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Gureracomo  Modal Logic and Model Theory

GERLA
AND
VIRGINIA
‘VACCARO

Abstract. We propose a first order modal logic, the @S4E-logic, obtained by
adding to the well-known first order modallogic Q84 a rigidity axiom schemas: A—[14,
where A denotes a basic formula. In this logic, the possibility entails the possibility
of extending a given classical first order model. This allows us to express some impor-
tant concepts of classical model theory, such as existential completeness and the state
of being infinitely generic, that are not expressibile in classical first order logic. Since
they can be expressed in L, -logic, we are also induced to compare the expressive
powers of OS4E and Lo Some questions concerning the power of rigidity axiom
are also examined.

1. Iniroduction

This work represents an attempt to establish a “bridge” between first
order modal logic and classical model theory. To this purpose, we define
a new modal system, the QS4E-logic, obtained by adding to the first
order modal logic OS4 a “rigidity axiom” schema (see also [3] and [4])

(E) A->D0A

where A is any basic formula. We prove completeness and compactness
theorems for @S4E. In the semantics which we propose for QS4E a for-
mula of the type ¢4 is interpreted as the possibility of extendirg a given
- model to another model in which A holds. This enables us to express
some recognized concepts of model theory, such as being existentially
complete (Prop. 3.1) and infinitely generic (Prop. 4.4) which are not
expressible in classical first order logic (for example, see [6] Corollary
3.17 and Theorem 14.13). Then we can derive the well-known results
about the inductiveness of the class of infinitely generic models and of
the class of existentially complete models of a given theory (Prop. 5.4)
from a more general proposition about QS4E (Prop. 5.3). Other examples
of the possibility of proving results of classical model theory via modal
logie, are expressed in Prop. 3.1 (equivalence between (ii) and (iii)) and
in Prop. 4.4 (equivalence among (ii), (iii), (iv) and (v)). Since existential
completeness and being infinitely generic are concepts which are axioma-
tizable also in Lwlm (see [6] pag. 111), we compare the expressive powers
of QS4E and L, ,,-

Finally, reversing the above point of view, we utilize the stated rela-
tionship between modal logic and classical model theory in order to prove
some results concerning the rigidity axiom. ‘
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2. The QS4E-Logic

In the sequel L denotes a classical first order language with equality
and ML its modal extension. Namely, we assume ~1, A, Vv, 3, O to
be primitive connectives of ML and —, <, V, ¢ abbreviations. QS4E
is used for the logic obtained by adding to the quantified modal logic
with equality @S4 the axiom schemata

(B) A-04

where A stands for a basic formula, that is an atomic formula or the nega-
tion of an atomic formula of L.

Recall that the following formulas are axioms (or theorems) of QS4
and hence of QS4E.

(1) 0(4--B)-( 04— 0OB)

(2) 044

(3) od—-0ood

(4) 3z, ...2,04->0%, ...2,4)

(5) 04 v O0B-0(4 vB)

(6) 0(A AB) & OAAOB

Observe also that in QS4 the following formulas are consequences of (E).
(7) z =y -D0@=y)

(3) xFEY oD@ #Y).

For any ML-formula A we define Fpg,p A as usual. If I'is a set of formulas
of ML, then I'tgpgrA means that togrBiA... AB,—A for suitable
B,, ..., B, € I'. Sometimes we shall write - A and I'+ A instead of Fpg.pd
and I'bggupd, respectively. Such a definition of “deduction from hype-
theses” entails that, even if the necessity rule is assumed, 4 + A does
not hold, in general.

