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Introduction

A chain complex is a sequence C• = (Ci)i∈Z of abelian groups together with a sequence of group
homomorphisms

· · · d←−Ci−1
d←−Ci

d←−Ci+1←− ·· ·

such that d ◦d = 0. This immediately implies that, for all i, the image of d : Ci+1→Ci is contained
in the kernel of d : Ci→Ci−1. Hence we can form the quotient abelian group

Hi(C,d) :=
ker
(
d : Ci→Ci−1

)
im
(
d : Ci+1→Ci

)
which is called the i-th homology of (C•,d). This apparently ad hoc notion turns out to pop up
surprisingly often in Mathematics, particularly in Algebra and Geometry, but also in Mathematical
Logic, Analysis, Mathematical Physics, and even Numerical Analysis and Data Science.

For instance one can associate a chain complex (C•(X),∂ ) to a topological space X . The
i-th homology of (C•(X),∂ ) roughly computes how many holes of dimension i does X have, and
therefore it is an extremely useful tool to study (topological) properties of X . As (C•(X),∂ ) is a
purely algebraic object, we passed in this way from the realm of Topology to the realm of Algebra
opening the new hybrid world of Algebraic Topology. This is exactly the way how was Homology
invented at the end of the 19-th century by Poincaré in his studies on the topology of manifolds in
the celebrated work Analysis situs. It was later realized that similar structures do actually appear in
several other branches of Mathematics. The abstract theory of chain complexes (independently on
how does a chain complex arise here or there) is nowadays called Homological Algebra.

In these lecture notes we will introduce Homology (and the dual concept of Cohomology)
from the scratch, together with some of its applications in Algebra, Topology and (Differential)
Geometry. Our main aim is convincing the reader that Homology is an important theory transversal
to different (and partially unrelated) branches of Mathematics, and it is worth to know at least the
fundamentals of Homology Theory whatever ones primary interest is. The notes are organized
into two parts. In the first part we discuss the algebraic preliminaries. We will work in the general
setting of modules over a commutative ring with unit and present the main constructions with them,
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including direct sums/products and tensor products. We will also define (co)chain complexes and
their (co)homology and discuss two basic tools to compute the latter: namely algebraic homotopies
and the Long Homology Exact Sequence. In the second part of the notes we will discuss applications.
We first discuss applications in Algebra. Specifically we show how various algebraic structures give
rise to (co)chain complexes and how the associated (co)homologies encode appropriate properties
of those algebraic structures. We will consider three cases: groups, associative algebras and Lie
algebras. Later we turn our attention to topological spaces and (one of) the associated homology
theory: singular homology. We will dedicate more space to this example as it is central in Algebraic
Topology. After some preliminary work we will be able to compute the singular homology of
spheres and this in turn has several interesting applications that, somewhat surprisingly, include a
topological proof of the Fundamental Theorem of Algebra. In the last chapter we discuss de Rham
cohomology which plays an important role in modern Differential Geometry.



I

1 Multilinear Algebra . . . . . . . . . . . . . . . . . . 11
1.1 Modules and Linear Maps
1.2 Free Modules
1.3 Direct Sums and Direct Products
1.4 Tensor Products

2 Chain and Cochain Complexes . . . . . . 49
2.1 (Co)Chain Complexes
2.2 (Co)Chain Maps
2.3 Algebraic Homotopies
2.4 The Snake Lemma

3 Categories and Functors . . . . . . . . . . . . . 73
3.1 Categories
3.2 Functors
3.3 Natural Transformations

Multilinear and Homological
Algebra





1. Multilinear Algebra

In this chapter we introduce a new algebraic structure: that of a module over a ring. Abelian
groups and vector spaces are examples of modules. An ideal in a ring is also a module. Modules
are particularly flexible objects appearing in several different situations both in Algebra and in
Geometry, and they are the main building blocks in Homological Algebra. Here we study their
main properties and the first constructions with them. Such constructions will pop up every now
and then along these lecture notes.

