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1. Introduction

We often think of PDEs in terms of coordinates, but actually PDEs contain some
information which is independent of the choice of coordinates. This information is the
most relevant one, because it is unaffected by any arbitrary choice. The aim of this
course is to develop a geometric language of PDEs which does only keep the relevant
information: the one independent of the choice of coordinates. This is similar to what
one does in algebraic geometry encoding a system of algebraic PDEs into a geometric
object, in that case an algebraic variety.
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2. Jet Spaces

2.1. Multi-indexes. Analitically, writing a (system) of (possibly non-linear) PDEs re-
quires choosing some independent variables x = (x1, . . . , xn), some dependent variables
u = (u1, . . . , um), that should be understood as functions of x, and a set of equations

Fa (x, . . . , uI(x), . . .) = 0

imposed on functions u = u(x) and their derivatives uI = uI(x) =
∂|I|u
∂xI

(x).

Remark 2.1 (Multiindex notation). Let n be the number of independent variables.
Put In = {1, . . . , n}. Then, a lenght k ≥ 0 multiindex is I = (i1, . . . , ik) ∈ I×kn . We also
write |I| := k (the lenght of I) and we identify two multi-indexes up to permutations
of their entries. In other words

{multi-indexes} = free commutative monoid generated by letters {1, . . . , n},
and for a multi-index I with entries i1, . . . , ik, we write I = i1 · · · ik. The lenght I 7→ |I|
maps multi-indexes homomorphically to additive, non-negative integers. Finally, given
a multi-index I = (i1, . . . , ik), we write

∂|I|

∂xI
:=

∂k

∂xi1 · · · ∂xik
and it is well-defined. Notice that there are other possible notations.
Now on, if I is a multi-index, and f is a function of the x’s, we also denote

f,I :=
∂|I|f

∂xI

Exercise 2.2. Show that the (multiplicative) monoid of multi-indexes is isomorphic to
the additive monoid Nn

0 . Describe an isomorphism and relate it to a different notational
convention on multiple partial derivatives.

2.2. Fiber bundles and their sections. We want to define PDEs in a coordinate
independent way. We will mainly deal with PDEs imposed on sections of a fiber bundle.
Accordingly, the x’s will be coordinates on a (base) manifold M and the u’s fiber
coordinates on a fiber bundle E →M , so that u = u(x) will be a section of E.
We now recall the relevant definitions. LetM,F be manifold, dimM = n, dimF = m.

Definition 2.3. A rank m fiber bundle over M with abstract fiber F is a manifold
E, dimE = n + m together with a smooth surjection π : E → M such that, for
every point x ∈ M , there is an open neighborhood U ∋ x in M and a diffeomorphism
ϕU : π−1(U)→ U × F such that diagram

π−1(U)
ϕU //

π
##

U × F

||
U
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commutes.
We adopt the following terminology:

• M is the base manifold.
• E is the total space.
• π is the bundle projection.

For x ∈ M , π−1(x), also denoted Ex, is an m-dimensional submanifold diffeomorphic
to F and called the fiber of E (growing) over x.
U is a trivializing neighborhood, and ϕU is a local trivialization.
If U =M we say that E is a trivial bundle: it’s isomorphic to M ×F with projection

M × F →M , in a suitable sense.

Remark 2.4. Let E → M be a fiber bundle and U ⊆ M a trivializing neighborhood.
Shrinking U if necessary, we can assume that U is a coordinate neighborhood with
coordinates (x1, . . . , xn). Let V be a coordinate neighborhood on the fiber F with
coordinates (u1, . . . , um). Then we get coordinates on ϕ−1U (U × V ) that we denote by
(x1, . . . , xn, u1, . . . , um) again and call bundle coordinates.
We adopt the following terminology:

• (x1, . . . , xn) are the base coordinates (they are constant along the fibers).
• (u1, . . . , um) are the fiber coordinates (they can be thought as coordinates along
the fibers).

Definition 2.5. A (local) section of a bundle E → M is a smooth map s : M → E
such that π ◦ s = idM . A local section is like a section but it is only defined on some
open neighborhood. The graph of s is its image (it is an n-dimensional embedded
submanifold, and s :M → s(M) is a diffeomorphism with inverse π : s(M)→M).

Remark 2.6. A fiber bundle needs not to posses global sections, but it always possess
local sections. Even more, for every e ∈ E there is a local section s through e, i.e.
s(x) = e, where x = π(e).
In bundle coordinates a section is completely determined by functions

uα = sα(x) = s∗(uα), α = 1, . . . ,m.

We write
s : uα = sα(x).

So local sections of fiber bundles are geometric (and coordinate independent) models
for vector valued functions of n variables x = (x1, . . . , xn).

Definition 2.7. Let E,G → M be fiber bundles over M . A bundle map, or a bundle
morphism is a smooth map F : E → G such that diagram

E
Φ //

  

G

~~
M
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commutes. isomorphisms between fiber bundles and automorphisms of a fiber bundle
are defined in the obvious way.

Remark 2.8. If x = (x1, . . . , xn) are coordinates on M , u = (u1, . . . , um) are fiber
coordinates on E and v = (v1, . . . , vp) are fiber coordinates on G, then, locally, F is
completely determined by functions

va = Fa(x, u) = F ∗(va), a = 1, . . . , p.

We write
Φ : va = Fa(x, u).

If s is a section of E, locally given by

s : uα = sα(x),

then F ◦ s is a section of G locally given by

Φ ◦ s : va = Fa(s(x)).

2.3. Jets of sections of a fiber bundle. In order to define PDEs in a coordinate inde-
pendent way, we need a coordinate independent definition ofmultiple partial derivatives.
This is provided by jets (of sections of a fiber bundle).
Let E →M be a fiber bundle. We will interpret the base coordinates x = (x1, . . . , xn)

as independent variables and the fiber coordinates u = (u1, . . . , um) as dependent vari-
ables. Given a local section s of E defined around a point x0 ∈ M what are the k-th
order (multiple, partial) derivatives of s? We first define when do two sections s, t,
defined around the same point x0, have the same partial derivatives up to order k at
x0.

Proposition 2.9. Let s, t be local sections of E defined around x0 ∈ M . Assume
s(x0) = t(x0) =: e0 and let (x, u) be bundle coordinates around e0 such that, locally

s : uα = sα(x), and t : uα = tα(x).

Denote by µx0 ⊆ C∞(M) the ideal consisting of functions h such that h(x0) = 0. For
every k ≥ 0, the following two conditions are equivalent:

(1) for all I such that |I| ≤ k

sα,I (x0) = tα,I (x0);

(2) if f ∈ C∞(E) then
f ◦ s ∈ µk+1

x0
iff f ◦ t ∈ µk+1

x0
.

Exercise 2.10. Prove Proposition 2.9 (Hint: recall that a function h ∈ C∞(M) is in
µkx0 iff its derivatives up to order k vanish in one, hence any, coordinate system (which
is an immediate consequence of the Hadamard’s Lemma)).

Definition 2.11. Two local sections s, t defined around x0 ∈M are tangent up to order
k ≥ 0 at x0 if s(x0) = t(x0), and one of the equivalent conditions of Proposition 2.9 is
satisfied. In this case we write s ∼kx0 t.
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Remark 2.12.
s, t are tangent up to order 0 if s(x0) = t(x0).
s, t are tangent up to order 1 if they are tangent up to order 0 and, additionally,

dx0s = dx0t, or, which is the same, their graphs are tangent at s(x0) = t(x0).

Tangency up to order k at x0 is an equivalence relation on the set of all local sections
defined around x0. The equivalence class of s is denoted jkx0s and called the k-jet of s
at x0. In practice it contains a full information on “derivatives of s” up to order k at
x0.
Denote by Jkx0E the space of all k-jets of sections of E at x0 and

JkE :=
⊔
x0∈M

Jkx0E.

JkE is the k-jet space, or k-jet bundle, of E. In practice, points in JkE are Taylor
polynomials of sections of E at all possible points of M .
There are obvious surjections p : JkE → Jk−1E, jkxs 7→ jk−1x s which consist in

“forgetting the last derivative”.
There are also surjections, the source maps, π : JkE →M , jkxs 7→ x.
J0E identifies with E, under j0xs 7→ s(x). So p ◦ · · · ◦ p : JkE → J0E identifies with

the target map pE : JkE → E, jkxs 7→ s(x).

Remark 2.13. We can put coordinates on JkE as follows. Let (x, u) be bundle co-
ordinates on E, defined in a neighborhood U and let Uk := p−1E (U) ⊆ JkE. Let
z = jkxs ∈ Uk, with s : uα = sα(x), and put

uαI (z) = sα,I (x), α = 1, . . . ,m, I a multi-index s.t. |I| ≤ k.

Proposition 2.14. (Uk, (x, . . . , uI , . . .)) is a chart on JkE (called a standard chart).
Any two such charts are compatible. With this atlas, JkE is a smooth manifold,

dim JkE = n+m

(
n+ k

k

)
,

and both p : JkE → Jk−1E and pE : JkE → E are fiber bundles with abstract fiber
diffeomorphic to some Euclidean space.

Exercise 2.15. Prove Proposition 2.14 (Hint: prove, by induction on k, that the tran-
sition maps between standard charts are polynomials in derivatives uI , 0 < |I| ≤ k. For
the fiber of p notice that, for every e ∈ E, and every sequence S = (sI)|I|>0 ⊆ Rm, S is
the sequence of derivatives of a section of E through e).

Exercise 2.16. Assume E → M is a vector bundle. Show that JkE → M is a vector
bundle as well (Hint: notice that, for all x ∈M the fiber JkxE of JkE over x is a vector
space with the following operations:

jkxs+ jkxt = jkx(s+ t)

r · jkxs = jkx(rs)
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s, t local sections of E and r ∈ R.)

We can also use the jet space to encode derivative functions. Let s be a section of E.

Definition 2.17. The k-jet prolongation of s is the following smooth section of JkE →
M :

jks :M → JkE, x 7→ jkxs.

Exercise 2.18. Show that jks is actually a smooth section (Hint: show that if s : uα =
sα(x) then

jks : uαI = sα,I (x),

hence it is locally smooth).

3. The Cartan distribution

3.1. Distributions on manifolds. The jet space JkE is equipped with a canonical
structure called the Cartan distribution, which is a(n other) manifestation of the fact
that JkE is a space of derivatives.
Let N be a smooth n-dimensional manifold

Definition 3.1. A rank k (regular) distribution on N is a rank k vector subbundle D
of the tangent bundle TN .

Remark 3.2. In other words a rank k distribution is the datum of a k-dimensional
subspace Dz ⊆ TzN for any z ∈ N in such a way that Dz depends smoothly on z.
Equivalently, locally there are k vector fields Y1, . . . , Yk such that

Dz = ⟨Y1|z, . . . , Yk|z⟩
for all z. In this case we also write

D = ⟨Y1, . . . , Yk⟩,
and say that D is (locally) spanned by Y1, . . . , Yk. In a dual way, locally there are n− k
differential 1-forms ω1, . . . , ωn−k such that

Dz = kerω1|z ∩ · · · ∩ kerωn−k|z.

