once a single element wQ has been selected in Wy 

the pair (8fwQ) is called a QS?E-model for J?I. Hbte that the proposed 
semantics is obtained by imposing conditions not only on the frame 

( W, <), as it is usual for other modal logics, but also on the interpretations 
of L. 
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Every class S of classical model for L defines a QS?E-mo?&l structure 

for which W = 
S, M is the identity map and <is g. We use the same 

Symbol ? to denote this QSiE-mo?&l structure. In particular, the class 

of models of a given first order theory defines a QS4U-modal structure. 

In order to take account of such a type of 0S4U-modal structures we 

have extended the usual definition, assuming that W is a class and not 

necessarily a set. 

If w e W, %,..., ap eDw and A is an J??-formula, then the relation 

8,w? A[ax,..., ap] {A is satisfied in 8 at w by ax, ..., ap) is defined by 
recursion on the complexity of A, as usual (cf, for example [2]). The 

only interesting clause is when A has the form DJB. In this case we set 

8, w N B[a19..., ap] if and only if, for every w' e W such that w < w% 
we have 8,w' N B[ax, ...,ap]. We write 8,w? A if 87w f= A[at, ...,a,p] 
for every sequence %,..., ap of elements of Mw, 8 i= A9 A is valid in 8, 
if 8, w f= A for every w e W and ^qs?bA (or simply \=A), A is QS?E-v?lid, 
it 8 \= A for every ?S4U-modal structure #. 

If Tis a set of formulas of ML, a QS?E-mo?el (#> w0) is a QS?E-rnodel 
o? T it 8?wQ? A for every Jl e T. We write T1= ??4JBA (or simply JP1= A), 
and J. ?? a logical consequence of F, if every 0$4E-model of J1 is a QS?E 
-model of A. 

It is easy to prove, by induction on the complexity of A, that the 

following weak forms of substitution of equivalents do hold. 

(51) If A' is an J?L-formula obtained from A by replacing some occur? 

rences of a subformula B o? A with a formula 2?', we get: 
8 ? B ?-* B' implies S?A++?. 

(52) If B does not fall in the range of D, i.e. does not occur in a sub 

formula of A of the form DC, then: 

N (JB <-*JB')~>(^ <r?A'). 

3. Completeness and compactness 

Now, we shall prove a strong completeness theorem and a compactness 
theorem for QS4E. 

Proposition 3.1 (Strong Completeness Theorem). Lei F be a set of 

ML-formulas, consistent with respect to QS4?E. Then there exists a QS?E 
-model of F. 

Proof. The strong completeness for QS?E can be proved by pointing 
out the strong completeness result for QS? already known (see, for example 

[5]). To this purpose, observe that if Fin consistent with respect to QS4?ET 
then FuE'9 where 

JE/' = 
{ O (Va?!... xn(A~> uA))?A any basic formula} 

is consistent with respect to QS4s. Indeed, if we can derive a contradiction 
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C from FuE' in 0S4, then \-QS4tAxA... aAp aBx a ... 
ABq->C where 

A19..., Ap and BX9 ...9Bq 
are suitable formulas of E' and F, respectively. 

Since QS4?E is an over-logic of QS?9 we have also VQsmAx A ... 
AJ.^ a 

a!?! a ... 
aBq-+C. Now, by Necessity Rule and Axiom Schema (E), we 

obtain YQS?EAi 
for i = 

1,..., p. Then by Modus Ponens we get VqswBi a 

a ... 
ABa->0 and therefore \-q8hEC9 

a contradiction. 

From the consistency of FuJET and the strong completeness theorem 

for QS?9 it follows that there exists a 0$4-model (89 wQ)9 with 8 = (J(9 
W9 <), where W is a set, w0 e TT, < is a reflexive and transitive relation 

on W, e# = 
(Jlf?,)??^ is a family of models, Jf^ 

= 
(Dw9 Jw) such that 

= is interpreted as identity and Dw s Dw> for every w9w' eW9 ?? < w'. 