1.1 Modules and Linear Maps
Let R be a commutative ring with unit.

R Recall that a ring is a non-empty set R equipped with two composition laws

+ : R×R→ R, (a,b) 7→ a+b (addition),
· : R×R→ R, (a,b) 7→ a ·b (multiplication),

such that (R,+) is an abelian group and, additionally, the product ·
✓ is associative,
✓ is both left and right distributive with respect to the sum.

The neutral element with respect to + is usually denoted 0. A ring R is commutative if the
product is commutative and it is a ring with unit if there is a neutral element with respect to
the product (called the unit and usually denoted 1). For instance a field is a commutative ring
with unit such that every non-zero element is invertible with respect to the product.

In the following all rings will be commutative with unit, unless otherwise stated.

Definition 1.1.1 — Module over a Ring. A module over R (or, simply, an R-module) is a
non-empty set M equipped with two additional structures: a composition law

+ : M×M→M, (p,q) 7→ p+q (addition),
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and an action of R

· : R×M→M, (a, p) 7→ a · p (scalar multiplication),

such that (M,+) is an abelian group and, additionally, the scalar multiplication satisfies
✓ a · (b · p) = (a ·b) · p,
✓ a · (p+q) = a · p+a ·q,
✓ (a+b) · p = a · p+b · p,
✓ 1 · p = p,

for all a,b ∈ R and p,q ∈ M. When working with R-modules, the elements of R are called
scalars. A subset N ⊆M in an R-module M is a submodule if it contains 0 and it is closed under
both the addition and the scalar multiplication.

So a module looks very much like a vector space, the only difference in the two definitions
being that the scalars form a commutative ring with unit rather than a field. As customary for
vector spaces, we will often omit the symbol · in a product by a scalar and write, e.g., ap instead of
a · p, where a ∈ R, p ∈M. We will also omit the round brackets when associativity permits. For
instance, we will simply write abp for a(bp) = (ab)p, where a,b ∈ R, p ∈M. It is clear that with
the restricted operations, any submodule is a module itself.

Proposition 1.1.1 Let M be an R module. Then, for every a ∈ R and every p ∈M, we have

a ·0 = 0 · p = 0

(where the 0 in the first and the last term is the zero in M, while the 0 in the second term is the
zero in R).

Proof. Left as Exercise 1.1. ■

Exercise 1.1 Prove Proposition 1.1. ■

■ Example 1.1 The trivial module is the module 0 containing only 1 element, necessarily the zero
element 0. ■

■ Example 1.2 — Vector Spaces are Modules. Let K be a field. In particular K is a (commuta-
tive) ring (with unit) and K-modules are precisely K-vector spaces. ■

■ Example 1.3 — Abelian Groups are Z-modules. Denote by Z the ring of integers. Any
abelian group G can be seen as a Z-module as follows. The sum in G is just the pre-existing group
sum (we will always adopt the additive notation for abelian groups unless otherwise stated). The
product by a scalar is defined as follows:

Z×G→ G, (n,g) 7→ ng :=


g+ · · ·+g︸ ︷︷ ︸

n times

if n > 0

−g−·· ·−g︸ ︷︷ ︸
−n times

if n < 0

0 if n = 0

. (1.1)

It is easy to see that, with this two operations, G is indeed a Z-module (see Exercise 1.2). Conversely,
any Z-module is, in particular, an abelian group and the product by a scalar is completely determined
by the sum via Formula (1.1). In other words, if two Z-module structures on the same set G share
the same sum, then they also share the same product by a scalar (see Exercise 1.2 again). This
shows that abelian groups are one and the same thing with Z-modules, and talking about abelian
groups or Z-modules makes no difference. ■
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Exercise 1.2 Show that abelian groups are the same as Z-modules proving that
(1) the pre-existing sum in an abelian group, together with the product by a scalar (1.1) equips

G with a Z-module structure, and
(2) in a Z-module, Formula (1.1) holds, hence the product by a scalar is actually determined

by the sum.
■

■ Example 1.4 — Ideals are Modules. Let I ⊆ R be an ideal in a ring R. Recall that this means
that I is an abelian subgroup (with respect to the sum) and, additionally, for any a ∈ R and any
b ∈ I, the product ab is in I again. In other words, the product in R restricts to a product

R× I→ I, (a,b) 7→ ab.