An adequate semantics for QS4E is obtained by the following defi-
nitions. A QS4-frame is a pair (W, <) where W is a class and < is a reflexive
and transitive relation on W. A QS4E-modal structure 8 = (M, W, <)
for ML consists of a QS4-frame (W, <) and a family # = (M), of
classical models M,, = (D,,, £,) of L, where D, is the domain and S,
the inierpretation of M,, such that w < w’ implies M, < M, (M, is
a submodel of M,,) for every w, w’ € W. The interpretation of = is the
identity in every M,. Once a single element w, has been selected in W,
the pair (8, w,) is called a QS4E-model for ML. Note that the proposed
semantics is obtained by imposing conditions not only on the frame
(W, <), as it is usual for other modal logics, but also on the interpretations
of L.
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Every class X of classical model for L defines a QS4E-modal structure
for which W = X, .# is the identity map and < is <. We use the same
symbol 2 to denote this OS4E-modal structure. In particular, the class
of models of a given first order theory defines a @S4E-modal structure.
In order to take account of such a type of QS4E-modal structures we
have extended the usual definition, assuming that W is a class and not
necessarily a set.

IfweW,a,...,0,eD,and A is an ML-formula, then the relation
S, wk Alay,...,a,] (A is satisfied in 8 at w by a4, ..., a,) is defined by
recursion on the complexity of A, as usual (cf. for example [2]). The
only interesting clause is when A has the form 0OB. In this case we set
8,wk Bla,, ..., a,] if and only if, for every w’ e W such that w < «’,
we have 8, w’ F Bla,,...,a,]. We write S,wk 4 if S,wk Alay,...,a,]
for every sequence a, ..., a, of elements of M, Sk A, A is valid in 8,
if 8, w k A for every w € W and kgggd (or simply FA), A is QS4E-valid,
if Sk A for every QS4E-modal structure 8.

If I'is a set of formulas of ML, a QS4E-model (8, w,) is a QS4E-model
of I'if 8, w, F A for every A e I. We write I'k gg,gd (or simply I'E A),
and A s a logical consequence of I', if every QS4E-model of I' is a QS4E-
-model of 4.

It is easy to prove, by induction on the complexity of A4, that the
following weak forms of substitution of equivalents do hold.

(81)  If A’ is an ML-formula obtained from A4 by replacing some occur-
rences of a subformula B of 4 with a formula B’, we get:
SEB - B implies SFA o A'.

(S2)  If B does not fall in the range of [, i.e. does not oceur in a sub-
formula of 4 of the form [C, then:
F(B + B')—>(4 < A').

3. Completeness and compactness

Now, we shall prove a strong completeness theorem and a compactness
theorem for QS4E.

ProPOSITION 3.1 (STRONG COMPLETENESS THEOREM). Let I' be a set of
MEI-formulas, consistent with respect to QS4E. Then there ewists a QS4E-
-model of I.

Proor. The strong completeness for QS4E can be proved by pointing
out the strong completeness result for Q84 already known (see, for example
[6]). To this purpose, observe that if I"is consistent with respect to QS4E,
then I'UE’, where

B ={o(Ve,...s,(4— 04))/4 any basic formula}

is consistent with respect to QS4. Indeed, if we can derive a contradiction



206 G. Gerla, V. Vaccaro

C from I'VE' in QS4, then tggd;A... AAy,AB;A ... AB,—~C where
A,,..., 4, and By, ..., B, are suitable formulas of E’ and I, respectively.
Since QS4E is an over-logic of 084, we have also FogpdiA... AA,A
AB; A ... AB,—~C. Now, by Necessity Rule and Axiom Schema (E), we
obtain togspd; foré =1, ..., p. Then by Modus Ponens we get FogipB; A
A ... AB,~C and therefore Fgg4pC, a contradiction.