There is a dual approach to distributions. Given a rank k distribution D ⊆ TN , it
is natural to consider the normal bundle, i.e. the quotient bundle V = TM/D, whose
fiber over z is TzN/Dz. So there is a canonical projection

θ : TM → V, v 7→ vmodD,

with kernel D. θ can be seen as a differential 1-form with values in V :

θ ∈ Ω1(N, V ) = Ω1(N)⊗ Γ(V ),

where the tensor product is over C∞(N), and it is called the structure 1-form of D.
Conversely, given a surjective 1-form θ on N with values in a rank n−k vector bundle

V ,



DIFFERENTIAL GEOMETRY AND PDES 7

(1) the kernel of θ is a rank k distribution D on N ,
(2) V identifies canonically with TN/D, and
(3) θ identifies with the projection TN → TN/D.

This shows that distributions are basically equivalent to surjective vector bundle valued
1-forms.

Definition 3.3. A connected (immersed) submanifold S ⊆ N is an integral submanifold
of a distribution D on N , if TzS ⊆ Dz for all z ∈ S. An integral submanifold S is locally
maximal if, for every z ∈ S, and every neighborhood U of z, S ∩ U is not contained in
any integral submanifold of bigger dimension.

Remark 3.4. A distribution D possesses at least integral curves but needs not to
possess integral manifolds of the same dimension as rankD. On the other hand it may
possess several locally maximal integral submanifolds through the same point, even of
different dimensions. See below for a distinguished example.

Example 3.5. In Rn with cartesian coordinates (x1, . . . , xn) consider the distribution
D spanned by the first k coordinate vector fields:

D =

〈
∂

∂x1
, . . . ,

∂

∂xk

〉
.

The affine subspaces  xk+1 = c1

· · ·
xn = cn−k

(c1, . . . , cn−k) = const

are all locally maximal (actually even globally maximal) integral submanifolds of di-
mension k = rankD. Every locally maximal integral submanifold is a connected open
subset in one of those and vice-versa.

Let D be a distribution and let θ ∈ Ω1(N, V ) be its structure 1-form. There is a
skew-symmetric, R-bilinear map

ω : Γ(D)× Γ(D)→ Γ(V ), (X, Y ) 7→ θ([X, Y ]) = [X, Y ] modΓ(D)

Exercise 3.6. Show that ω is C∞(N)-bilinear and conclude that it comes from a vector
bundle map, also denoted ω:

ω : ∧2D → V.

Definition 3.7. ω is called the curvature of D.
If ω = 0 we say that D is involutive or integrable.
If ω is full-rank we say that D is maximally non-integrable.

Notice that D is integrable iff its section Γ(D) are preserved by the commutator,
i.e. [X, Y ] ∈ Γ(D) for all X, Y ∈ Γ(D). The terminology is motivated by the following
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Theorem 3.8 (Frobenius). D is integrable iff locally, around every point of N , there
are coordinates (x1, . . . , xn) such that

D =

〈
∂

∂x1
, . . . ,

∂

∂xk

〉
.

Frobenius Theorem immediately implies that an integrable distribution D possesses
locally maximal integral submanifolds of the same dimension as rankD through any
point.
Let D be a distribution on a manifold N .

Definition 3.9. A symmetry of D is a diffeomorphism ϕ : N → N preserving D,
i.e. dϕ(D) = D. An infinitesimal symmetry of D is a vector field X on N generating
a flow by symmetries. A characteristic symmetry of D is an infinitesimal symmetry X
which is, additionally, in D, i.e. X ∈ Γ(D).

Denote by DΩ1 ⊆ Ω1(N) the submodule consisting of differential 1-forms annihilating
vector fields in Γ(D):

ω ∈ DΩ1 ⇔ ω(X) = 0 for all X ∈ Γ(D).

Exercise 3.10. Show that

(1) symmetries form a group under composition;
(2) symmetries of a distribution D map (locally maximal) integral submanifolds to

(locally maximal) integral submanifolds;
(3) a diffeomorphism ϕ : N → N is a symmetry iff ϕ∗(X) ⊆ Γ(D) for all X ∈ Γ(D)
(4) a diffeomorphism ϕ : N → N is a symmetry iff ϕ∗(ω) ∈ DΩ1 for all ω ∈ DΩ1.

Exercise 3.11. Show that

(1) infinitesimal symmetries form a Lie algebra (denoted XD) under the commuta-
tor;

(2) characteristic symmetries form an ideal in XD;
(3) the flowout of an integral manifold under a characteristic symmetry is an integral

manifold;
(4) a vector field X is an infinitesimal symmetry iff [X, Y ] ∈ Γ(D) for all Y ∈ Γ(D);
(5) a vector field X is an infinitesimal symmetry iff LXω ∈ DΩ1 for all ω ∈ DΩ1.

(Hint: for (4) use formula

ϕ∗t [X, Y ] =
d

dt
ϕ∗t (Y ),

for all X, Y ∈ X(N), where {ϕt} is the flow of X. For (5) use (4) and Cartan calculus).

Exercise 3.12. Show that

(1) a distribution D is integrable iff every section of D is a characteristic symmetry;



DIFFERENTIAL GEOMETRY AND PDES 9

(2) If D is maximally non-integrable then it does not possess characteristic sym-
metries. If, additionally, rankω = const, then the converse if also true. (Hint
for the second part of (2): if rankω = const, then tangent vectors v such that
ω(v,−) = 0 form a(n integrable) distribution K ⊆ D|U . Show that characteristic
symmetries of D are precisely sections of K.)

3.2. The Cartan distribution and its structure 1-form. Now let’s go back to the
k-jet space JkE of some fiber bundle. We want to show that JkE is equipped with
a canonical, maximally non-integrable distribution: the Cartan distribution C. There
are several equivalent ways to define C. First we define jet-planes.
Let z ∈ JkE, and let x = π(z). Then z = jkxs for some, non unique, local section of

E defined around x.

Definition 3.13. A jet-plane at z is any n-dimensional subspace J ⊆ Tz(J
kE) of the

form
J = Tz(graph of jks), for some representative s of z.

In other words a jet-plane is the tangent space to the graph of a jet prolongation.

Remark 3.14. Notice that the condition that s is a representative of z is equivalent to
the condition that z is a point in the graph of jks, and this makes jet-planes well-defined.

Proposition 3.15. jet-planes at z ∈ JkE are parameterized by points in p−1(z) ⊆
Jk+1E, i.e. there is a (actually canonical) bijection

b : p−1(z)→ {jet-planes at z}.
Proof. First of all there is an informal argument which explains the statement. Namely,
z is, morally, a Taylor polynomial of order k, and a representative s of it is a section
whose Taylor polynomial of order k is exactly z. Now jks encodes derivatives of s up
to order k, so the tangent space at z to the graph of jks encodes derivatives of s at
π(z) up to order k + 1. This is precisely the same information contained in a point in
p−1(z) ⊆ Jk+1.
More rigorously, we define b as follows. Put x = π(z). Since p(jk+1

x s) = jkxs, a point
jk+1
x s ∈ Jk+1E is in p−1(z) iff s is a representative of z, i.e. z = jkxs. This means that
z is in the graph of jks. So it makes sense putting

b(jk+1
x s) := Tz(graph of jks).

□

Exercise 3.16. Conclude the proof of Proposition 3.15 showing that b is a well-defined
bijection. (Hint: use local coordinates.)

It follows from the arbitrariness of k that points in JkE correspond bijectively to
jet-planes in Jk−1E. Let z ∈ JkE, and z = p(z). In the following, we denote by

Jz =: b(z) ⊆ Tz(J
k−1E)

the corresponding jet-plane.
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Definition 3.17. The Cartan plane at z is

Cz := (dp)−1(Jz) ⊆ Tz(J
kE).

The Cartan distribution is

C : z 7→ Cz.

Proposition 3.18. The Cartan distribution is a smooth distribution, and

rankC = n+m

(
n+ k − 1

k

)
.

Locally

C =

〈
. . . , Di, . . . ,

∂

∂uαK
, . . .

〉
|K|=k

,

where

Di =
∂

∂xi
+
∑
|I|<k

uαIi
∂

∂uαI
, i = 1, . . . , n.

Definition 3.19. Vector fields Di are called the (truncated) total derivatives.

Exercise 3.20. Prove Proposition 3.18. (Hint: Prove that, for all z ∈ JkE, Cz is
spanned by

Di|z and
∂

∂uαK

∣∣∣∣
z

.

To do this notice that the ∂
∂uαK

∣∣∣
z
’s belong to Cz, and that the (dp)(Di|z)’s form a basis

in Jz. Then use linear algebra.)

Exercise 3.21. Prove that the Cartan plane at z is spanned by all jet-planes at z
(this provides an alternative definition of the Cartan distribution) (Hint: use local
coordinates).

We now provide a dual description of the Cartan distribution.

Definition 3.22. The vertical bundle to a fiber bundle π : E → M is the distribution
V E = ker dπ consisting of tangent spaces to fibers of π

Consider the k-jet bundle JkE and let V := V (Jk−1E)→ Jk−1E the vertical bundle
to the (k− 1)-jet bundle Jk−1E →M . We will also consider the pull-back p∗V → JkE
which is the vector bundle whose fiber over z ∈ JkE is the fiber of V over p(z).

Proposition 3.23. The Cartan distribution C is the kernel of a canonical p∗V -valued
1-form θ. Locally

θ =
∑
|I|<k

(
duαI − uαIidxi

)
⊗ ∂

∂uαI
. (1)
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Proof. Define θ as follows. For z = jks ∈ JkE, and v ∈ Tz(JkE), put

θ(v) = dp(v)− d(jk−1s ◦ π)(v) ∈ Tp(z)Jk−1E,

which is independent of the choice of s. Additionally,

dπ(θ(v)) = dπ ◦ dp(v)− dπ ◦ d(jk−1s ◦ π)(v) = dπ(v)− dπ(v) = 0,

so that θ(v) ∈ Vp(z). Locally, θ is given by (1) and this shows that θ is a smooth
p∗V -valued 1-form (Exercise 3.24). Finally, let v ∈ ker θ then

dp(v) = d(jk−1s ◦ π)(v) = djk−1s ◦ dπ(v) ∈ Jz
so that v ∈ Cz. Conversely, let v ∈ Cz, then dp(v) ∈ Jz. As Jz projects isomorphically
to Tπ(z)M under dπ we have

dp(v) = djk−1s ◦ dπ(v) = d(jk−1s ◦ π)(v),

hence θ(v) = 0. □

Exercise 3.24. Complete the proof of Proposition 3.23 showing that θ is well-defined
and locally given by (1).

Remark 3.25. It follows from Proposition 3.23 that C is locally the intersection of the
kernels of the 1-forms

ωαI := duαI − uαIidxi, |I| < k.

The latter are sometimes called Cartan forms. A 1-form vanishes on C iff it is locally
a linear combination of Cartan forms.

Remark 3.26. Let π : E →M be a fiber bundle, and e ∈ E. A subspace W ⊆ TeE is
π-horizontal if dπ maps it injectively to Tπ(e)M . For instance jet-planes are π-horizontal
subspaces. Even more, let z ∈ JkE, then

Tp(z)(J
k−1E) = Jz ⊕ Vp(z)

and there is an alternative description of θ. Namely, denote by

prz : Tp(z)(J
k−1E)→ Vp(z)

the projection with kernel Jz. Then, for v ∈ Tz(JkE),

θ(v) = prz ◦ dp(v).

