ALGEBRA II

IV Appello - 10 luglio 2013

A.A. 2012/2013

 ${f 1}$ - Sia F un campo e si consideri l'usuale F-spazio vettoriale

$$F^3 = \{(a, b, c) \mid a, b, c \in F\}.$$

Con $h, k \in F$, si considerino i vettori $v_1 = (2, h, 8), v_2 = (3, 7, 0), v_3 = (1, k, 6), v_4 = (3, 4, 0)$ ed i sottospazi $W = \langle v_1, v_2 \rangle$ e $V = \langle v_3, v_4 \rangle$ di F^3 .

- (I) In funzione di h, di k e della caratteristica di F:
 - si discutano la dimensione di W e la dimensione di V;
 - si determinino un supplementare di W e un supplementare di V;
 - si individui quando il sottospazio W+V coincide con F^3 e si precisi quando tale somma è diretta.
- (II) Posto $U = \langle v_1, v_3 \rangle = \langle (2, h, 8), (1, k, 6) \rangle$, si descrivano gli elementi di U e, in funzione di h, k e della caratteristica di F:
 - si determini la dimensione di U;
 - si verifichi quando la posizione $\psi((a,b,c)+U)=a-4b$ definisce un'applicazione ψ di F^3/U in F e in tal caso si provi che tale applicazione è un isomorfismo di F-spazi vettoriali, precisandone anche l'inversa.
- 2 Si consideri il polinomio

$$f_{\alpha}(x) = x^6 + 4x^4 + 3x^3 + x^2 + \alpha x + 15 \in \mathbb{Z}_p[x].$$

Si determini il valore di $p \in \{2, 3, 5\}$ (e quello di $\alpha \in \mathbb{Z}_p$) per cui $f_{\alpha}(x)$ ammetta 1 come radice multipla e quello per cui $f_{\alpha}(x)$ ammetta -1 come radice multipla. Considerari poi i polinomi

$$f_0(x), f_1(x) \in \mathbb{Z}_2[x], \quad f_0(x) \in \mathbb{Z}_3[x], \quad f_1(x) \in \mathbb{Z}_5[x],$$

- (I) si decomponga ciascun polinomio nel prodotto di fattori irriducibili nel relativo $\mathbb{Z}_p[x]$;
- (II) si determini di ciascuno di essi un campo di spezzamento E rispetto al relativo \mathbb{Z}_p , precisandone l'ordine, il grado $|E:\mathbb{Z}_p|$ e due \mathbb{Z}_p -basi.

1