From the consistency of I'VUE’ and the strong completeness theorem
for Q84, it follows that there exists a QS4-model (8, w,), with § = (4,
W, <), where W is a set, wy € W, < is a reflexive and transitive relation
on W, M4 = (M,)pewr 18 & family of models, M, = (D, S,) such that
= is interpreted as identity and D, < D,, for every w,w’'e W, w < w'.
Moreover, as we know, it is not restrictive to assume that w, << w for
every w € W. We shall prove that, for every w,w’e W, if w < w’ then
M, is a submodel of M,,. Now, let B be a basic formula, then, by hy-
pothesis, 8, w, F OV#, ... z,(B- 0OB). In particular, if A is atomic and
n-ary, then 8, w F Vo, ... 2,(A—0A)and 8, w k Vo,...5,( 74— O( 714)).
So, if a4, ..., a, are elements of D, such that (a,, ..., a,) € £,(4), whence
S,wk Alay,...,a,], then 8, w'F A[a,, ..., a,] and therefore (a,, ..., a,)
€ £ (4). Conversely, if (a,,...,a,) € £, (A) then §,w'F A[a,,...,a,].
Since 8, w F JA—0( "14), we have 8, w F A[a,,...,a,] and therefore
(@15 ...y a,) € Fyp(4). In conclusion, S, (4) = S, (4)NDy,.

This proves that M, is a submodel of M, and hence (8, w,) is a QS4E-
-model of I.

Observe that the QS4E-model given by Proposition 3.1 is constructed
in such a way that W is a set and ecard[( U D,)VUW] = card(L). Then,
wew

despite the fact that W is sometimes a proper class, we can work out
Lowenheim-Skolem type theorems for the QS4E-logic.

ProposITION 3.2. If I' is a set of M L-formulas, and A is any ML-for-
mula, then I' EggapA if and only if I' Fogupd.

Proor. If I'is inconsistent, the proof is obvious. Otherwise, assume
I'k Aand I'non k- A: then I'U 714 is consistent. By Proposition 3.1, there
exists a QS4E-model of I'UT]4. This contradiects the hypothesis I'F A.

Conversely, it is a matter of routine to prove that every axiom of
QSAE is QS4E-valid. Moreover, the rules of inference (in particular the
necessity rule), preserve QS4E-validity. This proves that FA implies
EA. '

Now, if I' A, then FA;A ... A4,—~A for suitable 4; e I' and for that
reason kAA ... AA,~A. Now, if (8, w,) is any QS4E-model of I', then
(S, wy) is & @S4E-model of {4,,..., 4,} = I' and, therefore, of 4.

Thus I'k 4.

PrOPOSITION 3.3 (COMPACTNESS TH:EQREM). Let I be a set of M L-for-
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mulas such that every finite subset of I' has a QS4E-model. Then I' has
2 OS4E-model.

Proor. It follows from Propositien 3.1.

4. Existentially complete models and meodel completeness

Now we shall show that some well known classes of models, which
are not definible in classical first order logic are, in a sense, definable
in QS4E. The following definitions generalize a notion of classical model
theory. A QS4E-model (8, w,) of ML is existentially complete if, for every
w € W such that w, < w, M, is existentially complete in M, [6].

If X'is a class of classmal structures for L and M e X it is easy to prove
that the QS4E-model (X, M) is existentially complete with regard to
the above definition if and only if M is existentially complete in X with
respect to the classical definition.

ProPOSITION 4.1. The following are equivalent:
(i) (8, w,) is ewistentially complete;
(ii) 8, wy b QA > A for every existential L-formula A;
(iii) S,wy F QA & A for every universal-existential L-formula A.

PROOF. (i)=(ii). TLet ay,...a, be elements of M, , then §, w,
F oAlay, ..., a,] if and only if there exists w e W such that w, <w and
S,wk Alay, ..., a,]. Since A is a formula of L, this is equivalent to say
that M,k A[a,, ..., a,]. But M, is existentially complete in M, so
My, F Alay, ..., a,] and therefore 8,w,F A[ay,...,a,]. In conclusion
8, wy EOA->A, and thus 8, w, FOA « A.
(i) =(ili). Let A be the universal-existential L-formula Vz,...
.. 0,3y, ...y, B, with B quantifier-free. Then by (4) F OV, ... 2,3y, ...
ceiYyB-Va2, ... 2,039, ...y, B. Now, by hypothesis, S, w,k <>':'|y1
e YmBedy, ...y, B, 50 by 82 S,w,k oV, ...2, 3y, ..y, B>V, ...
a4,y .. ymB The converse of (2) yields 8, wok Vo, ...2,3y, ...
ymBHonl ...... 2,3y, ...y, B, and (iii) is proved.
(iii) =~ (i). Tmmediate.