Moreover, as we know, it is not restrictive to assume that w0 < w for 

every w e W. We shall prove that, for every w9 w' e W9 if w ^.w' then 

Jf^ is a submodel of Mw,. Now, let jB be a basic formula, then, by hy? 

pothesis, 89w0? uNxx ...xn(B-> DJB). In particular, if J. is atomic and 

^-ary, then$, w ? Vxx ..?xn(A-> aA)and$, w ? 
Vxx...xn( ~|JL-> q( 1^.)}. 

So, if %,..., an are elements of Dw such that (%,... 9an) e JW(A)9 whence 

89w ? A \aX9..., an]9 then 89 wf ? A [%,..., aw] and therefore (%,..., ?j 

g4 (JL). Conversely, if (a19..., aj gJw\A) then $, w' t= A[%,..., an]. 
Since 89w ? "Ti.-* D( T?), we have $, w 1= JL[%,..., an~\ and therefore 

(%,..., an) eJw(A). In conclusion, ^(A) = ̂ (JL)nD^. 
This proves that Mw is a submodel of Mw, and hence (#, w0) is a QS?E 

-model of r. 

Observe that the 0^4-E-model given by Proposition 3.1 is constructed 

in such a way that W is a set and card[( IJ Dw)uW] 
= card{L). Then, 

weW 

despite the fact that W is sometimes a proper class, we can work out 

L?wenheim-Skolem type theorems for the 0S4E-logic. 

Proposition 3.2. If F is a set of ML-formulas9 and A is any ML-for 

mula9 then r ?qS*eA if and only if F YQS?EA. 

Proof. If r is inconsistent, the proof is obvious. Otherwise, assume 

r ? A and F non h A: then Tu 1-4. is consistent. By Proposition 3.1, there 

exists a 0?4.E-model of Fu~l?. This contradicts the hypothesis Fi= JL. 

Conversely, it is a matter of routine to prove that every axiom of 

QS?E is QS4JS-valid. Moreover, the rules of inference (in particular the 

necessity rule), preserve QS?E-validity. This proves that VA implies 
?A. 

Now, if r V A9 then h Axa ... a An-+A for suitable Ai e F and for that 

reason ?Axa ... AAn-+A. Now, if (89 wQ) is any Q?4jE-model of F, then 

{89 w0) is a ?>S4E-model of {AX9 ...9An} s F and, therefore, of A. 

Thus F1= A. 

Proposition 3.3 (Compactness Theorem). Let F be a set of ML-for 
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mulas such that every finite subset of F has a QS?E-model. Then F has 
a QS?E-mo?e?. 

Proof. It follows from Proposition 3.1. 

4. Existentially complete models and model completeness 

Now we shall show that some well known classes of models, which 

are not definible in classical first order logic are, in a sense, definable 

in QS4?E. The following definitions generalize a notion of classical model 

theory. A QS?E-model (89wQ) of ML is existentially complete if, for every 
w eW such that w0 < w9 MWQ 

is existentially complete in Mw [6]. 
If E is a class of classical structures for L and M e E it is easy to prove 

that the 0$4U-model (?7, M) is existentially complete with regard to 
the above definition if and only if M is existentially complete in E with 

respect to the classical definition. 

Proposition 4.1. The following are equivalent: 

(i) {S9Wq) is existentially complete ; 
(ii) 89 Wq ? 0-4. <-> A for every existential L-formula JL; 

(iii) 89 wQ ? 0-4. <-> A for every universal-existential L-formula A. 

Proof. (i)=>(ii). Let aX9...ap be elements of Mw9 then 89w0 
? 0-4 [a19..., ap] if and only if there exists w e W such that wQ < w and 

89 w ? A[aX9..., ap]. Since A is a formula of L9 this is equivalent to say 
that Mw ? A [%,..., ap~\. But 

MWq 
is existentially complete in Mw9 so 

Mw ? A[a19...9 ap1 and therefore 89 w0 ? A [ax, ..., ap~?. In conclusion 

89 wQ ? ?A->A9 and thus 89 w0 ? 0-4. <-> .4.. 

