ALGEBRA II

Prof.ssa Patrizia Longobardi

A.A. 2004/2005

II APPELLO – 1 MARZO 2005

Esercizio 1. Sia B un campo.

 (α) Considerata l'applicazione

$$\psi: \Sigma_{n \in N_0} b_n x^n \in B[x] \to 6b_0 + 6b_1 x \in B[x],$$

si dimostri che ψ è un endomorfismo dello spazio vettoriale B[x] su B, e si determinino nucleo e immagine di ψ , precisandone una base e la dimensione. Si verifichi poi che $B[x] = Ker\psi \oplus Im\psi$. Si determinino i valori di carB per cui ψ è un endomorfismo dell'anello B[x]; si verifichi che, in ogni caso, $Ker\psi$ è un ideale dell'anello B[x], e se ne determini un generatore. Supposto $\psi \neq 0$, si osservi che $Im\psi$ non è un sottoanello dell'anello e si determini l'ideale da esso generato; infine si provi che la posizione

$$\mu(\Sigma_{n\in N_0}b_nx^n + Ker\psi) = b_1$$

definisce un'applicazione μ di $B[x]/Ker\psi$ in B, e che μ è suriettiva, non iniettiva.

(β) Più in generale si provi che, se S è un B-spazio vettoriale e σ un B-endomorfismo di S tale che $\langle (\sigma \cdot \sigma)(v) \rangle = \langle \sigma(v) \rangle$ per ogni $v \in S$, si ha $S = Ker\sigma \oplus Im\sigma$.

Esercizio 2. Sia p un primo, e si consideri il polinomio

$$f(x) = x^5 + 7x^4 + 6x^3 + 3x^2 + 15 \in \mathbb{Z}_p[x].$$

Per p=2,3,5 si decomponga in $Z_p[x]$ il polinomio in fattori irriducibili, e se ne determini un campo di spezzamento K rispetto a Z_p . In particolare, nel caso p=2, si precisi l'ordine di K e si giustifichi perchè il polinomio $g(x)=x^3+x+1\in Z_2[x]$ non ammette radici in K, e il polinomio $h(x)=x^2+x+1\in Z_2[x]$ ammette radici in K. È K campo di spezzamento di h(x) rispetto a Z_2 ?