From the above Proposition, it follows, for example, that if X is the
class of all fields then a field I is algebraically closed if and only if (2, F)
is a OS4E-model of I' = {A—QAJA existential L-formula}, where L
is the language of the theory of fields. In general, if X' is a class of structures
of the same type, then we can assume I" as a system of axioms in QS4E
for the existentially complete elements of X.

Now we want to express the notion of model-completeness. A QS4E-
-modal structure 8 is model complete if, for every w,w’ € W such that
w<w', M, is an elementary extension of M,,. Observe that the concept
of model-completeness is relative to @S4E-modal structures while existen-
tial completeness to QS4E-models. A class X of models of L is model
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complete in the sense of the classical definition [6] if and only if the asso-
ciated Q@S4FE-modal structure is model complete according to the above
definition.

PROPOSITION 4.2. Let 8 be a QS4AE-modal structure, then the following
are equivalent:

(i) 8 s model complete;
(ii) Sk Ae A for every L-formula A;
(iii) S EAe0Ad for every ML-formula A.

ProoF. (i)=(ii)). Obvious.

(ii) = (iii). We proceed by induction on the number » of occurrences
of Oin A. If » = 0 then 4 is a formula of L and the assertion holds by
hypothesis. If » > 1, let 0B be a subformula of A such that B is an L-for-
mula. From (ii) it follows that 8 F B~ OB. Then, if A’ is that formula
obtained from A by substituting B for 0B we have, by inductive hypothe-
sis, § F A’ 14" and, by 81, 8 F A~ A", Still, by 81, it follows § F 4 - O A.

(iii) = (i). Immediate.

In other words, Proposition 4.2 says that 8§ is model complete if and
only if the “theory” {A/8 E A} “collapses”, i.e. every ML-formula is
equivalent to the L-formula obtained from it by deleting every occurrence
of . '

5. Infinite forcing

Let § be a modal structure, 4 (%, ...,%,) a formula of L whose free
or bound variables are among @, ..., %,, w € W and a,, ..., a, elements
of M,. So, the relation S,w Ik A[a,, ..., a,] ((8,w) infinitely forces A
in @y, ..., a,) is defined inductively as the satisfiability relation S, w
FAleq,...,a,] except for what concerns the negation, for which we

have:

8, wlk 1B[ay, ..., a,] if and only if for all w’ e W, such that w < w’,
S, wnonlk Bla,, ..., a,].

A QS4E-model (8, w,) is infinitely generic if for every formula A (24, ...
«oy @) of L and ay, ..., a, elements of M, , either S, wylF A[ay, ..., o]
or 8, wylk Alay, ..., a,].

The notions of infinite forcing and infinitely generic coincide with the
classical ones if 8 is the modal structure associated to a class of models
of L [6].

Now, in order to express the infinite forcing in the QS4E-logic, we
introduce a suitable translation v from L-formulas into ML-formulas.

DEFINITION 5.1. The map 7 from L-formulas into ML-formulas is
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defined by recursion on the complexity of L-formulas by setting:

(i) if A is atomic, then 74 = 4;
(i) if A = Bv0, then 7(BvC(C) = tBv10;
(i) if A = BAC, then 7(BAC) = tBA0;
(iv) it A =32,B(x,), then v(3w,B(w;)) = Ju,7B(x);
(v) if A = 7B, then 7(T1B) = O™ 1tB.

Obviously = is not compatible with the equivalence, i.e. we cannof
infer from A<« B that 7(4)<7(B). The translation 7 is strictly related
to the choice of A, Vv, 7, 3, as primitive connectives of L. We made this
a choice in order to be able to describe the infinite forcing as defined,
for example, in [6]. Observe that translations into a modal language are
already known in literature, see [7].

The following proposition shows the relation between F and Ik,

ProrosITION 5.2. S, w,lk Alay, ..., a,] if and only if 8, w,k (z4)
[azy ...y apl.