(ii) =>(iii). Let A be the universal-existential .L-formula Va^... 
... 

xn3yx ...ymB9 with .B quantifier-free. Then by (4) f= oV^j.... #n 3 #!... 

...ymB-^fxx..:xn03yx...ymB. Now, by hypothesis, S9w0? oHyx... 

...ymB<->3yx...ymB9 
so by S2 89w0?<>\fxx...xn3iyl...ymB-*$x1... 

... 
1?jiyl... ymB. The converse of (2) yields 89 wQ ? Va?x... #n3yi... 

^JS^oV^i.oon3y1 ...ymB9 and (iii) is proved. 

(iii) => (i). Immediate. 

From the above Proposition, it follows, for example, that if E is the 

class of all fields then a field F is algebraically closed if and only if (E9 F) 
is a QS?E-model of F = 

{J.?-?<>J./JL existential X-formula}, where L 

is the language of the theory of fields. In general, if ? is a class of structures 

of the same type, then we can assume F as a system of axioms in QS4E 
for the existentially complete elements of E. 

Now we want to express the notion of model-completeness. A QS&E 
-modal structure 8 is model complete if, for every w9w' e W such that 

w < w'9 Mw, is an elementary extension of Mw. Observe that the concept 
of model-completeness is relative to QS4?E-mod&\ structures while existen? 

tial completeness to ^S4JB-models. A class E of models of L is model 
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complete in the sense of the classical definition [6] if and only if the asso? 

ciated QS?E-modal structure is model complete according to the above 

definition. 

Proposition 4.2. Let 8 be a QS?E-modal structure, then the following 
are equivalent: 

(i) S is model complete] 
(ii) 8 ? A*-* D-4 for every L-formula A*9 

(iii) 8 ? A?-* uA for every ML-formula A. 

Proof, (i) => (ii). Obvious. 

(ii) => (iii). We proceed by induction on the number n of occurrences 

of d in A. If n = 0 then A is a formula of L and the assertion holds by 

hypothesis. If n > 1, let DJS be a subformula of A such that B is an .L-for? 

mula. From (ii) it follows that 8 ? JB?-?dJB. Then, if A' is that formula 
obtained from A by substituting B for dJB we have, by inductive hypothe? 
sis, S ? A'<-> D.4/ and, by SI, S ? A++A'. Still, by SI, it follows 8?A^nA. 

(iii) => (i). Immediate. 

In other words, Proposition 4.2 says that 8 is model complete if and 

only if the "theory" {AIS ? A} "collapses", i.e. every Jfi-formula is 

equivalent to the L-?ormula obtained from it by deleting every occurrence 

of D. 

5. Infinite forcing 

Let ?bea modal structure, A(xX9..., xp) 
a formula of L whose free 

or bound variables are among xX9..., xp9 w e W and %,..., ap elements 

of Mw. So, the relation 8, w \? A [%,..., ap] ((89w) infinitely forces A 
in al9 ..., ap) is defined inductively as the satisfiability relation 89 w 

? A [%,..., ap1 except for what concerns the negation, for which we 

have: 

8jW\? "UB[a19..., ap] if and only if for all w' e W9 such that w < w', 

8, w non\? B[a19 ..., ap]. 

A QS4JE-model ($, wQ) is infinitely generic if for every formula A (x19... 

...9xp) of L and al9 ..., ap elements of 
MWq9 

either 89w0\?A[aX9...9 ap] 
or $, Wq\? A\aX9 ..., ap]. 

The notions of infinite forcing and infinitely generic coincide with the 

classical ones if 8 is the modal structure associated to a class of models 

of L [6]. 
Now, in order to express the infinite forcing in the QS4?E-logie, we 

introduce a suitable translation r from i-formulas into jMX-formulas. 

Definition 5.1. The map r from L-formulas into ML-formulas is 
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defined by recursion on the complexity of JD-formulas by setting: 

(i) if A is atomic, then xA = A ; 
(ii) if A = JBvO, then x{BvG) = rJSvrO; 

(iii) 
if A =BaC9 then x{BaG) = tJBatC; 

/iv) if A = 
lxhB(xh), then r(3%JB(%)) 

= 
lxhxB(xh); 

(v) if A = 
~1B9 then t(~1B) 

= DHrJB. 