In particular θ is surjective, the quotient bundle T (JkE)/C identifies canonically with
p∗V , and, in this identification, θ is the structure 1-form of C.
Surjectivity of θ is also clear from (1).

Proposition 3.27. The curvature

ω : ∧2C → p∗V
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of the Cartan distribution is locally given by

ω =
∑
|I|=k−1

(
duαIi ∧ dxi

)∣∣
C
⊗ ∂

∂uαI

Corollary 3.28. The Cartan distribution is maximally non-integrable.

Exercise 3.29. Prove Proposition 3.27 and Corollary 3.28.

Let z ∈ JkE, and x = π(z). Recall that n-dimensional, π-horizontal subspaces of
Tz(J

kE) form an affine space modelled over T ∗xM ⊗ Vz(JkE).

Problem 3.30. Prove that jet-planes can be characterized as n-dimensional, π-
horizontal subspaces J that are isotropic wrt ω, i.e. ω|J = 0. Use this to show that
jet-planes form an affine subspace in the affine space of all n-dimensional, π-horizontal
subspaces of Tz(J

kE). Finally, prove that p : Jk+1E → JkE is an affine bundle modelled
over

π∗(Sk+1T ∗M)⊗ p∗E(V E).

The Cartan distribution detects jet prolongations in the sense of the following

Proposition 3.31. The graph of a section σ of JkE → M is an integral submanifold
of the Cartan distribution iff σ = jksσ with sσ = pE ◦ σ.

Proof. Use local coordinates. Locally σ : uαI = σαI . Now, the graph of σ is an integral
submanifold iff

0 = σ∗(ωαI ) = dσαI − σαIidxi,

i.e.,

σαI ,i= σαIi,

and, by induction on |I|,

σαI = σα,I ,

which concludes the proof. □

Recall that a submanifold S ⊆ JkE is π-horizontal iff TzS is a π-horizontal subspace
for all z ∈ S.

Corollary 3.32. An n-dimensional, π-horizontal submanifold S ⊆ JkE is an integral
submanifold of the Cartan distribution iff it is locally the graph of a jet prolongation.

Proof. Every π-horizontal submanifold of JkE is locally the graph of a section. □
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3.3. Locally maximal integral submanifolds of the Cartan distribution.

Remark 3.33. Let S ⊆ JkE be an integral submanifold of C. For simplicity, assume
that p(S) is a submanifold (and p : S → p(S) a submersion). Then every tangent space
to p(S) is contained into some jet-plane. Hence p(S) is a π-horizontal integral manifold.
We will now show that, if S is locally maximal (among integral manifolds) then it is
completely determined by p(S) via the ray construction.

First of all notice that

(1) graph of jet prolongations, and
(2) fibers of p : JkE → Jk−1E,

are integral submanifolds of the Cartan distribution.

Exercise 3.34. Let S ⊆ JkE be a π-horizontal (non-necessarily locally maximal)
integral submanifold of the Cartan distribution. Prove that, locally around every point,
S is contained into the graph of a jet prolongation. (Hint: notice that π : S → M is
an immersion. Choose a neighborhood U ⊆ S, such that π(U) ⊆ M is an embedded
submanifold and π : U → π(U) is a diffeomorphism. Denote V := pE(U) ⊆ E and
notice that V is an embedded submanifold such that π : V → π(U) is a diffeomeorphism.
Extend π−1 : π(U)→ V to a local section s of E →M , and prove that the graph of jks
contains U . Use local coordinates.)

Let z ∈ JkE, and z := p(z). Recall that we denote by Jz ⊆ Tz(J
k−1E) the jet-plane

corresponding to z. Now, let H ⊆ Cz be a π-horizontal subspace of dimension h (then
h ≤ n).

Definition 3.35. The ray ℓ(H) of H is the subspace in p−1(z) given by

ℓ(H) := {z ∈ p−1(z) : Jz ⊇ H}.

Remark 3.36. If H1 ⊆ H2 ⊆ Cz are two π-horizontal subspaces then ℓ(H2) ⊆ ℓ(H1).

Example 3.37.

(1) H = 0⇒ ℓ(H) = p−1(z).
(2) H = Jz ⇒ ℓ(H) = {z}.

Exercise 3.38. Prove that

(1) ℓ(H) is non-empty iff H is ω-isotropic, i.e. ω|H = 0;
(2) if H is ω-isotropic, then ℓ(H) ⊆ p−1(z) is an affine subspace of dimension

dim ℓ(H) = m

(
n− h+ k − 1

k

)
. (2)

Now, let S ⊆ Jk−1E be an h-dimensional, π-horizontal, integral manifold of the
Cartan distribution.

Exercise 3.39. Prove that TzS is isotropic wrt ω for all z ∈ S.
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Definition 3.40. The ray ℓ(S) of S is the subset in JkE given by

ℓ(S) := {z ∈ JkE : Jz ⊇ Tp(z)S} =
⊔
z∈S

ℓ(TzS).

Example 3.41.

(1) S = {z} ⇒ ℓ(S) = p−1(z).
(2) S = graph of jk−1s⇒ ℓ(S) = graph of jks.

In both cases ℓ(S) is an integral submanifold of the Cartan distribution.

Theorem 3.42. ℓ(S) ⊆ JkE is an affine bundle over S, and a locally maximal integral
submanifold of the Cartan distribution of dimension

dim ℓ(S) = h+m

(
n− h+ k − 1

k

)
. (3)

Every locally maximal integral submanifold of the Cartan distribution on JkE is almost
everywhere, locally, of this kind.

Proof. We leave as an Exercise 3.43 to prove that ℓ(S) is an affine bundle over S.
Formula (3) then follows from (2). To see that ℓ(S) is an integral manifold, notice that
for every point z ∈ ℓ(S)

dp(Tzℓ(S)) = Tp(z)S ⊆ Jz.

so Tzℓ(S) ⊆ Cz. Next we prove that every locally maximal integral submanifold N is
almost everywhere, locally, of the form ℓ(S). So, let N ⊆ JkE be a locally maximal
integral submanifold of C. The rank of p : N → Jk−1E is almost everywhere, locally
constant. So, without loss of generality, we may assume that S := p(N) ⊆ Jk−1E is
an integral manifold and p : N → S is a submersion. Notice that, as N is an integral
manifold, S is an integral manifold as well, and, additionally, S is π-horizontal. We
want to show that N = ℓ(S). So let z ∈ N , then

Jz = dp(Cz) ⊇ dp(TzN) = Tp(z)S.

This shows that N ⊆ ℓ(S). As N is locally maximal then N = ℓ(S).
It remains to prove that for every S, ℓ(S) is locally maximal. So, suppose that ℓ(S) ⊆

N for some integral manifold N . Then p(N) ⊇ S. Assume, preliminarily, that the rank
of p : N → Jk−1E is constant around the points of ℓ(S). Then N = ℓ(S ′) around points
of S, and S ′ ⊇ S. It now follows from (3) that dimN = dim ℓ(S ′) ≤ dim ℓ(S), so ℓ(S)
coincides (locally) with N and it is locally maximal itself. Finally notice that if the
rank of p : N → Jk−1E was not constant along ℓ(S) then, for similar reasons, “it would
increase along ℓ(S)” which is impossible. We leave details to the reader. □

Exercise 3.43. Prove that ℓ(S) is an affine bundle over S.

Exercise 3.44. Prove that the rank of p : N → Jk−1E (in the last part of the proof of
Theorem 3.42) is necessarily constant around ℓ(S) (Hint: remember that the rank of a
smooth map is lower semicontinuous).
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Remark 3.45. It follows from Theorem 3.42 that, through any point in a jet space,
there can be several locally maximal integral submanifold (not even agreeing locally
and) not even of the same dimension.

Corollary 3.46.

(1) If m = n = 1 (ODEs in 1 dependent variable) then all locally maximal integral
submanifolds of the Cartan distribution share the same dimension 1.

(2) If m = k = 1 (first order PDEs in 1 dependent variable) then all locally maximal
integral submanifolds of the Cartan distribution share the same dimension n.

(3) In all other cases (open subsets in) the fibers of p are locally maximal integral
submanifolds of the maximum possible dimension.

4. Symmetries of the Cartan distribution

Recall that a symmetry of the Cartan distribution on JkE is a diffeomorphism ϕ :
JkE → JkE such that dϕ(C) = C.

Definition 4.1. A Lie transformation of JkE is a symmetry of the Cartan distribution
on JkE. An infinitesimal Lie transformation is an infinitesimal simmetry of C.

If k = 0, then JkE = E and C = TE. So every diffeomorphism ϕ : E → E is a Lie
transformation. We call it a point transformation.

Exercise 4.2. Let D be a distribution with curvature ω. Prove that a symmetry of D
maps ω-isotropic subspaces to ω-isotropic subspace.

Given a Lie transformation ϕ of JkE, we can construct a Lie transformation of Jk+1E
as follows. Let J be a jet-plane at z ∈ JkE. So J = Jz′ for some z′ ∈ p−1(z). In view
of Exercise 4.2, dϕ(J) is an n-dimensional, ω-isotropic subspace at ϕ(z). If it is also
π-horizontal, then it is a jet-plane. As being π-horizontal is an open condition, this
happens for almost all z′ ∈ Jk+1E, i.e. on an open dense subset U ⊆ Jk+1E. Define

ϕ(1) : U → Jk+1E,

letting ϕ(1)(z′) be implicitly given by

Jϕ(1)(z′) = dϕ(Jz′).

Proposition 4.3. ϕ(1) is a (local) Lie transformation (of Jk+1E).

Proof. We leave it to the reader checking that ϕ(1) is a smooth map. It is clearly a
local diffeomorphism: (ϕ−1)(1) provides the inverse. Finally, prove that ϕ(1) preserves
the Cartan distribution. First of all notice that the diagram

U
ϕ(1) //

��

Jk+1E

��
JkE

ϕ // JkE
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commutes. Hence dp ◦ dϕ(1) = dϕ ◦ dp. So, for all z′ ∈ U
dp ◦ dϕ(1)(Cz′) = dϕ ◦ dp(Cz′) = dϕ(Jz′) = Jϕ(1)(z′).

This shows that dϕ(1)(Cz′) ⊆ Cϕ(1)(z′) as claimed. □

Definition 4.4. The Lie transformation ϕ(1) is called the (first) prolongation of ϕ.

In the following, given a Lie transformation ϕ of JkE we put

ϕ(r) := ϕ(1)(1)···(1)︸ ︷︷ ︸
r times

Theorem 4.5 (Lie-Bäcklund).

(1) Let ψ be a (local) Lie transformation of JkE, then locally ψ = ϕ
(k−1)
1 for some,

necessarily unique, Lie transformation ϕ1 of J1E. The correspondence ψ 7→ ϕ1

is one-to-one and group property preserving.
(2) In the additional hypothesis that m ̸= 1, then, even more, ψ = ϕ(k) for some

point transformation ϕ. The correspondence ψ 7→ ϕ is one-to-one and group
property preserving.