ProoF. The proof is by induction on the complexity of A.

The following proposition gives us two useful properties of 7.

ProprosiTION 5.3. The following hold:

(i) Fe(T14)>Tt4;
(ii) Fzd—>[0Ord.

Proor. (i). It follows from (v) of Definition 5.1. and (2).

(ii). The proof is by induction on the complexity of A. If 4 is atomig,
then 74 = A and (ii) follows from axiom schema (E).

Let A = Bv(C, then by inductive hypothesis, F v(B)—O(7(B))
and +¢(0)—0O(z(0)). Thus, +z(B)vz(0)—DO(r(B)va(z(0)). From (5)
we also have Fv(B)ver(C)—0O(v(B)vr(0)) and therefore Fz(BvC)
— O(z(BV0)).

If A = BAC, by inductive hypothesis, we get F¢(B)At(C)—0O (r(B))/\
AO(x(0) and, by (6), Fz(B)AT(C)—0O(v(B)AT(0)), ie. Fr(BAC)
— Ot (BAC).

If A =3x,B(x,), then, by inductive hypothesis, Fz(B)—O(v(B))
and hence +3u;,7(B)—>3u, O(v(B)). From (4), it follows that Fda,z(B)
- O(J2,7(B)) and therefore Fz(3a,B)— Or(Iw,B).

Finally, if 4 = ~|B, we must prove that +0(I(zB))—0(0(7(xB))),
but this follows from (3), so (ii) is proved.

PrOPOSITION 5.4. The following are equivalent:
(i) (S, w,) is infinitely generic;
(ii) 8, wy k v(AVvTA) for every L-formula A;
(iii) 8, w, kO (vAd) A for every L-formula A;
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(iv) 8, wy E 1(vd)—(T14) for every L-formula A;
(v) 8, wy E Ao7(A) for every L-formula A.

Proor. (i)<(ii). It follows from the definition of infinitely generic
QS4E-model, condition (i) of Definition 5.1 and Proposition 5.2.

(ii) = (iii). From 8, w, k 7(4AVv74) it follows 8, wy F 74 vz(T14) and,
thus, 8, w, FtdvDO r4. This proves that 8, w, F 10(7rd)—>74 and
therefore, S, w, F ¢ (v4)—>7A.

(iii) = (iv). It suffices to observe that by (iii) 8, w,F O(7td) < Tr4.

(iv) =(v). We proceed by induction on the complexity of A.

If A is atomie, (v) is obvious. ‘

If A =Bv0, A = BAC or A =3, B(w,), the inductive step follows
from the definition of 7. ’ ' ,

If A = 7B, then 8, w, k TIBif and only if §, w, nonk B if and only if,
by inductive hypothesis, 8, w, non k 7(B). Then, (iv), yields S, w,F 7B if
and only if 8, w, F z(71B).

(v)=(i). Since S,w,F A or 8,w,F 714 and, by hypothesis, 8, w,
FAetd and S, w, F 1A 7(714), from 8, w, F AvTI4 it follows 8, w,
F 74 vz(714). Condition (i) follows from the definition of infinitely gener ic
OS4E-model and Proposition 5.2.

Proposition 5.4 shows that the infinitely generic QS4E-models are
the models of suitable axiom systems, for example, I' = {z(4VvT4)/4
any L-formula}. In partieular, a classical structure M is infinitely generic
in a class X of models of L if and only if (¥, M) is a OS4E-model of I
In this sense, we regard I as an axiom system for the infinitely generic
structures.

6. Inductive classes

In order to give an example of an application of QS4E-logic to classi-
cal model theory, we will derive from a general result on QS4E-logic
a well-known result in classical model theory. Namely, the existentially
complete and infinitely generic structures of a given class of structures
constitute inductive classes.

To this aim some definitions are introduced that generalize those
given in literature. An ascending chain of models of L is a sequence (M) cn
of models of L such that if » < m then M, < M,,. For the definition of
the union, |J M,,, of an ascending chain see [2].