Obviously x is not compatible with the equivalence, i.e. we cannot 

infer from A<-+B that x(A)?-*x(B). The translation x is strictly related 

to the choice of a, v,H, 3, as primitive connectives of L. We made this 

a choice in order to be able to describe the infinite forcing as defined, 
for example, in [6]. Observe that translations into a modal language are 

already known in literature, see [7]. 
The following proposition shows the relation between t= and IN. 

Proposition 5.2. 8, wQ \? A [a19..., ap] if and only if 8,w0? (rA) 

Proof. The proof is by induction on the complexity of A. 

The following proposition gives us two useful properties of r. 

Proposition 5.3. The following hold: 

(i) hT("1-4)->nT-4; 
(ii) \~ xA-^DrA. 

Proof, (i). It follows from (v) of Definition 5.1. and (2). 
(ii). The proof is by induction on the complexity of A. If A is atomic, 

then xA = A and (ii) follows from axiom schema (E). 
Let A = jBvO, then by inductive hypothesis, h t(13)~>d(t(JB)) 

and hx{G)->n(x{G)). Thus, \-r(B)Vt(C)-^n(r(B))va[r{G)). From (5) 
we also have bx(B)vx(G)~>n(x(B)vx(G)) and therefore J-t(JBvO) 

->a(r(J5vO)). 
If A = BaG, by inductive hypothesis, we get \r x{B) ax{C) -> 

n(x{B)) a 

ad(t(0)) and, by (6), Ix{B)ax{G)->?(x(B)ax{G))9 i.e. \-x(BaG) 
^Dx(BaG). 

If A =lxhB(xh)9 then, by inductive hypothesis, bx(B)->?(x(B)) 
and hence V3iXhx(B)->3xhn(x{B)). From (4), it follows that bBxhx{B) 

->n(3xhx(BJ) and therefore \-x(3xhB)->DxQxhB). 
Finally, if A = ~\B, we must'prove that'h ?(l(xB))^n{?(l{rB))), 

but this follows from (3), so (ii) is proved. 

Proposition 5.4. The following are equivalent: 

(i) {S9wQ) is infinitely generic, 
(ii) 89 w0 ? r(iv"li) for every L-formula A; 

(iii) 89w0? Q(tA)<-+tA for every L-formula A-, 
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(iv) 89w0? ~1(xA)*->xC~]A) for every L-formula A; 

(v) 89 w0 ? A*-*x(A) for every L-formula A. 

Proof, (i)o(ii). It follows from the definition of infinitely generic 
QS?E-mod?l, condition (ii) of Definition 5.1 and Proposition 5.2. 

(ii)=>(iii). From 89 wQ ? r(iv"1i) it follows 89 wQ ? xAvx{~]A) and, 
thus, 89w0? xAvnixA. This proves that 89 w0 ? ~in{~~]xA)-+xA and 

therefore, 8,w0? 0{xA)-^xA. 

(iii) => (iv). It suffices to observe that by (iii) 89 wQ? nC~]xA)*-*~~]xA. 

(iv) => (v). We proceed by induction on the complexity of A. 
If A is atomic, (v) is obvious. 
If A = B vO, A = BaG or A = 

lxhB(xh), the inductive step follows 
from the definition of r. 

If A = 
IB, then 8,w0? "IB if and only if S, w0 non? B if and only if, 

by inductive hypothesis, 8, wQ non ? x{B). Then, (iv), yields 8, wQ ? IB if 
and only if 89w?? t("~]JB). 

(v)=>(i). Since 89w0? A or 89wQ? ~~\A and, by hypothesis, 89w0 
? i<->ri and 89 w0 ? "lA^x(lA)9 from 89 w0 ? ivli it follows 89 w0 
? xAvx(lA). Condition (i) follows from the definition of infinitely generic 

QS4?E-mod?l and Proposition 5.2. 