It is easy to see that, with the restricted operations, I is an R-module (Exercise 1.3). For instance R
itself is an R-module. ■

Exercise 1.3 Show that, with the restricted operations, any ideal I in a ring R is an R-module. ■

■ Example 1.5 — The Module of n-tuples. Let n be a positive integer, and denote by Rn the set
consisting of n-tuples of elements in R:

(a1, . . . ,an), a1, . . . ,an ∈ R.

With the entrywise addition

(a1, . . . ,an)+(b1, . . . ,bn) := (a1 +b1, . . . ,an +bn), (a1, . . . ,an),(b1, . . . ,bn) ∈ Rn,

and the entrywise scalar multiplication

a · (a1, . . . ,an) = (aa1, . . . ,aan), a ∈ R, (a1, . . . ,an) ∈ Rn,

Rn is an R-module (Exercise 1.4). The zero element in the R-module Rn is the zero n-tuple (0, . . . ,0).
■

Exercise 1.4 Show that, with the entrywise operations, the space Rn of n-tuples of elements in
a ring R is an R-module. ■

■ Example 1.6 — Function Ring and Function Module. Let X be a set. Denote by RX the space
of all R-valued functions on X :

f : X → R.

Such space carries the structure of an R-module. The operations are pointwise, i.e., for any two
functions f ,g ∈ RX and any scalar a ∈ R, we define

f +g : X → R, x 7→ ( f +g)(x) := f (x)+g(x),

and

a f : X → R, x 7→ (a f )(x) := a f (x).

As announced, with this two operations, RX is an R-module. For instance, when X = Xn :=
{1, . . . ,n} is the set of the first n positive integers, then the R-module RX identifies with the module
Rn via the assignment

f 7→ ( f (1), . . . , f (n)) .
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In other words, we could have defined Rn simply as RXn (do you see this?).
Now, let X be again any set. Not only RX is an R-module, it is also a ring with the (already

defined) pointwise sum, and the pointwise product given by

f g : X → R, x 7→ ( f g)(x) := f (x)g(x).

for all f ,g ∈ RX . When interpreted as a ring, we will denote RX by F (X ,R). The zero element in
F (X ,R) is the constant function 0, while the unit is the constant function 1 (do you see it?). Notice
that the ring F (X ,R) is never a field (unless X consists of just one point ∗ and R is a field itself, in
which case the assignment f 7→ f (∗) identifies F (X ,R) with the field R). To see this, let x1,x2 be
distinct points in X . Take the functions χ1,χ2 : X → R defined by

χi(x) =
{

1 if x = xi

0 otherwise
, i = 1,2.

As x1 ̸= x2, we clearly have χ1χ2 = 0 but nor χ1 nor χ2 is the zero function, hence F (X ,R) is not
an integral domain. We leave it to the reader to discuss the only remaining case, when X consists
on just one point but R is not a field.

Finally, let M be an R module. Consider the space MX = F (X ,M) of M-valued maps on X :

F : X →M.

The space F (X ,M) is an F (X ,R)-module. The operations in F (X ,M) are again pointwise:

F +G : X →M, x 7→ (F +G)(x) := F(x)+G(x)

and

f F : X →M, x 7→ ( f F)(x) := f (x)F(x)

for all F,G ∈F (X ,M) and all f ∈F (X ,R). The zero element in F (X ,M) is the constant map 0.
■

Exercise 1.5 Prove all the unproven claims in Example 1.6. ■

Similarly as for vector spaces, modules over the same ring R can be compared via suitable
maps that we now discuss. Let M,N be R-modules.

Definition 1.1.2 — Module Homomorphism. An R-module homomorphism, or an R-linear
map (or simply, a linear map) between M and N is a map

f : M→ N

such that
(1) f (p+q) = f (p)+ f (q), and
(2) f (ap) = a f (p),

for all p,q∈M and all a∈ R. An injective linear map is called a(n R-module) monomorphism. A
surjective linear map is called an epimorphism. A bijective linear map is called an isomorphism.
Two R-modules M,M′ are said to be isomorphic if there exists an isomorphism Φ : M→M′

connecting them. In this case we also write M ∼= M′.