[ neN

DEFINITION 6.1. A subeclass 2’ of a class X' of models of L is called
inductive in X if for every ascending chain (M,),.y of elements of 27,
from |J M, € 2 it follows that | M, € 2’. If X’ is inductive in the class

neN . neN
of all models of L then we say that 2’ is inductive.
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DEFINITION 6.2. An M IL-formula A is inductive in a class X of models
of Lif 2 ={M]XZ,M¥kA} is inductive in Z. A is inductive if it is
inductive in every class X.

ProPOSITION 6.3. Let A be an ML-formula, then DOA is inductive.
Besides, if A is inductive, OA— A is inductive.

Proor. The formula 4 is inductive, by'means of simple conside-
rations. Moreover, let 2 be any class of medels of I, A an inductive for-
mula, 2’ ={MeX X,MFOAA} and (M,),.y an ascending chain of

elements of X’ such that M = | M, € 2. We shall prove that i e X",
neN

that is X,M k 0 A« A. Assume that Z,M F O A. Since every M, is a sub-
model of M, we have X,M,E O0A for every n e N. As, by hypothesis,
2,M,E0A-A, we also get 2, M, F A for every n € N. A being inductive,
it follows that X,M k A. In conclusion, X, i k ¢A->A and therefore
Z,MEOA-A.

PROPOSITION 6.4. Let X be a class of models of L and &(X) and S (X}
the classes of models which are exvistentially complete and infinitely generic
in X, respectively. Then, &(X) cmd_ F(2) are inductive in 2.

Proor. €(2) is inductive by Proposition 4.1. (ii) and Proposition 6.3.
From (2) and Proposition 5.3 (ii), it follows that 74« 074 for every
ML-formula A. Then, from Proposition 5.4 (ii) and Proposition 6.3, it
follows that #(X) is inductive.

7. OS4E-logic and L, ,-Logic

In this section we want to compare the expressive powers of QS4E
and L, ,. This comparison raises some difficulties, since the models
of OS4E and of L, , are different “objects”. In spite of this, we can ask
whether there exists a translation f from the ML-formulas into the L, -
-formulas such that X, M F A if and only if M k f(A) for any class 2 of
models of L, any M € X and any formula 4 of ML. Conversely, we can
ask whether there exists a similar translation from L, ,-formulas into
ML-formulas. The answers to both questions are negative. In order to
prove this, we suppose in the sequel that L is the pure identity language.
Then a model of L is any set, and a QS4E-modal structure for ML is
any family (X,,)e of sets, with (W, <) a QS4E-frame, such that X, = X,
for every w, w’ € W such that w < w’. In particular every class @ of sets
defines a @S4E-modal structure. The following proposition shows that,
if X' is the class of all sets, then, relatively to the QS4E-modal structure
2, we can eliminate the modal operators.

PropositioN 7.1. Let L be the pure identity language and X the class
of all models of L. Then for every ML-formula A there exists an L-formula
A* such that Xk A—A”



212 G. Gerla, V. Vaccaro

Proor. First, we assume that A = OB with B an L-formula. Now,
from the theorem of Elimination of Quantifiers for the pure identity
language (see [2], Theorem 1.5.7), B is equivalent to a formula of the type
(A3 VBy) A ... A(A,VB,), where the As are L-formulas without quanti-
fiers and the B,’s are sentences of L. Then, F 0B« O ((A1 VBy) A ... A4,V
vB,)) and by (6)

{9) FOBe O(A4;VB)A ... AO(4,VB,).
Moreover, from (5) it follows, for¢ =1, ..., p,

(10) F0OA;vOB;—0O(4;VBy)

and by (1) Fo(714,—~B,)~>(0714;—>0B,), i.e.

(11) FDo(4;vB)— OA,vOB,.

As each 4; is quantifier-free, from axiom schema (E) it follows that
FA;~ 04;and FA;< OA;. Then, from (10) and (11) it follows that

Now, the B;’s are sentences of the pure identity language. These sentences
are equivalent to the assertion that the cardinality of the model belongs
either to an empty or to a finite set I of finite cardinals, or to the comple-
ment of such a set. In the former case [1B; is always false in the QS4E-
modal structure X, and

(13) Xk OB;~B;ATIB;.