Proof. Assume m,n > 1. The case m = n = 1 (ODEs in 1 dependent variable)
requires an ad hoc proof which we omit (see Lemma 3.2 in1). Let ψ be a (local) Lie
transformation of JkE, with k > 1. From Exercise 3.10, ψ maps locally maximal integral
submanifolds to locally maximal integral submanifolds. As it also preserves dimensions,
it maps locally maximal integral submanifolds of the maximum possible dimension
to locally maximal integral submanifolds. We assumed m,n, k > 1 so, according to
Corollary 3.46, locally maximal integral submanifolds are (open submanifolds in) fibers
of p. So, locally, ψ maps fibers to fibers and it descends to a (local) diffeomorphism
ψ(1) of Jk−1E. We want to show that ψ(1) is a Lie transformation. By construction,
diagram

JkE
ψ //

��

JkE

��
Jk−1E

ψ(1) // Jk−1E

commutes, so, for all z ∈ JkE,
dψ(1)(Jz) = dψ(1) ◦ dp(Cz) = dp ◦ dψ(Cz) = dp(Cψ(z)) = Jψ(z). (4)

This shows that ψ(1) maps jet-planes to jet-planes. Since jet-planes span Cartan planes,
it follows that ψ(1) preserves the Cartan distribution, i.e. it is a Lie transformation.

Computation (4) does also show that ψ = ψ(1)
(1). The first item in the statement can

now be proved by induction.

1A. V. Bocharov et al., Symmetries and Conservation Laws for Differential Equations of Mathemat-
ical Physics, Transl. Math. Mon. 182, Amer. Math. Soc., Providence, 1999.
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For the second item, notice that, if m > 1, then the same argument as above shows
that a Lie transformation of J1E is the prolongation of a point transformation. □

Example 4.6. We want to find coordinate formulas for the first prolongation of a point
transformation. So let ϕ : E → E be a point transformation locally given by

ϕ∗(xi) = X i = X i(x, u)
ϕ∗(uα) = Uα = Uα(x, u) . (5)

As ϕ(1) projects onto ϕ, it is locally given by

ϕ∗(xi) = X i

ϕ∗(uα) = Uα
ϕ∗(uαi ) = Uαi = Uαi (x, u, u′)

, (6)

where the u′ are partial derivatives of the u, and we want to find the Uαi in terms
of the X i and the Uα. In view of the Lie-Bäcklund Theorem, the Uαi are completely
determined by the condition that ϕ(1) is a Lie transformation. From Exercise 3.10.(3)
this is equivalent to ϕ(1)∗(ωα) ∈ CΩ1, α = 1, . . . ,m, i.e.

ϕ(1)∗(ωα) (Dj) = ϕ(1)∗(ωα)

(
∂

∂uβj

)
= 0.

Now

ϕ(1)∗(ωα) = ϕ(1)∗(duα − uαi dxi) = dUα − Uαi dX i.

As the X i and the Uα are functions of the only (x, u), ϕ(1)∗(ωα) annihilates the ∂/∂uβj
identically, and it remains to check when does ϕ(1)∗(ωα) (Dj) vanish. We have

ϕ(1)∗(ωα) (Dj) = DjUα − Uαi DjX i.

We conclude that (6) defines a Lie transformation iff

Uαi DjX i = DjUα.

As ϕ is a diffeomorphism, the matrix (DjX i) is invertible in an open and dense subset
of J1E (Exercise 4.7), and ϕ(1) is only defined on the open and dense subset U where
(DjX i) is invertible. If (Yji ) is the inverse matrix, Yji = Y

j
i (x, u, u

′), we have

Uαi = Yji ·DjUα.

Exercise 4.7. Prove that the matrix (DjX i) in Example 4.6 is invertible in an open
and dense subset.

Exercise 4.8. Let ϕ : E → E be a point transformation locally given by (5). Find
coordinate formulas for the second prolongation ϕ(2).

Remark 4.9. The Lie-Bäcklund Theorem cannot be improved extending the second
item to the case m = 1 as the following counter-example shows: let M = Rn, and
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E = Rn × R → Rn. Then J1E ≃ Rn × R × Rn → Rn and (x, u, u′) are global
coordinates on it. It is easy to check (Exercise 4.10) that the Legendre transformation:

ψ : J1E → J1E, (x, u, u′) 7→ (u′, x · u′ − u, x) (7)

is a Lie transformation. As it does not preserve the fibers of p : J1E → E, it cannot be
the prolongation of any point transformation. We conclude that the case k = m = 1 is
somewhat peculiar and, to some extent, should be studied separately. This is the aim
of contact geometry and will be pursued in Section 7.

Exercise 4.10. Prove that the Legendre transformation (7) is a Lie transformation.

Infinitesimal Lie transformations can be prolonged as regular Lie transformations.
Namely let X be an infinitesimal Lie transformation of JkE and let {ϕt} be its flow

of Lie transformations. The first prolongation {ϕ(1)
t } is a flow on Jk+1E (a priori only

defined in an open and dense subset). Additionally, as, for small t, ϕt is close to the

identity, it follows that, for every z′ ∈ Jk+1E there is t such that ϕ
(1)
t is defined in z′.

So the infinitesimal generator of {ϕ(1)
t } is a well-defined vector field X(1) on the whole

Jk+1E.

Definition 4.11. X(1) is the (first) prolongation of X.

We also put
X(r) := X(1)(1)···(1)︸ ︷︷ ︸

r times

The following Infinitesimal Lie-Bäcklund Theorem is an easy consequence of Theorem
4.5.

Theorem 4.12 (Infinitesimal Lie-Bäcklund).

(1) Let Y be an infinitesimal Lie transformation of JkE, then Y = X
(k−1)
1 for some,

necessarily unique, infinitesimal Lie transformation X1 of J1E. The correspon-
dence Y 7→ X1 is one-to-one and Lie algebra property preserving.

(2) In the additional hypothesis that m ̸= 1, then, even more, X = X(k) for some
point infinitesimal point transformation X ∈ X(E). The correspondence Y 7→ X
is one-to-one and Lie algebra property preserving.

Exercise 4.13. Prove the Infinitesimal Lie-Bäcklund Theorem 4.12.

Example 4.14. We want to find coordinate formulas for the first prolongation of an
infinitesimal point transformation. So let X ∈ X(E) be locally given by

X = X i ∂

∂xi
+ Uα ∂

∂uα
, (8)

X i = X i(x, u), Uα = Uα(x, u). As X(1), projects onto X, it is locally given by

X(1) = X + Uα
i

∂

∂uαi
, (9)
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Uα
i = Uα

i (x, u, u
′), and we want to find the Uα

i in terms of the X i and the Uα. In view
of the infinitesimal Lie-Bäcklund Theorem, the Uα

i are completely determined by the
condition that X(1) is an infinitesimal Lie transformation. From Exercise 3.11.(3) this
is equivalent to

Dj LX(1)ωα =
∂

∂uβj
LX(1)ωα = 0.

Now, for every Y ∈ Γ(C),

Y LX(1)ωα = [Y,X(1)] ωα.

Since the X i and the Uα do only depend on (x, u), it easily follows that LX(1)ωα anni-

hilates the ∂/∂uβj identically. So it remains to check when does iDi
LX(1)ωα vanish. We

have
Dj LX(1)ωα = [Dj, X

(1)] ωα = DjU
α − uαi DjX

i − Uα
j .

We conclude that (9) defines an infinitesimal Lie transformation iff

Uα
j = DjU

α − uαi DjX
i, (10)

which can be realized on the whole J1E.

Exercise 4.15. Let X ∈ X(E) be an infinitesimal point transformation locally given
by (8). Find coordinate formulas for the second prolongation X(2).

It follows from Theorem 4.12 that the Lie algebra of infinitesimal Lie transformations
of JkE is actually isomorphic to

(1) the Lie algebra X(E) if m > 1,
(2) the Lie algebra of infinitesimal Lie transformations of J1E if m = 1.

In Section 7 we will study more closely the Lie algebra of infinitesimal Lie transfor-
mations of J1E, when m = 1.

5. Jets of submanifolds

In Differential Geometry, there are many examples of PDEs imposed on submanifolds
of a given manifold: Lagrangian submanifolds, and minimal surfaces provide examples
from symplectic and Riemannian geometry. For this reason it is important to develop
a theory of “derivatives” or jets of submanifolds. In this short section we will outline
this theory. As it is basically the same as the theory of jets of sections up to global,
topological issues, we will go immediately back to the latter in the next section, leaving
to the reader the necessary adaptations for submanifolds.
In this section E is an n +m-dimensional manifold (not necessarily a fiber bundle)

and we look at n-dimensional submanifolds N ⊆ E. Let (x, u), x = (x1, . . . , xn),
u = (u1, . . . , um) be coordinates on E around a point of N such that, locally

N : uα = sα(x)

Definition 5.1. Coordinates (x, u) are said to be adapted to N .
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Adapted coordinates do always exist by definition of submanifold. Now let N,O be
two submanifolds such that N ∩O ̸= ∅, and let e0 ∈ N ∩O.
Exercise 5.2. Show that, around e0, there are coordinates adapted to both N and O.

Proposition 5.3. Let N,O be intersecting n-dimensional submanifolds of E and e0 ∈
N ∩O. Let (x, u) be coordinates around e0 adapted to both N,O, so that, locally

N : uα = sα(x), and O : uα = tα(x),

and let (x0, u0) be coordinates of e0. Denote by µN,e0 ⊆ C∞(N) (resp. µO,e0 ⊆ C∞(O))
the ideal consisting of functions h such that h(e0) = 0. For every k ≥ 0, the following
two conditions are equivalent:

(1) for all I such that |I| ≤ k

sα,I (x0) = tα,I (x0);

(2) if f ∈ C∞(E) then
f |N ∈ µk+1

N,e0
iff f |O ∈ µk+1

O,e0
.

Exercise 5.4. Prove Proposition 5.3 (Hint: use Proposition 2.9).

Definition 5.5. Two n-dimensional submanifolds N,O are tangent up to order k ≥ 0
at e0 if e0 ∈ N ∩O, and one of the equivalent conditions of Proposition 5.3 is satisfied.
In this case we write N ∼ke0 O.
Remark 5.6.
N,O are tangent up to order 0 at e0 if e0 ∈ N ∩O.
N,O are tangent up to order 1 at e0 if they are tangent up to order 0 and, additionally,

they are tangent at e0.
Tangency up to order k at e0 is an equivalence relation on the set of all n-dimensional

submanifold through e0. The equivalence class of N is denoted jke0N and called the
k-jet of N at e0.
Denote by Jke0(E, n) the space of all k-jets of n-dimensional submanifodls of E at e0

and
Jk(E, n) :=

⊔
e0∈E

Jke0(E, n).

There are obvious surjections p : Jk(E, n)→ Jk−1(E, n), jkeN 7→ jk−1e N which consist
in “forgetting the last derivative”.
J0(E, n) identifies with E, under j0eN 7→ e. So p ◦ · · · ◦ p : Jk(E, n)→ J0E identifies

with the target map pE : Jk(E, n)→ E, jkeN 7→ e.