Proposition 5.4 shows that the infinitely generic QSiE-mod&h are 
the models of suitable axiom systems, for example, F = 

{x(Av~]A)?A 
any .L-formula}. In particular, a classical structure M is infinitely generic 
in a class E of models of L if and only if {E9 M) is a QS4?E-mod?l of F. 
In this sense, we regard F as an axiom system for the infinitely generic 
structures. 

6. Inductive classes 

In order to give an example of an application of 0S415-logic to classi? 

cal model theory, we will derive from a general result on QS>4?Mogic 
a well-known result in classical model theory. Namely, the existentially 

complete and infinitely generic structures of a given class of structures 

constitute inductive classes. 

To this aim some definitions are introduced that generalize those 

given in literature. An ascending chain of models of us a sequence (-3fn)n6jy 
of models of L such that if n < m then Mn ? Mm. For the definition of 

the union, (J Mn9 of an ascending chain see [2]. 
^wfe neN 

Definition 6.1. A subclass E' of a class E of models of L is called 

inductive in E if for every ascending chain (Mn)neN of elements of Ef, 
from \J Mn e E it follows that \J Mne E'. If E' is inductive in the class 

neN neN 

of all models of L then we say that E' is inductive. 
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Definition 6.2. An JfX-formula A is inductive in a class E of models 

of L if E' = 
{Ml E9M ? A} is inductive in E. A is inductive if it is 

inductive in every class E. 

Proposition 6.3. Let A be an ML-formula, then nA is inductive. 

Besides, if A is inductive9 0A*-?A is inductive. 

Proof. The formula nA is inductive, by means of simple conside? 

rations. Moreover, let E be any class of models of L, A an inductive for? 

mula, E1 = 
{M eE/ E,M ? <>A*->A} and (Mn)neN an ascending chain of 

elements of Ef such that M = {J Mn e E. We shall prove that M e E\ 
__ neN __ 

that is E,M ? OA*->A. Assume that E9M ? 0-4. Since every Mn is a sub? 

model of M9 we have E9Mn ? 0-4 for every neN. As, by hypothesis^ 

E,Mn ? 0-4.?-?.4.? we also get E,Mn ? A for every n e N. A being inductive, 
it follows that E9M ? A. In conclusion, E, M ? <>A-->A and therefore 

Z9B\rOA<->A. 

Proposition 6.4. Let E be a class of models of L and ?{E) and <f{E) 
the classes of models which are existentially complete and infinitely generic 
in E, respectively. Then9 ${E) and *f{E) are inductive in E. 

Proof. S(E) is inductive by Proposition 4.1. (ii) and Proposition 6.3. 
From (2) and Proposition 5.3 (ii), it follows that VxA^UxA for every 
Jfi-formula A. Then, from Proposition 5.4 (ii) and Proposition 6.3, it 

follows that <f{E) is inductive. 

7. QS4E-logic and L m-Logic 

In this section we want to compare the expressive powers of QS?E 
and La a. This comparison raises some difficulties, since the models 

of QS4E and of Lm m are different "objects". In spite of this, we can ask 

whether there exists a translation / from the Jfi-f ormulas into the 
JL^?, 

-formulas such that E9 M ? A if and only if M ? f(A) for any class E of 

models o? L, any M e E and any formula A of ML. Conversely, we can 

ask whether there exists a similar translation from Lm a-iormulas into 

Jii-formulas. The answers to both questions are negative. In order to 

prove this, we suppose in the sequel that L is the pure identity language. 
Then a model of L is any set, and a QS?E-mod&l structure for ML is 

any family (Xw)weW of sets, with ( W, <) a QS4E-?mme9 such that Xw ? Xw> 
for every w, w' e W such that w < w'. In particular every class 0 of sets 

defines a QS?E-mod&l structure. The following proposition shows that, 
if E is the class of all sets, then, relatively to the QS?E-mod?l structure 

E, we can eliminate the modal operators. 