In the latter, 2, M k OB, if and only if for all M' = M, card(M') ¢ I,
if and only if card (M) = maxI. If m = mazl and C,, denotes an L-formula
expressing that there are more than m elements, then

(14)  XZE OB;oC,.

In conclusion, from (9), (12), (13) and (14) the desired result, for the for-
mula OB, follows.

Now, let A be any M L-formula. In this case one proceeds by induction
on the number # of occurrences of [1in A. If n = 0, the assertion is cbvious.
If n > 0, there exists a subformula OB of A with B an L-formula. Now,
let C be an L-formula such that 2k OB« ( and A’ the formula obtained
from A by substituting € for OB. Then, from S1, it follows that Xk A« A",
Since the modal degree of A’ is n —1, by inductive hypothesis, there exists
an L-formula A* such that £k A’«<A* and hence Xk A~ A"

Observe that (13) and (14) hold only for the QS4E-modal structure
2 and that they can not be substituted by the stronger assertions F OB;
< B;AT1B; and F O0B;«C,,. It follows that in Proposition 7.1 we are not
alleged to substitute ZF A< A* by FA«A* On the contrary, Proposi-
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tion 6.3 shows that such a translation of QS4E in the classical logic is
impossible.

The following proposition proves that, in general, there is no reduction
of L, ,-logic to OS4E-logic.

ProrosiTION 7.2. Let L and X be as in Proposition 7.1. Then there
ewists no translation f from the Ly, ,,-formulas into the M L-formulas such that

MEA if and only if Z,MEf(A)
Jor every L, ,-formula A and every M e 2.

Proor. We proceed by absurd. Let 4 be a formula of L, , such
that M E A if and only if M is finite. Then, by hypothesis, X, M k f(4)
if and only if M is finite. Now, from Proposition 7.1 it follows that there
exists an L-formula (f(4))* such that Z,M k f(4)if and only if M F(f(4))*
while it is well-known that finiteness is not definable in first order logic,
a contradiction.

From Proposition 7.1, it follows that X, M k A if and only if M F A%,
where M e X and A* is an L-formula. Since A is also an L, ,-formula, this
proves that, relatively to X, a translation from QS4E into L, ,, does
exist. In spite of that, the following proposition shows that there exists
a @S4E-model which does not allow any translation from QS4FE into
L, .. Then, in general, there is no translation of QS4E in L, , and these
logics have incomparable expressive powers.

PROPOSITION 7.3, Suppose ® = {X,Y,Z} where X and Y are sets
with n elements, X € Z and Y < Z. Then there exists no iranslation f of
ML-formulas into Lwl,w-formulas such that

O,MEA if and only if MEf(A)
for every ML-formula A and M € @.

Proor. We proceed by absurd. Let 4 be an L-formula which expresses
the existence of just » elements. Then @, X F 04,and @, ¥ nonk 04 and
hence, by hypothesis, X k f(0(4)) and Y non F f(0(4)). This is absurd.
Indeed, X and Y have the same cardinality and therefore are isomorphic
models of the pure identity language. This entails that X and Y verify
the same I, Pm-formulas.

8. Overlogics of QS4E

An interesting question is to examine the overlogics of QS4E. We
can obtain such overlogies either by adding new axioms or by imposing
new conditions on modal structures. From the first point of view, it is
natural to extend the “rigidity” axiom schema (E) to a larger class of
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formulas. We can extend (E) to every L-formula A quantifierfree. Let.
OSA4E, be the overlogic so obtained. The following proposition shows.
that QS4E, coincides with QS4FE.

ProrosITION 8.1. QS4E,; coincides with QS4E.