Remark 5.7. We can put coordinates on Jk(E, n) as follows. Let jke0N0 be a point in
Jk(E, n), and let (x, u) be coordinates on E adapted to N , in a neighborhood U of e,
and let Uk ⊆ Jk(E, n) consist of submanifolds N of U such that (x, u) are also adapted
to N . Finally, let z = jkeN ∈ Uk, with N : uα = sα(x), and put

uαI (z) = sα,I (x), α = 1, . . . ,m, I a multi-index s.t. |I| ≤ k.
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Proposition 5.8. (Uk, (x, . . . , uI , . . .)) is a chart on Jk(E, n) (called a standard chart).
Any two such charts are compatible. With this atlas, Jk(E, n) is a smooth manifold,

dim Jk(E, n) = n+m

(
n+ k

k

)
,

and both p : Jk(E, n)→ Jk−1(E, n) and pE : Jk(E, n)→ E are fiber bundles.

Exercise 5.9. Prove Proposition 5.8. Prove that the fibers of p : Jk(E, n)→ Jk−1(E, n)
are diffeomorphic to some Euclidean space only when k > 1.

Remark 5.10. Fibers of J1(E, n)→ E are Grassmannians of n-dimensional subspaces
in the tangent spaces to E.

Exercise 5.11. Let E →M be a fiber bundle, with dimM = n. Prove that, for all k,
there is a canonical embedding

JkE ↪→ Jk(E, n)

whose image is an open and dense submanifold.

Let N be an n-dimensional submanifold of E.

Definition 5.12. The k-jet prolongation of N is the following map:

jkN : N → Jk(E, n), e 7→ jkeN.

Exercise 5.13. Show that jkN is a smooth embedding.

The image of jkN is a submanifold of jk(E, n) (diffeomeorphic to N) denoted by
N (k). A jet-plane in Jk(E, n) is a tangent space to some N (k) at some point. Jet-planes
of Jk(E, n) span a maximally non-integrable distribution: the Cartan distribution on
Jk(E, n).

Exercise 5.14. Develop the theory of the Cartan distibution on Jk(E, n) along the
same lines as we did for JkE.

6. PDEs

We finally discuss PDEs. A system of PDEs, or shortly a PDE, is a (finite) set
of equations imposed on some functions (dependent variables) of some independent
variables, and their derivatives, up to some finite order. So, it is natural to give the
following, precise

Definition 6.1. A system of k-th order PDEs, or shortly a PDE, imposed on sections
of a fiber bundle π : E →M , is a submanifold E ⊆ JkE. A solution of E is then a local
section s of E such that jks takes values in E .

Remark 6.2. One can define PDEs imposed on n-dimensional submanifolds of a given
(n+m)-dimensional manifold E, simply replacing JkE with Jk(E, n).
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According to the definition, a PDE does locally look like

E : Fa(x, . . . , uI , . . .) = 0

for some local functions Fa on JkE. A section s of E locally given by

s : uα = sα(x)

is then a solution iff, locally,

Fa(x, . . . , s,I (x), . . .) = 0,

which is exactly what we expect from a PDE.
Given a PDE E ⊆ JkE, we consider the (generically non-regular distribution) on it:

C(E) : z 7→ C(E)z := Cz ∩ TzE .

Exercise 6.3. Prove that if the rank of C(E) is constant, then C(E) is a regular
distribution (Hint: the intersection of two vector subbundles is a vector subbundle iff
its rank is constant.).

Remark 6.4. We usually demand some minimal regularity conditions on E which make
the theory reasonable and tractable at the same time. Namely, we assume that

(1) π : E →M is surjective,
(2) C(E) has constant rank (hence it is a regular distribution),
(3) dπ : C(E)→ TM is (point-wise) surjective (hence π : E →M is a submersion).

Condition (1) is a necessary condition for having solutions around every point of M .
Condition (3) is a necessary condition for having a solution s through every point z of
E (i.e. such that z belongs to the graph of jks). Suppose we have (3) but not (1). Then
π : E →M is a submersion, hence an open map, and we can replaceM by π(E) to force
Condition (1). Condition (2) and (3) together make things smooth ruling out certain
singularities. We will not comment further on (1)-(3).

Remark 6.5. A PDE can be often presented as the zero locus of a differential operator.
Let W → M be a vector bundle. By definition, a (non-necessarily linear) W -valued
k-th order differential operator (DO) on E is a bundle map F : JkE → W . Every DO
determines a map ∆F from sections of E to sections of W as follows:

∆F (s) := F ◦ jks.

The zero locus Z(F ) of F is the pre-image F−1(0W ) of the image 0W of the zero section
of W → M , and one usually assumes regularity conditions on F that guarantee that
Z(F ) is a PDE. Clearly, a section of E is a solution of Z(F ) iff ∆F (s) = 0. However F
contains much more information than Z(F ).

Remark 6.6. When E → M is a vector bundle, then JkE → M is a vector bundle
as well (Exercise 2.16). In this situation, a linear PDE, is a PDE E ⊆ JkE, which is,
additionally, a vector subbundle.
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Remark 6.7. From Proposition 3.31, (locally) there is a one-to-one correspondence
between solutions of E and π-horizontal, n-dimensional, integral submanifolds of C(E).
Sometimes it is useful to look at generic (not necessarily π-horizontal) n-dimensional,
integral submanifolds. We call them generalized solutions and they play an important
role in the theory of singularities of solutions.

Definition 6.8. A Lie symmetry of a PDE E ⊆ JkE is a Lie transformation ϕ of
JkE preserving E , i.e. ϕ(E) = E . An infinitesimal Lie symmetry is a vector field X on
JkE generating a flow of Lie symmetries, i.e. X is an infinitesimal Lie transformation
tangent to E .

Exercise 6.9. Let E be a PDE, ϕ a Lie symmetry, X an infinitesimal Lie symmetry,
and s a solution. Let {ϕt} be the flow of X. Prove that

(1) ϕ maps the graph of jks to a (usually new) generalized solution.
(2) for sufficiently small t, ϕt maps the graph of jks to the graph of jkst for some

(usually new) solution st.

Remark 6.10. Finding Lie symmetries of a PDE E is usually complicated, because
it involves solving non-linear PDEs as hard as (if not harder than) E . On another
hand, finding infinitesimal Lie symmetries is simpler, because it involves solving linear
PDEs. So what one usually does is computing infinitesimal Lie symmetries and then
integrating them to get (some) Lie symmetries. In what follows we concentrate on
infinitesimal Lie symmetries.

Remark 6.11. In view of Exercise 6.9, knowing symmetries may help finding new
solutions from given ones. One can also look for symmetric solutions. Namely, let E be
a PDE and let X be an infinitesimal Lie symmetry. A solution s is symmetric under X
if X is tangent to the graph of jks, in other words the flow of X leaves the graph of jks
unchanged. Finding symmetric solutions is often easier than finding generic solutions
(see below).

We conclude this section discussing briefly how to find infinitesimal symmetries in
practice. Begin with a

Lemma 6.12. Let Y be an infinitesimal Lie transformation of JkE, and let X1 be its
projection down to J1E (it exists in view of the Infinitesimal Lie-Bäcklund Theorem).
Then Y is completely determined by θ(X1) ∈ Γ(p∗V ), i.e. correspondence

XC → Γ(p∗V ), Y 7→ θ(X1) (11)

is injective.

Proof. When m > 1, the claim follows easily from Example 4.14. In this case (see
Example 10 for the notation),

X1 = X(1) = X i ∂

∂xi
+ Uα ∂

∂uα
+
(
DjU

α − uαi DjX
i
) ∂

∂uαj
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and

θ(X1) =
(
Uα − uαi X i

) ∂

∂uα
.

As X i and Uα do only depend on (x, u) then the functions λα := Uα−uαi X i completely
determine X, hence Y .
The case m = 1 will be discussed in details in next section. □

Remark 6.13. We will see in the next section that, for m = 1, correspondence (11) is
also surjective.

Definition 6.14. Sections of p∗V in the image of (11) are called generating sections (of
Lie transformations). The space of generating sections is denoted by κcl and inherits
from infinitesimal Lie transformations a Lie bracket, denoted {−,−}, and called the
Jacobi bracket. The infinitesimal Lie transformation corresponding to the generating
section λ, will be denoted by Xλ.

Exercise 6.15. Let λ be a generating section, let {ϕt} be the flow of Xλ and suppose
that ϕt maps the graph of jks to the graph of jkst (see Exercise 6.9). Show that st is
then a solution of the following evolutionary PDE :

dst
dt

= λ ◦ j1st,

which in local coordinates looks like
dsαt
dt

(x) = λα(x, s(x), s′(x)).

Conclude that s is symmetric under Xλ iff λ vanishes on the graph of j1s.

Now, let E be a PDE locally given by

E : Fa(x, . . . , uI , . . .)

As usual, we assume that F = (F1, . . . , Fp) : J
kE → Rp is a submersion around E . How

do we find infinitesimal Lie symmetries of E? We start with a generating section λ and
compute Xλ (this involves prolonging an infinitesimal Lie transformation several times
and could be computationally rather hard. For this reason one often uses computer
algebra). Second we impose the tangency condition

Xλ(Fa)|E = 0. (12)

This is a (usually not too hard) system of linear PDEs in λ.

Definition 6.16. Equation (12) is called the defining equation of symmetries. Solutions
of (12) are generating sections of symmetries.

Exercise 6.17. Compute point symmetries, i.e. Lie symmetries of the form X(2) for
some infinitesimal point transformation X, of the Burger’s equation:

ut = uxx + uux.



DIFFERENTIAL GEOMETRY AND PDES 25

Remark 6.18. Let E be a PDE and let λ be the generating section of a symmetry of
E . One can look for symmetric solutions (under Xλ), solving E coupled to λ = 0. This
is often an overdetermined system much easier to solve than its subsystem E .

Remark 6.19. There is a more intrinsic definition of a(n infinitesimal) symmetry of a
PDE E . By intrinsic, we mean that it is independent of the extrinsic geometry encoded
in the embedding E ↪→ JkE and does only depend on the intrinsic geometry of E
and its distribution C(E). Specifically, an intrinsic infinitesimal symmetry of E , is an
infinitesimal symmetry of the distribution C(E). Notice that, if X is a Lie symmetry
of E , then X|E is tangent to E and it is actually an intrinsic infinitesimal symmetry.
But, in general, not all intrinsic infinitesimal symmetries arise in this way. However,
for a large, but reasonable, class of PDEs E , the intrinsic data (E , C(E)) determine the
extrinsic geometry completely, and all intrinsic symmetries come from extrinsic ones.
So studying extrinsic symmetries only is not too much restrictive.

7. Contact Geometry: first order PDEs in 1 dependent variable

As we already mentioned, the case k = m = 1 of first order PDEs in one dependent
variable is peculiar. We treat it separately in this section. First of all, notice that, in
this case

dim JkE = 2n+ 1 and rankC = 2n.

In particular, the Cartan distribution is a maximally non-integrable hyperplane dis-
tribution, and all locally maximal integral submanifolds share the same dimension n.
More generally we give the following

Definition 7.1. A contact distribution, or a contact structure, is a maximally non-
integrable hyperplane distribution. A contact manifold (N,C) is a manifoldN equipped
with a contact structure C. A Legendrian submanifold of (N,C) is a locally maximal
integral submanifold of C. Two contact manifolds (N1, C1) and (N2, C2) are contacto-
morphic if there is a contactomorphism ϕ : (N1, C1) → (N2, C2), i.e. a diffeomorphism
ϕ : N1 → N2 preserving the contact structures: dϕ(C1) = C2. An infinitesimal con-
tactomorphism, or a contact vector field, of (N,C) is a vector field X ∈ X(N) which
generates a flow of contactomorphisms.