Proposition 7.1. Let L be the pure identity language and E the class 

of all models of L. Then for every ML-formula A there exists an L-formula 
A* such that E? A<-?A*. 
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Proof. First, we assume that A = uB with B an .L-formula. Now, 
from the theorem of Elimination of Quantifiers for the pure identity 
language (see [2], Theorem 1.5.7), B is equivalent to a formula of the type 

(AxvBx) A ... 
a(ApvBp}9 where the AJs are L~?ormulas without quanti? 

fiers and the BJs are sentences of L. Then, h dB?-* D ((AxvBx) 
a ... 

A{Apv 

vBp)) and by (6) 

(9) \-nB<r*n(AxvBx)A... AD{ApvBp). 

Moreover, from (5) it follows, for i = 
1,.,., p, 

(10) h QA{ v DBi ~> D {At vB4) 

and by (1) h d("U<->-B<)->(D"TA?->dB<), i.e. 

(11) b D (A- VJ5<) -> 0-4* V DJB,-. 

As each A{ is quantifier-free, from axiom schema (E) it follows that 

bAi*-* ?A{ and VAi<r^ 0-4^. Then, from (10) and (11) it follows that 

(12) ha(?,vJB<)?->?<VDB<. 

Now, the BJs are sentences of the pure identity language. These sentences 

are equivalent to the assertion that the cardinality of the model belongs 
either to an empty or to a finite set ? of finite cardinals, or to the comple? 

ment of such a set. In the former case dB* is always false in the QS4E 
modal structure E, and 

(13) E? uB^BiAlB^ 

In the latter, E9M? uBi if and only if for all JF 2 M9 card(M') $1, 
if and only if card(M) > maxi. If m = maxi and Gm denotes an .L-formula 

expressing that there are more than m elements, then 

(14) E??Bi*+Cm. 

In conclusion, from (9), (12), (13) and (14) the desired result, for the for? 
mula dB, follows. 

Now, let A be any J?L-formula. In this case one proceeds by induction 

on the number n o? occurrences of d in A.Jin = 
0, the assertion is obvious. 

If n > 0, there exists a subformula dB of A with B an JD-formula. Now, 
let G be an i-formula such that E ? dB<-*0 and A' the formula obtained 

from A by substituting G for dB. Then, from SI, it follows that E ? A*-*A\ 
Since the modal degree of A' is n~-l, by inductive hypothesis, there exists 

an X-formula A* such that 27 N A'*-* A* and hence E? A*-*A*. 

Observe that (13) and (14) hold only for the $$4JE-modal structure 
E and that they can not be substituted by the stronger assertions h dB? 

<r^BiA^]Bi and h DJB*?->(7m. It follows that in Proposition 7.1 we are not 

alleged to substitute E? A** A* by VA*-*A*. On the contrary, Proposi 



Modal logic and model theory 213 

tion 6.3 shows that such a translation of QS?E in the classical logic is 

impossible. 
The following proposition proves that, in general, there is no reduction 

of 
J&?it<D-logic 

to QS?E-logic. 

Proposition 7.2. Let L and E be as in Proposition 7.1. Then there 

exists no translation f from the Lm ^-formulas into the ML-formulas such that 

M?A if and only if E9M ?f(A) 

for every Lm ^-formula A and every M e E. 

Proof. We proceed by absurd. Let A be a formula of 
Lmvm 

such 

that Jf ? A if and only if M is finite. Then, by hypothesis, E9 M ?f{A) 
if and only if M is finite. Now, from Proposition 7.1 it follows that there 
exists an i-f ormula (f(A))* such that E9M?f(A) ii and only if M K(/(-?))* 
wh?e it is well-known that finiteness is not definable in first order logic, 
a contradiction. 

From Proposition 7.1, it follows that E, M? Aii and only if M ? A*9 
where M eE and A* is an L-? ormula. Since A is also an L *-! ormula, this 

proves that, relatively to E9 a translation from QS?E into 
Lmit(0 

does 

exist. In spite of that, the following proposition shows that there exists 

a QSeE-modsl which does not allow any translation from QS?E into 

L0 m. Then, in general, there is no translation of QS?E in L m and these 

logics have incomparable expressive powers. 