Proor. It suffices to prove that for every 4 quantifier-free we haves:
(2) FrosspAd 04, (b) Foaupd—OA. We proceed by induction on the.
complexity of A. Let 4 be an atomic formula, then by (E) Foeup 4 < 0 A.
In order to obtain (b), we consider 714, then, by (E), Fgesr 714 < O714.
From this it follows that FpgurO4 4, ie. (b). Let A = BvC, then by
inductive hypothesis, FoeupB« OB and hrgggple 00, 80 FogrpBVC
~ OB VDG, but FQSA‘E oBvoO— D(B VC), then I-QS4EB vle O (.B VO).
In the same way we prove that rogeBVC0¢(BVO). If A = BAC, we
proceed as above. If A = 7B, then by inductive hypothesis, Fogn B« OB,
80 Foeup® 1B+ 1B, that is Fgepd <04, while, from the inductive
hypothesis Fogup B« OB it follows that Fogpd <> O4.

Now, we extend (E) to every existential formula A of L, and denote-
this system with QS4E, ‘

PROPOSITION 8.2. QS4E, coincides with QSAE.

ProoF. Let A = d,B(x,), with B a quantifier-free formula. From
Proposition 8.1 it follows that Fyg.p B> OB and, therefore, tggund v, B (a5)
«32, OB (). Since Fggupday, OB (2,)— 03w, B(wy), we have toeun3e,B
(40) ~ O3, B(25). This proves that Fogupd < OA.

Now we use QS4E; for the overlogic obtained by extending (E) to
every universal L-formula 4.

PROPOSITION 8.3. The overlogic QS4AE; is a proper extension of QSAE.

Proor. From Proposition 4.1 it follows that every model of QS4E,
is an existentially complete @S4E-model. But QS4E has models that are
not existentially complete. This proves that @S4E; is a proper extension
of QS4E.

It is possible to consider many extensions of such a type, but we conclude
with the case in which (E) is extended to every L-formula. We denote
this overlogic with QS4E*

ProrosiTION 8.4. The logic QS4E* is a collapsing proper extension
of OS4E.

Proor. It suffices to use the equivalence between (ii) and (iii) of
Proposition 4.2.
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It is also interesting to consider the overlogics of QS4E which are
-obtained by adding some of the well-known modal formulas as new axioms.
For example, let QS4E +BF be the system in which the Barcan formula,
BF,¢dxA—~>Ax0 A, is added as a new axiom.

PRrROPOSITION 8.5. The logic QSAE+BF is a collapsing extension
of OSAE.

Proor. We prove that, for every L-formula A4, Fogp.prpd«< 04
and Foeup,prd —OA. We proceed by induction on the complexity of 4.
If A is atomie, or A = BVC, or A = BAC, or A = 7B, the proof is as
in the Proposition 8.1. If A = 3#,B(»,), by inductive hypothe-
8i8,Fosuprpp B~ 0B and then togum,pp3e,B(a,) 3w, OB(x,). Since
Fosadwy, OB (7)) > 03w, B(xy), We have tggum,ppde,B(w,)—>0dw,B(w),
that is Fogum.ppd— OA4.

On the other hand, from BF and the inductive hypothesis F ggup, pp OB
—B it follows that Fossm +5r 39,08 (2,) >3, B(;). Then Fopgup,ppo3
th(wh)%gth(a;h) that is I-QSGE-I-BFOAHA

Since the Barcan formula is a theorem of @S85, the Proposition 8.5
also proves that the QSSE system is a collapsing extension of QS4E.

Finally, we observe that, from a semantical point of view, we can
obtain overlogics of QS4E by defining k referring to particular subclasses
of OS4E-models. For example, we can investigate the overlogic obtained
by considering only these QS4E-modal structures determined by classes
of classical models. It is an open interesting question to give a suitable
set of axioms for this overlogic.

We can also consider only the QS4E-modal structures § modal com-
plete. In other words, we can substitute the condition: “ M, is an extension
of M,” by the stronger one: “M,, is an elementary extension of IM,”,
for every w, w’' € W and w < w’. As it is proved in Proposition 3.2., the
logic defined in that way collapses.
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