So, in the case m = 1, J1E is a contact manifold, graphs of jet prolongations are Leg-
endrian submanifolds, and Lie transformations (resp. infinitesimal Lie transformations)
are contactomorphisms (resp. infinitesimal contactomorphisms). Actually, the theory
of first oder PDEs in one dependent variable can be developed on a generic contact
manifold (N,C), and this is what we do here. We start with a local structure theorem
that shows that, locally, all contact manifolds of the same dimension look the same, in
particular, they look like a 1-jet space of a rank one fiber bundle.

Lemma 7.2 (Darboux). Let (N,C) be a contact manifold. Then dimN = 2n + 1
for some positive integer n, and locally there are coordinates (x, u, u′) (called Darboux
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coordinates) such that

C =

〈
. . . , Di, . . . ,

∂

∂ui
, . . .

〉
,

where

Di =
∂

∂xi
+ ui

∂

∂u
, i = 1, . . . , n.

Proof. We use the Darboux Lemma from symplectic geometry which states that, if Ω is
a non-degenerate and closed 2-form, then locally there are coordinates (x, u′) such that

Ω = dxi ∧ dui.

Now, locally C is the kernel of a 1-form θ, and C being maximally non-integrable implies
that dθ|C is non-degenerate (Exercise 7.3). So rankC is even, and dimN is odd. The
kernel of dθ, i.e. the distribution K spanned by tangent vectors v such that

v dθ = 0 (13)

is necessarily rank 1. It follows from the Frobenius Theorem, that, locally, K is the
vertical distribution of a rank one fiber bundle ρ : N → N0. From (13) and ddθ = 0
it follows that dθ is a ρ-basic form, i.e. dθ = ρ∗(Ω) for a, necessarily unique, non-
degenerate, and closed 2-form Ω on N0. Choose Darboux coordinates (x, u′) on (N0,Ω),
i.e. locally

Ω = dxi ∧ dui.
The pull-back ρ∗(xi), ρ∗(ui) are functions on N that we denote by xi, ui again. So

dθ = dxi ∧ dui
and, from the Poincaré Lemma

θ = du− uidxi

for some local function u on N . It remains to prove that u is functionally independent
of (x, u′). This immediately follows from Exercise 7.3. □

Exercise 7.3. Let N be a manifold and let C be an hyperplane distribution on N
which can be presented as the kernel of a global 1-form θ. Prove that the following
conditions are equivalent:

(1) C is maximally non-integrable;
(2) dθ|C is non-degenerate;
(3) dimN = 2n+ 1, for some n, and θ ∧ (dθ)n ̸= 0 everywhere on N .

Corollary 7.4. Two contact manifolds are locally contactomorphic iff they have the
same dimension.

Corollary 7.5. Legendrian submanifolds of a (2n + 1)-dimensional contact manifold
are n-dimensional.
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Exercise 7.6. Let (N,C) be a contact manifold, let L ⊆ N be a Legendrian submani-
fold, and let z ∈ L. Prove that there are Darboux coordinates (x, u, u′) around z such
that L is π-horizontal, were π is the projection (x, u, u′) 7→ x. Conclude that there are
Darboux coordinates (x, u) such that

L :

{
u = f(x)

ui =
∂f
∂xi

(x)
,

for some function f = f(x).

We now describe infinitesimal symmetries of a contact manifold (N,C), i.e. contact
vector fields. First of all, denote by L := TM/C the quotient vector bundle. As C is
hyperplane, L is a line bundle, i.e. a rank one vector bundle. Let θ ∈ Ω1(N,L) be the
structure form of C.

Proposition 7.7. The short exact sequence of vector spaces

0→ Γ(C)→ X(N)
θ→ Γ(L)→ 0 (14)

splits in a canonical way. The image of the splitting Γ(L) → X(N) consists of contact
vector fields. In particular, there is a canonical isomorphism of vector spaces

Γ(L)→ XC .

Proof. Consider the curvature ω : ∧2C → L of C. By contraction, it induces a vector
bundle morphism ω♭ : C → C∗ ⊗ L. As C is maximally non-integrable, ω is non-
degenerate, hence ω♭ is invertible. Denote by ω♯ : C∗ ⊗ L→ C its inverse. Now, let X
be any vector field on N . Consider the map

φX : Γ(C)→ Γ(L), Y 7→ θ ([X, Y ]) . (15)

It is easy to see that φX is C∞(N)-linear (Exercise 7.8.(1)), hence it comes from a
vector bundle morphism C → L, or, which is the same, a section of C∗ ⊗ L, that we
denote by φX again. Composing with ω♯ we get a map

pC : X(N)→ Γ(C), X 7→ ω♯(φX). (16)

A straightforward computation shows that pC splits the sequence (14) (Exercise 7.8.(2)).
It remains to show that ker pC = XC . This immediately follows from the definition

(Exercise 7.8.(3)). □

Exercise 7.8. Prove that

(1) the map φX in (15) is C∞(N)-linear;
(2) the map pC in (16) splits (14);
(3) the kernel of pC is XC .

We denote

Γ(L)→ XC , λ 7→ Xλ
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the vector space isomorphism of Proposition 7.7. We can use it to transfer the Lie
algebra structure from XC to Γ(L). Accordingly, Γ(L) is canonically equipped with a
Lie bracket denoted

{−,−} : Γ(L)× Γ(L)→ Γ(L).

Definition 7.9. The line bundle L, together with the Lie bracket {−,−} on its sections,
is called the Jacobi bundle of (N,C), {−,−} is the Jacobi bracket, and every section of
L is a generating section of a contactomorphism. The vector field Xλ, corresponding
to the generating section λ, is called the Hamiltonian vector field corresponding to λ.

Exercise 7.10. Prove that

{λ, fµ} = Xλ(f)µ+ f{λ, µ},
for all λ, µ ∈ Γ(L), and all f ∈ C∞(N).

Exercise 7.11. Let (N,C) be a contact manifold and let (x, u, u′) be Darboux coor-
dinates. After noticing that ∂/∂u is a contact vector field, put I = θ(∂/∂u) so that
∂/∂u = XI , and I generates Γ(L) locally. Prove that the Jacobi bracket is locally given
by

{f · I, g · I} =
(
Dif

∂g

∂ui
−Dig

∂f

∂ui
+ f

∂g

∂u
− g∂f

∂u

)
· I,

and the Hamiltonian vector field corresponding to f · I is

Xf ·I = Dif
∂

∂ui
− ∂f

∂ui
Di + f

∂

∂u
,

for all f, g ∈ C∞(N).

7.1. The method of characteristics.

Definition 7.12. A (single) first order PDE in one dependent variable, in contact
geometry, is an hypersurface E in a (2n+ 1)-dimensional contact manifold (N,C) such
that C(E) := C ∩ TE has constant rank (hence, it is a regular distribution on E). A
solution of E is a Legendrian submanifold L of (N,C) such that L ⊆ E , equivalently, it
is an n-dimensional integral submanifold of C(E).
Let E be a first order PDE in a (2n + 1)-dimensional contact manifold (N,C). The

classical method of characteristics has a simple geometric interpretation within contact
geometry. To see this first notice that rankC(E) = 2n − 1. Hence the curvature ω,
when restricted to C(E), degenerates along a rank 1, hence integrable, distribution
K(E) ⊆ C(E). According to Frobenius Theorem, E is then foliated by integral curves
of K(E). The distribution K(E) is the characteristic distribution of E , and its integral
foliation is the characteristic foliation of E . Finally, leaves of K(E) are characteristic
curves.

Proposition 7.13. Let ωE be the curvature of the distribution C(E). Then ωE = ω|C(E),
hence K(E) is the (constant rank) kernel of ωE , and it is spanned by characteristic
symmetries of C(E).
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Proposition 7.14. Denote by ΓE ⊆ Γ(L) the submodule consisting of generating sec-
tions λ such that λ|E = 0. Then

(1) If λ ∈ ΓE , then Xλ is tangent to E, and Xλ|E is a characteristic symmetry of
C(E).

(2) K(E) si spanned by the Xλ with λ ∈ ΓE .
(3) If ΓE has exactly one generator λ, then Xλ|z ̸= 0 for all z ∈ E, and K(E) is

spanned by Xλ.

Exercise 7.15. Prove Proposition 7.14.

Definition 7.16. A set of non-characteristic initial data for E is an (n−1)-dimensional
integral submanifold Σ of C(E) such that TzΣ ∩K(E)z = 0 for all z ∈ Σ.

Proposition 7.17. Let Σ be a set of non-characteristic initial data for E. Then, locally,
around every point of Σ, there are Darboux coordinates (x, u, u′) such that

(1) E is locally given by

E : un = G(x1, . . . , xn, u, u1, . . . , un−1)

(2) Σ is locally given by

Σ :



xn = 0
u = f0(x

1, . . . , xn−1)

ui =
∂f0
∂xi

(x1, . . . , xn−1) for i = 1, . . . , n− 1

un = G

(
x1, . . . , xn−1, 0, f0, . . . ,

∂f0
∂xi

, . . .

)
.

In particular, Σ is completely determined by the function f0 = f0(x
1, . . . , xn).

Remark 7.18. Proposition 7.17 motivates the terminology “set of initial data” used
for Σ.

Exercise 7.19. Prove Proposition 7.17.

Proposition 7.20 (The Method of Characteristics). Let E be a first order PDE in one
dependent variable, let Σ ⊆ E be a set of non-characteristic initial data of E, and let
λ ∈ ΓE be such that Xλ generates K(E) at least around Σ. Then the flow-out of Σ along
Xλ is a solution of E (independent of λ).

Exercise 7.21. Prove Proposition 7.20.

Example 7.22. Consider the following first order PDE in 1 dependent variable u, and
2 independent variables x, t:

u = uxut.

We want to solve it with initial data:

u|t=0 = x2. (17)
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To do this we work in the contact manifold R5 with Darboux coordinates (x, t, u, ux, ut).
Then

E : F (x, t, u, ux, ut) := u− uxut = 0,

and, when ux ̸= 0, the initial data (17) are encoded by the following integral curve of
C(E):

Σ :


t = 0
u = x2

ux = 2x
ut = u/ux = x/2.

If we use (x, t, ux, ut) to parameterize E , then in such internal coordinates

Σ :

 t = 0
ux = 2x
ut = x/2.

and the characteristic distribution K(E) is spanned by the Hamiltonian vector field

Y := XF ·I |E = ux
∂

∂ux
+ ut

∂

∂ut
+ ut

∂

∂x
+ ux

∂

∂t
,

whose integral curves γ = γ(ε) are solutions of the following system of ODEs
ẋ = ut
ṫ = ux
u̇x = ux
u̇t = ut

where a dot “ ˙(−)” denotes a derivative wrt ε. The flow of Y is then
x(ε) = x(0) + ut(0) (e

ε − 1)
t(ε) = t(0) + ux(0) (e

ε − 1)
ux(ε) = ux(0)e

ε

ut(ε) = ut(0)e
ε

Applying this to a point (x(0), t(0), ux(0), ut(0)) = (x(0), 0, 2x(0), x(0)/2) of Σ we get
the following parametric expression for the flow-out of Σ

∪εΣε :



t = 2x(0) (eε − 1)

x =
x(0)

4
(eε − 1)

ux = 2x(0)eε

ut =
x(0)

2
eε.
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Eliminating the parameters ε, x(0) we get

∪εΣε :


ux =

4x+ t

2

ut =
4x+ t

8
.