Proposition 7.3. Suppose & = 
{X,Y,Z} where X and Y are sets 

with n elements, X $ Z and Y c Z. Then there exists no translation f of 
ML-formulas into 

Lmv0>-formulas 
such that 

09M ? A if and only if M ?f(A) 

for every ML-formula A and M e&. 

Proof. We proceed by absurd. Let A be an L-? ormula which expresses 
the existence of just n elements. Then 0, X ? ?A9 and 09 Y non ? nA and 

hence, by hypothesis, X N/(a(-4.)) and Y non ?f(?(A)). This is absurd. 

Indeed, X and Y have the same cardinality and therefore are isomorphic 
models of the pure identity language. This entails that X and Y verify 
the same J&? ?-formulas. 

8. Overiogics of QS?E 

An interesting question is to examine the overiogics of QS?E. We 

can obtain such overiogics either by adding new axioms or by imposing 
new conditions on modal structures. From the first point of view, it is 

natural to extend the "rigidity" axiom schema (E) to a larger class of 
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formulas. We can extend (E) to every i-formula A quantifierfree. Let 

QS?Ex be the overlogic so obtained. The following proposition shows 

that QS?Ex coincides with QS?E. 

Proposition 8.1. QS?Ex coincides with QS?E. 

Proof. It suffices to prove that for every A quantifier-free we have:: 

(a) "0S4e-4-<->CL4.> (b) \-qS4EA++qA. We proceed by induction on the 

complexity of A. Let A be an atomic formula, then by (E) bQ84lEA<r+ nA. 

In order to obtain (b), we consider ~}A, then, by (E), bg8?E~~\A<r+n~lA?. 
From this it follows that bgS4E0A*->A, i.e. (b). Let A = 

BvG, then by 
inductive hypothesis, bgS?EB<-?nB and bQmEG^uG9 so 

bgSmB\/G\ 
+*nBvnC9 but bQ8?E?BvnG->n(BvC), then bQSUSBv?<->n{BvC). 
In the same way we prove that 

bQmEBvG<-><>(BvG). 
If A = 

BaG, we 

proceed as above. If A = 
HB9 then by inductive hypothesis, bg8mB^ dB, 

so 
bg8mO"iJB <->~lB, that is bg8eEA*-*0A, while, from the inductive 

hypothesis bg8iEB<r?<>B it follows that bgS4EA<-*nA. 

Now, we extend (E) to every existential formula A of L9 and denote 

this system with QS?E2 

Proposition 8.2. QS?E2 coincides with QS?E. 

Proof. Let A = 
3xhB(xh)9 with B a quantifier-free formula. From 

Proposition 8.1 it follows that 
bQsmB*-* dB and, therefore, bg^^w^Bixj,} 

+->]i.xhnB(xh). Since bQS?ElxhnB(xh)->n3xhB(xh)9 
we have bQSmlxhB 

(%)-> d3%J5(%). This proves that bg8?EA*-> o A. 

Now we use QS?Ez for the overlogic obtained by extending (E) to 

every universal L-? ormula -4. 

Proposition 8.3. The overlogic QS?E3 is a proper extension of QS?E. 

Proof. From Proposition 4.1 it follows that every model of QS?Ez, 
is an existentially complete QS?E-mod?l. But QS?E has models that are 

riot existentially complete. This proves that QS?Ez is a proper extension 

of QS?E. 

It is possible to consider many extensions of such a type, but we conclude 

with the case in which (E) is extended to every ?-formula. We denote 

this overlogic with QS?E* 

Proposition 8.4. The logic QS?E* is a collapsing proper extension 

of QS?E. 

Proof. It suffices to use the equivalence between (ii) and (iii) of 

Proposition 4.2. 
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It is also interesting to consider the overiogics of QS?E which are 
obtained by adding some of the well-known modal formulas as new axioms. 

For example, let QS?E+BF be the system in which the Barcan formula, 
JBJF, $3xA->lxOA9 is added as a new axiom. 

Proposition 8.5. The logic QS?E+BF is a collapsing extension 

of QS?E. 

