ALGEBRA II

Prof.ssa Patrizia Longobardi

A.A. 2008/2009

IV APPELLO - 7 LUGLIO 2009

Esercizio 1. - Sia F un campo e si consideri lusuale F-spazio vettoriale $F^3 = \{(a,b,c)|a,b,c \in F\}$. Con $\alpha \in F$ si considerino i vettori $v_1 = (3,3,1), v_2 = (6,2,4)$ e $v_3 = (9,\alpha,5)$ ed il sottospazio $W = \langle v_1,v_2,v_3 \rangle$ di F^3 .

- F^3 .
 In funzione di α e della caratteristica di F: si discuta la dimensione di W, si individui una base di W e si precisi quando il sottospazio $V = \langle (1,0,0) \rangle$ è un supplementare di W in F^3 .
 - Posto $U = \langle v_1, v_2 \rangle = \langle (3,3,1), (6,2,4) \rangle$, si descrivano gli elementi di U e se ne determini la dimensione. Si precisi quando la posizione $\psi((a,b,c)+U) = (a-b,2c)$ definisce un'applicazione ψ di F^3/U in F^2 e si provi che in tal caso l'applicazione è un omomorfismo di F-spazi vettoriali, precisando anche se è iniettivo e se è suriettivo.

Esercizio 2. - Si consideri il polinomio

$$f(x) = 21x^6 + 15x^5 + 10x^4 + x^3 + 3 \in \mathbb{Z}_p[x].$$

Distinguendo i casi: p=2 , p=3 , p=5 , p=7 ,

- (I) si decomponga f(x) nel prodotto di fattori irriducibili di $\mathbb{Z}_p[x]$;
- (II) si determini di f(x) un campo di spezzamento E rispetto a \mathbb{Z}_p , precisandone l' ordine, il grado $|E:\mathbb{Z}_p|$ e due \mathbb{Z}_p -basi.
- (III) Si individuino i valori del primo p per cui risulti $g(x) = x^2 8x + 12 \in \mathbb{Z}_p[x]$ divisore di f(x) in $\mathbb{Z}_p[x]$, ed almeno tre valori di p per cui risulti g(x) coprimo con f(x).