Hence, the solution we are looking for is the solution

u =
(4x+ t)2

16
.
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8. ∞-Jets

Given a PDE it is often useful, in order to check its integrability, to consider its
total derivatives. In doing this, higher derivatives come into play. So it is convenient
considering all derivatives “at the same time”. This can be done via ∞-jets.
Let E →M be a fiber bundle.

Definition 8.1. Two local sections s, t of E defined around x0 ∈M are tangent up to
order ∞ at x0 if s ∼kx0 t, for all k ≥ 0. In this case we write s ∼∞x0 t.

Tangency up to order∞ at x0 is an equivalence relation on the set of all local sections
defined around x0. The equivalence class of s is denoted j

∞
x0
s and called the ∞-jet of s

at x0. In practice it contains a full information on “all derivatives of s” at x0.
Denote by J∞x0E the space of all ∞-jets of sections of E at x0 and

J∞E :=
⊔
x0∈M

J∞x0E.

J∞E is the ∞-jet space, or ∞-jet bundle, of E. In practice, points in J∞E are Taylor
series of sections of E at all possible points of M .
There are obvious maps pk : J∞E → JkE, j∞x s 7→ jkxs which consist in “forgetting

highest derivative”.
There is also a surjection, the source map, π : J∞E →M , j∞x s 7→ x.

Proposition 8.2. J∞E, together with maps pk is an inverse limit of the sequence of
surjections

· · · p←− JkE
p←− Jk+1E ←− · · · .

In particular, the pk are surjective.

Exercise 8.3. Prove Proposition 8.2 (Hint: The proposition is actually equivalent to
Borel Lemma).

Remark 8.4. According to Proposition 8.2 points of J∞E can be seen as threads in∏
k J

kE, i.e. sequences {zk} such that zk ∈ JkE and p(zk) = zk−1 for all k. If z = j∞x s,
then zk = jkxs.
We can give to J∞E the inverse limit topology, i.e. the coarsest topology such that

all pk are continuous. In this way J∞E becomes a topological subspace in the product∏
k J

kE. Clearly, it’s not a finite dimensional manifold. However, there is a way
(actually more than one) to make geometry on it, as we will show below.

With its inverse limit structure J∞E is a profinite dimensional manifold.

8.1. Profinite dimensional manifolds. Let

· · · p←− Nk
p←− Nk+1 ←− · · · , (18)

be a sequence of surjective submersions, and let (N∞, {pk}) be its inverse limit.
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Definition 8.5. A pair (N∞, {pk}) is a profinite dimensional manifold. A smooth map
of profinite dimensional manifolds (N∞, {pk}) → (O∞, {qk}) is a map F : N∞ → O∞
such that

F = lim
←−

Fk,

where Fk : Nk → Ok+l are smooth maps, only defined from some k on, such that
Fk−1 ◦ p = p ◦ Fk, with l some constant integer, i.e., if {zk} is a thread in N∞, then

F ({zk}) = {Fk(zk)}.

Remark 8.6. Any smooth map of profinite dimensional manifolds is, in particular,
continuous.

Remark 8.7. Profinite dimensional manifolds, together with smooth maps, form a
category. Isomorphisms in this category are diffeomorphisms.

Example 8.8. Let Nk = N and p = id for all k, then N∞ is a profinite dimensional
manifold. Topologically, it is homeomorphic to N . This construction embeds standard
manifolds into profinite dimensional ones as a full subcategory.

Example 8.9. The ∞-jet space is a profinite dimensional manifold.

Example 8.10. Let n = {nk}k ⊆ N0 be a non-decreasing sequence, and let

· · · p←− Rnk
p←− Rnk+1 ←− · · · ,

be the sequence of projections forgetting the last coordinates. Its inverse limit Rn is a
profinite dimensional manifold.

Remark 8.11. A profinite dimensional manifolds N∞ cannot be coordinatized in gen-
eral, in the sense that N∞ is not covered by open subsets homeomorphic to some Rn.
However, sometimes, N∞ can be coordinatized. This is the case, for instance, when
N∞ = J∞E.
We can put “coordinates” on J∞E as follows. Let (x, u) be bundle coordinates on E,

defined in a neighborhood U , and let U∞ := p−10 (U) ⊆ J∞E. Clearly, U∞ is an open
subset. Let z = j∞x s ∈ U∞, with s : uα = sα(x), and put

uαI (z) = sα,I (x), α = 1, . . . ,m, I a multi-index s.t. |I| ≥ 0.

Proposition 8.12. (U∞, (x, . . . , uI , . . .)) is a chart on J∞E (called a standard chart),
in the sense that (x, . . . , uI , . . .) : U∞ → RN is a diffeomorphism (of profinite dimen-
sional manifolds). Here N := {Nk}k is the sequence defined by

Nk = dim JkE = n+m

(
n+ k

k

)
.

Exercise 8.13. Prove Proposition 8.12 (Hint: First notice that U∞ is a profinite di-
mensional manifold in an obvious way and that the inclusion U∞ ↪→ J∞E is a smooth
map).
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One can define differential calculus on profinite dimensional manifolds algebraically
as follows. First notice that to sequence (18) it corresponds a sequence of algebra
inclusions

· · · ↪→ C∞(Nk) ↪→ C∞(Nk+1) ↪→ · · · , (19)

here arrows are pull-backs along p. The direct limit of (19) is a filtered algebra denoted
C∞(N∞) and called the algebra of smooth (local) functions on N∞. In practice a smooth
function on N∞ is a smooth function on Nk for some k.

Remark 8.14. Any smooth function f ∈ C∞(N∞) can be seen as a map f : N∞ → R
in an obvious way.

Exercise 8.15. Prove that

(1) any smooth function f ∈ C∞(N∞) is a smooth map f : N∞ → R;
(2) the pull-back F ∗(f) of a smooth function f ∈ C∞(O∞) along a smooth map

F : N∞ → O∞ is a smooth function.

Definition 8.16. A tangent vector to N∞ at a point z ∈ N∞ is an R-valued derivation
of the algebra C∞(N∞), i.e. and R-linear map v : C∞(N∞)→ R satisfying the (pointed)
Leibniz rule:

v(fg) = v(f)g(z) + f(z)v(g),

for all f, g ∈ C∞(N∞)

Remark 8.17. It immediately follows from the definition that tangent vectors to N∞
at z form a vector space, denoted TzN∞ and called the tangent space to N∞ at z.

Disjoint union

TN :=
⊔

z∈N∞

TzN∞

together with the obvious projection τ : TN∞ → N∞, is called the tangent bundle to
N∞. It can be given the structure of a profinite dimensional manifold, so that τ is a
smooth map, as follows. Let v ∈ TzN∞. Restricting v to C∞(Nk) ↪→ C∞(N∞) defines
a tangent vector to Nk at πk(z). So we have a map

dpk : TN∞ → TNk.

Proposition 8.18. (TN∞, {dpk}) is an inverse limit of

· · · dp←− TNk
dp←− TNk+1 ←− · · · .

In particular, TN∞ is a profinite dimensional manifold. Projection τ : TN∞ → N∞ is
smooth.

Exercise 8.19. Prove Proposition 8.18.

Exercise 8.20. Define the tangent map dF : TN∞ → TO∞ to a smooth map F :
N∞ → O∞ of profinite dimensional manifolds, and show that this construction promote
N∞ 7→ TN∞ to an endo-functor of the category of profinite dimensional manifolds.
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Definition 8.21. A vector field on N∞ is a derivation X : C∞(N∞)→ C∞(N∞) such
that

X(C∞(Nk)) ⊆ C∞(Nk+l)

for all k, with l some constant integer.

Proposition 8.22. The space of vector fields on N∞ is a C∞(N∞)-module and a Lie
algebra, denoted X(N∞), under the commutator. Additionally

[X, fY ] = X(f)Y + f [X, Y ],

for all X, Y ∈ X(N∞), and all f, g ∈ C∞(N∞).

Exercise 8.23. Prove Proposition 8.22.

Let X ∈ X(N∞). For any z ∈ N∞ and any f ∈ C∞(N∞), put
Xz(f) := X(f)(z).

It is immediate to see that Xz : C
∞(N∞)→ R is a tangent vector at z.

Proposition 8.24. Denote by Γ(TN∞) the space of sections of TN∞, i.e. smooth maps
σ s.t. τ ◦ σ = idN∞.

(1) Γ(TN∞), equipped with point-wise addition and multiplication, is a C∞(N∞)-
module.

(2) Correspondence

X 7→ (z 7→ Xz)

is a C∞(N∞)-module isomorphism between X(N∞) and Γ(TN∞).

Exercise 8.25. Prove Proposition 8.24.

Remark 8.26. A consequence of Proposition 8.24 is that vector fields can be “re-
stricted” to open submanifolds and that a vector field is completely determined by its
“restrictions” to open submanifolds covering N∞.

Example 8.27 (Vector field on J∞E). Let E →M be a fiber bundle, let z ∈ J∞E, and
let v be a tangent vector to J∞E at z. Put zk = pk(z). Then z identifies with a thread
{vk}, with vk a tangent vector to JkE at zk such that dp(vk) = vk−1. If (x, . . . , uI , . . .)
are standard coordinates around z, then vk is of the form

vk = vi
∂

∂xi

∣∣∣∣
zk

+
∑
|I|≤k

vαI
∂

∂uαI

∣∣∣∣
zk

and v identifies with the formal series

v = vi
∂

∂xi

∣∣∣∣
z

+
∑
|I|≥0

vαI
∂

∂uαI

∣∣∣∣
z

.

Here vi = v(xi), and vαI = v(uαI ).
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Similarly, let X be a vector field on J∞E. Restricting X to charts U∞ we get vector
fields on them. Additionally, X is completely determined by those restrictions. Any
such restriction can be written as a formal series

X = X i ∂

∂xi
+
∑
I≥0

Xα
I

∂

∂uαI
,

where X i = X(xi) and Xα
I = X(uαI ). In particular, for |I| = k, we have Xα

I ∈
C∞(Jk+lE), where l is the shift of X.

Exercise 8.28. Prove all the claims in Example 8.27.

We conclude this short introduction to profinite dimensional manifolds discussing
differential forms on them.
Let N∞ be a profinite dimensional manifold. Besides (19) there is a sequence of graded

algebra inclusions

· · · ↪→ Ω(Nk) ↪→ Ω(Nk+1) ↪→ · · · , (20)

where the arrows are pull-backs along p. The direct limit of (20) is a filtered, graded
algebra denoted Ω(N∞) and called the algebra of differential forms on N∞. We denote
by Ωq(N∞) the q-th homogeneous piece of Ω(N∞).
Now, let X be a vector field, and let ω be a differential 1-form on N∞. So ω ∈ Ω1(Nk)

for some Nk. On another hand X(C∞(Nk)) ⊆ C∞(Nk+l) where l is the shift of X. In
other words,

Xk := X|C∞(Nk)

is a vector field, relative to the projection p◦ · · · ◦p : Nk+l → Nk. We can cotract it with
ω to get a smooth function iXω on Nk+l. Regard ω(X) := iXω as a smooth function
on N∞.