If R is a field then Definition 1.1.2 agrees with the definition of a vector space homomorphism.

■ Example 1.7 Let G,H be abelian groups. It should be clear that a map f : G→ H is a Z-module
homomorphism if and only if it is a group homomorphism (do you see it?). ■
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Actually R-module homomorphisms share several properties with vector space homomorphisms.
We summarize some of them in a series of propositions whose proofs are straightforward, and are
left as exercise.

Proposition 1.1.2
(1) For any R-module M, the identity map idM : M→ M is an R-module homomorphism

(actually an isomorphism).
(2) The composition of R-module homomorphisms (resp. monomorphisms, epimorphisms,

isomorphisms) is an R-module homomorphism (resp. monomorphism, epimorphism,
isomorphism).

(3) The inverse of an R-module isomorphism is an R-module isomorphism.

Proof. Left as Exercise 1.6. ■

Exercise 1.6 Prove Proposition 1.1.2. ■

The kernel of an R-module homomorphism is defined exactly as for a vector space homomor-
phism. Let M,N be R-modules, and let f : M→ N be a linear map.

Definition 1.1.3 — Kernel of a Module Homomorphism. The kernel of f is the subset

ker f := {p ∈M : f (p) = 0} ⊆M.

If R is a field, then Definition 1.1.3 agrees with that of kernel of a vector space homomorphism.

■ Example 1.8 Let G,H be abelian groups and let f : G→ H be a group homomorphism, hence
a Z-module homomorphism. In this case, Definition 1.1.3 agrees with that of kernel of a group
homomorphism. ■

■ Example 1.9 Let M be an R-module and let 0 be the zero module. There exists exactly 1 linear
map 0→M, namely the zero map. The only map M→ 0 is also R-linear. ■

Proposition 1.1.3 Let f : M→N be a linear map of R-modules. Then both the kernel ker f ⊆M
and the image im f ⊆ N of f are submodules.

Proof. Left as Exercise 1.7. ■

Exercise 1.7 Prove Proposition 1.1.3. ■

Proposition 1.1.4 — Kernel Criterion. A linear map f : M→ N is injective if and only if the
kernel ker f is trivial, i.e. ker f = 0.

Proof. Left as Exercise 1.8. ■

Exercise 1.8 Prove Proposition 1.1.4. ■

We conclude this section discussing quotient modules which will play an important role
throughout this notes. Begin with an R-module M. Similarly as for groups (and for vector spaces),
a submodule N ⊆M determines an equivalence relations ∼ on M defined by

p∼ q if p−q ∈ N
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(can you prove in details that ∼ is reflexive, symmetric and transitive?). The space M/∼ of
equivalence classes of M under this relation is also denoted M/N. The equivalence class of an
element p ∈M is also denoted p mod N. For instance, the equivalence class 0 mod N is exactly N
(do you see it?).

Proposition 1.1.5 There exists a unique R-module structure on M/N such that the natural
projection

π : M→M/N, p 7→ p mod N

is a linear map.

Proof. We sketch the proof, leaving the details as an exercise for the reader. We begin defining an
R-module structure on M/N. The addition is defined by

(p mod N)+(q mod N) = p+q mod N (1.2)

and the scalar multiplication is defined by

a(p mod N) = ap mod N (1.3)

for all p,q ∈ M and a ∈ R. The reader is invited to check that this operations are well-defined
(i.e. they are independent of the chosen representatives in the equivalence classes involved), and
they equip M/N with an R-module structure. It immediately follows from this definition that
π : M→M/N is a linear map, indeed, for all p,q ∈M,

π(p+q) = p+q mod N = (p mod N)+(q mod N) = π(p)+π(q),

and similarly for the scalar multiplication. Uniqueness also follows immediately: if π is a linear
map, the operations in M/N cannot be defined in a way other than (1.2). Indeed, if π is a linear
map then, for all p,q ∈M,

(p mod N)+(q mod N) = π(p)+π(q) = π(p+q) = p+q mod N,

and similarly for the scalar multiplication. ■

Definition 1.1.4 — Quotient Module. The module M/N is called the quotient module of M
over the submodule N.

