ALGEBRA II

Prof.ssa Patrizia Longobardi

A.A. 2003/2004

II APPELLO – 1 MARZO 2004

Esercizio 1. Sia B un campo e si scriva ogni polinomio g(x) di B[x] come opportuna serie formale

$$\sum_{i \in N_0} b_i x^i$$

(dove $\{i \in N_0 | b_i \neq 0\}$ è finito).

- Si dimostri che l'applicazione

$$\varphi: \sum_{i \in N_0} b_i x^i \in B[x] \mapsto b_0 \in B$$

è un epimorfismo degli usuali B-spazi vettoriali B[x] e B, si studi il nucleo $Ker\varphi$ di φ e se ne individui un supplementare. Si studi se φ è anche un epimorfismo di anelli e se $Ker\varphi$ è un ideale dell'anello B[x].

- Si dimostri che l'applicazione

$$\psi: \sum_{i \in N_0} b_i x^i \in B[x] \mapsto b_1 \in B$$

è un epimorfismo degli usuali *B*-spazi vettoriali B[x] e B, si studi il nucleo $Ker\psi$ di ψ e se ne individui un supplementare. Si studi se ψ è anche un epimorfismo di anelli e se $Ker\psi$ è un ideale dell'anello B[x].

- Si dimostri che l'applicazione

$$\sigma: \sum_{i \in N_0} b_i x^i \in B[x] \mapsto 2b_0 + 6b_1 \in B$$

è un omomorfismo degli usuali B-spazi vettoriali B[x] e B, e si studi σ in funzione della caratteristica di B, precisando in particolare quando è suriettiva, quando un omomorfismo di anelli, quando il nucleo $Ker\sigma$ è un ideale dell'anello B[x].

Esercizio 2. Sia F un campo, e si consideri il polinomio $f(x) = x^4 - 7 \in F[x]$. In ciascuno dei seguenti casi:

$$F = Q, F = R, F = Z_2, F = Z_3, F = Z_5, F = Z_7, F = Z_{11}$$

si determinino una decomposizione di f(x) in fattori irriducibili di F[x], un campo di spezzamento K di f(x) su F, il grado |K:F|, l'ordine di un gruppo di Galois G di f(x) su F. In particolare, nei casi

$$F = Z_5 \ e \ F = Z_{11},$$

si precisino anche la struttura e gli elementi di un gruppo di Galois G di f(x) su F, ed il reticolo dei sottocampi di K.