Proposition 8.29.

(1) iX : Ω1(N∞)→ C∞(N∞) is a C
∞(N∞)-linear map.

(2) Correspondence X 7→ iX is a C∞(N∞)-module isomorphism between vector fields
on N∞ and filtered C∞(N∞)-linear maps Ω1(N∞)→ C∞(N∞), i.e. linear maps
ϕ : Ω1(N∞)→ C∞(N∞) such that ϕ(Ω1(Nk)) ⊆ C∞(Nk+l) for some constant l.

Exercise 8.30. Prove Proposition 8.29.

Exercise 8.31 (Filtered biduality). Show that the obvious injection of Ω1(N∞) into
C∞(N∞)-linear maps X(N∞)→ C∞(N∞) is one-to-one onto filtered linear maps (where
X(N∞) is filtered by the shift of vector fields).

Exercise 8.32. Define Cartan calculus on a profinite dimensional manifold.
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8.2. The Cartan distribution on∞-jets. We begin defining finite rank distributions
on a profinite dimensional manifold. So, let N∞ be a profinite dimensional manifold.

Definition 8.33. A rank k distribution D on N∞ is a submodule of X(N∞), denoted
Γ(D), such that, for every z ∈ N∞, the values Yz, with Y ∈ Γ(D), span a k-dimensional
subspace in TzN , denoted Dz. If Γ(D) is locally spanned by independent vector field
Y1, . . . , Yk we say that Y1, . . . , Yk span D (locally), and write

D = ⟨Y1, . . . , Yk⟩.
Distribution D is involutive if, additionally, Γ(D) ⊆ X(N∞) is a Lie subalgebra.

Remark 8.34. Notice that, if N∞ is finite dimensional, then the above definition agrees
with the usual one.

Let E → M be a fiber bundle, with dimM = n. Then J∞E is equipped with a
canonical rank n involutive distribution C called the Cartan distribution. To see this,
first notice that we can use the ∞-jet space to encode derivative functions. Let s be a
section of E.

Definition 8.35. The ∞-jet prolongation of s is the following smooth section of
J∞E →M :

j∞s :M → J∞E, x 7→ j∞x s.

Exercise 8.36. Show that j∞s is actually a smooth section (Hint: show that if s :
uα = sα(x) then

j∞s : uαI = sα,I (x).)

Definition 8.37. Let z = j∞x0s ∈ J∞E, x0 ∈ M . The Cartan plane Cz at z is the
tangent space at z to the graph of j∞s, in other words Cz = d(j∞s)(Tx0M).

Exercise 8.38. Show that Cz is independent of s such that z = j∞x s. In other words,
the graphs of the ∞-jet prolongations of two sections s, t of E such that s ∼∞x0 t for
some x0 in their common domain, are tangent at the point j∞x0s = j∞x0t (Hint: show that
if s is locally given by

s : {uα = sα(x)

(around x0), then the tangent space at z = j∞x0s to the graph of j∞s is spanned by the
tangent vectors

Di|z :=
∂

∂xi

∣∣∣∣
z

+ sα,Ii (x0)
∂

∂uαI

∣∣∣∣
z

=
∂

∂xi

∣∣∣∣
z

+ uαIi(z)
∂

∂uαI

∣∣∣∣
z

,

so it only depends on z).

Definition 8.39. The Cartan distribution on J∞E is the distribution C with Γ(C)
consisting of vector fields X on J∞E such that, for all z ∈ J∞E, Xz belongs to the
Cartan plane Cz.



38 LUCA VITAGLIANO

Exercise 8.40. Show that C is a rank n, involutive distribution on J∞E locally
spanned by total derivatives

Di =
∂

∂xi
+ uαIi

∂

∂uαI
.

So the value at z of C is precisely the Cartan plane Cz. What is the shift of total deriva-
tives? Finally, show that Γ(C) consists of vector fields which are locally annihilated by
one forms

duαI − uαIidxi, |I| ≥ 0.

Remark 8.41. Notice that the Cartan distribution is π-horizontal, in the sense that
dπ : T (J∞E) → TM is injective, hence an isomorphism, when restricted to Cartan
planes.

Exercise 8.42. Prove that

• a section σ of J∞E is an integral section of C, i.e. dσ(TxM) = Cσ(x) for all
x ∈M , iff σ is the ∞-jet prolongation of a section E, and, more generally
• an n-dimensional submanifold S of J∞E is an integral submanifold of C, i.e.
TzS = Cz for all z ∈ S iff, locally, S is the graph of the ∞-jet prolongation of a
section of E.

Remark 8.43. Exercise 8.42 shows that the Cartan distribution detects infinit jet pro-
longation

8.3. Infinitesimal Symmetries of the Cartan Distribution on J∞E.

Remark 8.44. Vector fields on a profinite dimensional manifold need not to posses a
flow. Consequently, the Frobenius Theorem may fail on a profinite dimensional manifold
and an involutive distribution may possess several (locally maximal) or no integral
submanifolds through a given point. As an instance notice that the graph of every
∞-jet prolongation is an integral submanifold of the Cartan distribution. As there are
several local sections of E with the same∞-jet at a given point, we conclude that there
are several different (locally maximal) integral submanifolds through every point.
For the same reason, in the profinite dimensional setting, if one defines infinitesimal

symmetries of a geometric structure via the Lie derivative, then infinitesimal symmetries
cannot be integrated to finite ones in general, and the former can be “more many”
than the latter. For this reason, on a profinite dimensional manifold equipped with a
geometric structure, one does usually consider infinitesimal symmetries only.

Exercise 8.45. Show that total derivatives Di do not possess a flow.

Definition 8.46. An infinitesimal symmetry of the Cartan distribution C on J∞E
is a vector field X ∈ X(J∞E) such that [X,Γ(C)] ⊆ Γ(C). A non-trivial symmetry
is an infinitesimal symmetry modulo Γ(C). An evolutionary vector field is a vertical
infinitesimal symmetry, i.e. an infinitesimal symmetry X such that X ◦ π∗ = 0, or,
equivalently, dπ(Xz) = 0 for all z ∈ J∞E.
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Remark 8.47. Infinitesimal symmetries form a Lie algebra, denoted XC , under the
commutator. Γ(C) is an ideal in XC . Accordingly, non-trivial symmetries form a Lie
algebra XC/Γ(C) sometimes denoted by symE.
Evolutionary vector fields do also form a Lie algebra, actually a Lie subalgebra of XC ,

denoted V XC .

Lemma 8.48. The inclusion V XC ↪→ XC induces a Lie algebra isomorphism i : V XC ≃
symE.

Proof. Let X ∈ V XC , and let χ = X modΓ(C) be the corresponding non-trivial sym-
metry. If χ = 0, then X ∈ Γ(C). As C is π-horizontal this in turn implies that X = 0.
This shows that i is injective. To prove surjectivity, let χ = X modΓ(C) be a non-
trivial symmetry, X ∈ XC . As C is π-horizontal, X can be uniquely written in the form
X = CX + V X with CX ∈ Γ(C) and V X a vertical vector field, i.e. X ◦ π∗ = 0. V X
is an infinitesimal symmetry, indeed

[V X,Γ(C)] = [X − CX,Γ(C)] ⊆ [X,Γ(C)] + [CX,Γ(C)] ⊆ Γ(C).

Clearly i(V X) = χ. □

In the following we will consider vector fields relative to the projection p0 : J
∞E → E,

i.e. derivations χ : C∞(E) → C∞(J∞E). We will focus on those derivations χ :
C∞(E) → C∞(J∞E) which are vertical, in the sense that χ ◦ π∗ = 0. The latter will
be referred to as generating sections of higher symmetries for reasons that will be more
clear after the following discussion. Generating sections form a C∞(J∞E)-module,
denoted κ, in an obvious way. κ can be interpreted geometrically as the module of
sections of the induced vector bundle p∗0V E.

Exercise 8.49. Define rigorously the profinite dimensional manifold p∗0V E (together
with the projection p∗0V E → J∞E), and show that generating sections are equivalent
to sections of p∗0V E → J∞E.

Theorem 8.50. There is a canonical R-linear one-to-one correspondence between

(1) evolutionary vector fields,
(2) generating sections of higher symmetries.

Proof. Let � be an evolutionary vector field. Put

χ := � |C∞(E) : C
∞(E)→ C∞(J∞E).

It follows from the fact that � is vertical, that χ is vertical as well. Actually, χ
determines � completely. To see this, work locally. � is locally given by

� = χα
∂

∂uα
+
∑
|I|>0

� α
I

∂

∂uαI
.

Then χ is locally given by

χ = χα
∂

∂uα
.
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If l is the shift of � , then � α
I depend on derivatives up to order |I| + l. In particular,

χα depend on derivatives up to order l.
Now, notice that [� , Di] = 0 for all i = 1, . . . , n. Indeed, from Di ∈ Γ(C) and

� ∈ XC , it follows [� , Di] ∈ Γ(C). On another hand

[� , Di] ◦ π∗ = � ◦Di ◦ π∗ −Di ◦ � ◦ π∗ = � ◦ π∗ ◦ ∂

∂xi
= 0.

So, [� , Di] is vertical. As C is π-horizontal, it follows that [� , Di] = 0. Now compute

� α
I = � (uαI ) = � (DIu

α) = DI� (uα) = DIχ
α,

where, for I = i1 · · · ik, we put DI := Di1 ◦ · · · ◦Dik . This shows that, locally,

� =
∑
|I|≥0

DIχ
α ∂

∂uαI
(21)

which is completely determined by χ as claimed.
Now, given a generating section χ, it is easy to see that Formula (21) defines a local

evolutionary vector field, and all these local evolutionary vector fields glue together
to a well-defined global evolutionary vector field (Exercise 8.51). This concludes the
proof. □

Exercise 8.51. Show that Formula (21) defines a local evolutionary vector field, and all
these local evolutionary vector fields glue together to a well-defined global evolutionary
vector field.

The evolutionary vector field corresponding to a generating section χ ∈ κ is denoted
by �χ. Formula (21) shows that if χ is locally given by

χ = χα
∂

∂uα
, χα = χα(x, . . . , uI , . . .)

then �χ is locally given by

�χ =
∑
|I|≥0

DIχ
α ∂

∂uαI
.

In particular, the shift of �χ is the maximum order of a derivative appearing in
χα(x, . . . , uI , . . .).

Corollary 8.52. There is a vector space isomorphism symE = κ.

It follows from the above corollary that symE is a C∞(J∞E)-module in a canonical
way. More importantly, κ is a Lie algebra in a canonical way. The Lie bracket on κ is
denoted by

{−,−} : κ × κ → κ
and called the higher Jacobi bracket. It is implicitly given by

[�χ,�ψ] = �{χ,ψ}
for all χ, ψ ∈ κ.
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Exercise 8.53. Prove that the higher Jacobi bracket is locally given by

{χ, ψ} = (�χψ
α − �ψψ

α)
∂

∂uα
=
∑
|I|≥0

(
DIχ

β ∂ψ
α

∂uβI
−DIψ

β ∂χ
α

∂uβI

)
∂

∂uα
.
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