■ Example 1.10 Let G be an abelian group and let H ⊆ G be a subgroup. As G is abelian, H is a
normal subgroup. It is also clear that H is a submodule of the Z-module G (do you see it?). In this
case, Definition 1.1.4 agrees with that of quotient group (over a normal subgroup). ■

Notice that the kernel of the projection π : M→M/N is exactly the submodule N.

■ Example 1.11 Let M be an R-module and let N ⊆M be a submodule. Then the quotient M/N
is the zero module 0 if and only if N = M. At the other extreme, the projection π : M→M/N is
a module isomorphism if and only if N = 0, and, in this case, we often use π to identify M with
M/N and simply write M/0 = M. ■

Proposition 1.1.6 — Homomorphism Theorem. Let M,Q be R-modules, let N ⊆ M be a
submodule, and let f : M→ Q be a linear map. The following two conditions are equivalent:

(1) N ⊆ ker f ;
(2) the map f factorizes as the composition fM/N ◦π of the projection π : M→M/N followed

by a linear map fM/N : M/N→ Q, i.e. there exists a linear map fM/N : M/N→ Q such
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that the diagram

M
f
//

π

��

Q

M/N
fM/N

==

(1.4)

commutes.
In this situation, the linear map fM/N making Diagram (1.4) commutative is unique.

Proof. Let ker f ⊇ N. Then we can define a map fM/N : M/N→ Q by putting

fM/N(p mod N) = f (p)

for all p ∈M. If p′ is another representative for the same class p mod N, i.e. p′− p ∈ N, then we
have

f (p′) = f (p+ p′− p) = f (p)+ f (p′− p) = f (p),

where, in the last step, we used that N ⊆ ker f . This shows that fM/N is well defined. Additionally,
for all p ∈M,

( fM/N ◦π)(p) = fM/N(π(p)) = fM/N(p mod N) = f (p),

i.e. Diagram (1.4) commutes. So (1) ⇒ (2). That (2) ⇒ (1) is straightforward. Finally, if
g : M/N→ Q is another linear map such that f = g◦π , then necessarily g = fM/N indeed, for all
p ∈M, g(p mod N) = (g◦π)(p) = f (p) = fM/N(p mod N). ■

Corollary 1.1.7 Let f : M → Q be a linear map. Then there is a unique isomorphism f :
M/ker f → im f such that the diagram

M
f

//

π

��

im f

M/ker f
f

::

(1.5)

commutes. In particular, if f is surjective, then M/ker f ∼= Q.

Proof. From Proposition 1.1.6 there exists a unique linear map f : M/ker f →Q such that f = f ◦π .
It is clear that f takes values in im f , hence it restricts to a linear map M/ker f → im f which,
abusing the notation, we call f again. It remains to show that f : M/ker f → im f is a module
isomorphism. As the restriction f : M→ im f to im f in the codomain is surjective by construction,
and f = f ◦π , it immediately follows that f : M/ker f → im f is surjective as well. In order to show
that it is also injective we use the kernel criterion. So let p ∈M be such that f (p mod ker f ) = 0.
This means that

0 = f (p mod ker f ) = f (π(p)) = f (p),

i.e. p ∈ ker f , hence p mod ker f = 0. We conclude that f : M/ker f → im f is also injective. ■
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Corollary 1.1.8 Let M1 and M2 be R-modules, and let N1 ⊆M1 and N2 ⊆M2 be submodules.
Additionally, let f : M1→M2 be a linear map such that f (N1)⊆ N2. Then there exists a unique
linear map f : M1/N1→M2/N2 such that the diagram

M1
f

//

π

��

M2

π

��

M1/N1
f
// M2/N2

commutes, i.e. f (p mod N1) = f (p)mod N2 for all p ∈M1.