Proof. We prove that, for every ?-formula A, hQS?B+BFA+*nA 
and bgS?E+BFA*+oA. We proceed by induction on the complexity of A. 

If A is atomic, or A = 
BvG, or A = 

BaG, or A = 
"IB, the proof is as 

in the Proposition 8.1. If A = 
3%B(i%), by inductive hypothe 

fiis^asM+j^-B-^aZ? and then 
bQ8?E+BF?xhB(xk)-+lxhnB{xh). 

Since 

^QS$?hnB{xh)->n3xhB(xh), we have bQ8?E+BF3xhB(%)->D3%B(xh), 
that is bQ8m+BFA->nA. 

On the other hand, from BF and the inductive hypothesis \"gsm+BF$B 
->B it follows that bQ8?E+BFlxh<>B{xk)->lxhB{xh). Then bg84E+BF0l 

-%#(%)->1%-B(%)> that is h??4??+^0^.<->A. 

Since the Barcan formula is a theorem of QS5, the Proposition 8.5 
also proves that the QS%E system is a collapsing extension of QS?E. 

Finally, we observe that, from a semantical point of view, we can 

obtain overiogics of QS?E by defining ? referring to particular subclasses 
of QS?E-mo??ls. For example, we can investigate the overlogic obtained 

by considering only these QS4U-modal structures determined by classes 
of classical models. It is an open interesting question to give a suitable 
set of axioms for this overlogic. 

We can also consider only the QS?E-modal structures S modal com? 

plete. In other words, we can substitute the condition : "M& is an extension 
of Mw" by the stronger one: aMw, is an elementary extension of Jfw", 
for every w9wfeYY and w < w\ As it is proved in Proposition 3.2., the 

logic defined in that way collapses. 

References 

II] K. A. Bowen, Model Theory For Modal Logic, D. Reidel P. Company, 
London 1979. 

[2] C. C. Chano and H. J. Keisler, Model Theory, North-Holland, Amsterdam 1973. 
[3] K. Fine, First-order modal theories I ? Sets, Nous, 15, (1981), pp. 117-206. 
[4] K. Fine, First-order modal theories III ? Facts, Synthese, 53, (1982), pp. 43-122. 
[5] D. M. Gabbay, Investigations in Modal and Tense Logics with Applica? 

tions to Problems in Philosophy and Linguistics, D. Eeidel P. Company, 
Dordrecnt-Holland/Boston-U. S. A., 1976. 



210 G. Gerla, Y. Vaccaro 

Institute of Mathematics 

University of Napoli 

Italy 

Meceived November 15, 1982 

?tudia L?gica XLIII, 3 

[6] J. Hirschfeld and W. H. Wheeler, Foreitig, Arithmetic, Division Ringsf 
Lecture Notes in Mathematics, vol. 454, Springer Verlag, 1975. 

[7] J. C. C. McKinsey and A. Tarski, Some theorems about the sentential calculi of 
Lewis and Eeyting, The Journal of Symbolic Logic, vol. 13 (1948), pp, 1-15. 


	Article Contents
	p. [203]
	p. 204
	p. 205
	p. 206
	p. 207
	p. 208
	p. 209
	p. 210
	p. 211
	p. 212
	p. 213
	p. 214
	p. 215
	p. 216

	Issue Table of Contents
	Studia Logica: An International Journal for Symbolic Logic, Vol. 43, No. 3 (1984), pp. 203-314
	Modal Logic and Model Theory [pp. 203-216]
	Models for Normal Intuitionistic Modal Logics [pp. 217-245]
	Where Gamma Fails [pp. 247-256]
	Some Investigations of Varieties of N-Lattices [pp. 257-280]
	Descriptions in Mathematical Logic [pp. 281-294]
	A Mathematical Characterization of Interpretation between Theories [pp. 295-303]
	Books Received
	Review: untitled [pp. 305-306]
	Review: untitled [pp. 306-307]
	Review: untitled [pp. 307-308]
	Review: untitled [pp. 308-309]
	Review: untitled [pp. 309-311]
	Review: untitled [pp. 311-312]

	Back Matter