Proof. Left as Exercise 1.9. ■

Exercise 1.9 Prove Corollary 1.1.8. ■

A sequence of R-module homomorphisms

0−→ N α−→M
β−→ Q−→ 0 (1.6)

is called a short exact sequence (of modules) if α : N→M is injective, β : M→ Q is surjective
and, additionally, imα = kerβ . Notice that, in this situation, the kernel of any arrow coincides with
the image of the preceding arrow, indeed kerα = 0 = im(0→ N) and ker(Q→ 0) = Q = imβ .
It is clear that the restriction α : N → imα of α to its image in the codomain is an R-module
isomorphism. Hence the map α identifies N with imα = kerβ . On the other hand, from Corollary
1.1.7, the map β identifies Q with M/kerβ = M/ imα .

■ Example 1.12 Let 2Z⊆ Z be the subgroup of even integers. Then 2Z is also a submodule and
the inclusion map i : 2Z→ Z, n→ n, is a Z-module homomorphism. The quotient Z/2Z is the
abelian group Z2 of integers modulo 2 and the sequence

0−→ 2Z i−→ Z π−→ Z2 −→ 0

is a short exact sequence of Z-modules. ■

■ Example 1.13 More generally, let M be an R-module, and let N ⊆M be a submodule. Denote
by iN : N→M, p 7→ p the inclusion. It is clear that iN is a linear map. The sequence

0−→ N iN−→M π−→M/N −→ 0

is a short exact sequence and the discussion above shows that every short exact sequence is of this
type up to appropriate identifications. ■

■ Example 1.14 For any R-module homomorphism f : M→ Q the sequence

0−→ ker f −→M
f−→ im f −→ 0

is a short exact sequence. Here the second arrow is the inclusion. ■

1.2 Free Modules
There is a class of modules, called free modules, which are similar to vector spaces in many respects
(but not all respects), even if their ring of scalars is not necessarily a field. We discuss this class in
this section.
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Let R be a ring, and let M be an R-module. Consider a family S = (pi)i∈I ⊆ M of (non-
necessarily distinct) elements of M, parameterized by a (possibly infinite) index set I. A finite linear
combination of elements of S (with coefficients in R) will be also denoted

∑
i∈I

ai pi, ai ∈ R,

where we tacitly assume that the scalars ai vanish for all but finitely many i ∈ I. The subset

Span(S) :=
{

finite linear combinations of elements of S
}
⊆M

is a submodule (do you see it?), called the submodule spanned (or, generated) by S. If N ⊆M is a
submodule and S⊆M is a subset such that N = Span(S), we also say that S is a family or a set of
generators of N (or that S generates N). For instance, a family S = (pi)i∈I ⊆M is a set of generators
of M itself if and only if every element of M can be written as a (finite) linear combination of
elements of S. A (sub)module N is finitely generated if it is spanned by a finite family, i.e. a family
(pi)i∈I ⊆M with I a finite set.

A family S = (pi)i∈I ⊆M is said to be independent if a finite linear combination

∑
i∈I

ai pi, ai ∈ R,

vanishes only if the coefficients ai all vanish. For instance, if there are repetitions in S, then S is not
independent. A basis for M is a family B = (qi)i∈I ⊆M which is both independent and a family of
generators.

Exercise 1.10 Let f : M→ N be an R-module homomorphism. Prove that
(1) if f is injective then it transforms independent families into independent families (the

converse might not be true);
(2) f is surjective if and only if it transforms one (hence any) family of generators into a

family of generators;
(3) if f is bijective then it transforms bases into bases (the converse might not be true).

■

■ Example 1.15 Consider the R module Rn of n-tuples of scalars. Put

E1 := (1,0,0, . . . ,0), E2 := (0,1,0, . . . ,0), . . . , En = (0,0,0, . . . ,1).

It is easy to see that the family (E1, . . . ,En) is both independent and a family of generators for Rn

(do you see this?). Hence it is a basis for Rn. ■

■ Example 1.16 More generally, let X be any set and consider the function module RX . Consider
the submodule RX ⊆ RX consisting of functions a : X → R such that a(x) ̸= 0 for finitely many
x ∈ X only (do you see that RX is a submodule?). When X is a finite set, clearly RX = RX .

We want to show that RX possesses a basis with the same cardinality as X . To do this, for any
x0 ∈ X consider the characteristic function χx0 : X → R defined by:

χx0(x) =
{

1 if x = x0
0 otherwise

.

It is clear that χx0 ∈ RX for all x0 ∈ X . We will show that the family

B := (χx)x∈X ⊆ RX

is a basis of RX . To do this we adopt a slight change of notation, which will prove to be rather
convenient in the following. We fix once for all another set I with the same cardinality as X , and a
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bijection I→ X , denoted i 7→ xi. We can now interpret X as a family (xi)i∈I (without repetitions)
indexed by I (e.g. when X is a finite set of cardinality n ∈ N, we can choose I to be Xn and interpret
X as a string (x1, . . . ,xn)). In practice we are relabelling the elements of X . This is not strictly
necessary but makes the final formulas slightly more handy for the beginners. With this choice, B
can be thought of as a family indexed by I (rather than by X):

B = (χxi)i∈I.

Now consider a zero finite linear combination

∑
i∈I

aiχxi = 0, ai ∈ R vanishing for all but finitely many i ∈ I,

i.e. the lhs is the constant zero function 0 : X → R. In particular, for every j ∈ I, we have

0 =

(
∑
i∈I

aiχxi

)
(x j) = ∑

i∈I
aiχxi(x j) = ∑

i∈I
aiδi j = a j,

where we denoted

δi j =

{
1 if i = j
0 otherwise

, i, j ∈ I.

This shows that B is independent. Now let a : X→ R be a function in RX and denote ai := a(xi)∈ R.
By definition of RX all ai vanish but finitely many. Hence

a′ := ∑
i∈I

aiχxi

is a finite linear combination of elements of B. We have a = a′, indeed, the same computation as
above shows that, for any j ∈ I,

a′(x j) = a j = a(x j).

This shows that B generates RX .
The module RX will play an important role in the following. For this reason we provide for its

elements an alternative interpretation that is often useful. First of all notice that the map χ : X→ RX ,
x 7→ χx is injective. Hence, we can use it to identify χxi ∈ RX with xi ∈ X , for all i ∈ I. If we do so,
we can interpret an element a ∈ RX as a (formal) finite linear combination of elements of X and
write

a = ∑
i∈I

aixi (1.7)

(instead of a = ∑i∈I aiχxi) with the ai ∈ R all vanishing but finitely many as usual. For this reason
RX is also called the module of formal linear combinations of elements in X . Notice that the usual
computational rules hold for such formal linear combinations.

Finally, we recover Example 1.15 in the case X = Xn (hence RX = RX = RXn = Rn). ■

Although modules are very similar to vector spaces in the definition, they can differ significantly
from the latter in practice. The main difference is that, in general, modules do not possess bases.
Indeed, as the ring of scalars R is not a field, it is impossible to provide a proof of the Linear
Dependence Lemma (hence of the existence of bases) for modules.
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■ Example 1.17 Denote by Z2 =
{

0,1
}

the quotient of the ring Z under the congruence mod2.
Forget about the multiplication in Z2 and regard it as a plain abelian group, hence a Z-module.
Bases do not have repeated elements. There are exactly 4 families of elements of Z2 without
repetitions (a family without repetitions is basically a subset)

∅, (0), (1), (0,1)

(the order of the elements in the family is not relevant). The empty family does not generate Z2.
The second and the last families are not independent because they contain the zero vector which is
never independent (do you see it?). Finally the one element family (1), while generating Z2, is not
independent. Indeed

2 ·1 = 1+1 = 0

is a zero linear combination with non-trivial coefficient 2. ■

Definition 1.2.1 — Free Module. An R-module M is free if there exists a basis of M.

■ Example 1.18 If R is a field, then any R-vector space is a free R-module (there are no non-free
R-modules in this case). ■

Example 1.17 shows that not all modules are free. On the other hand, if X is any set, then
Example 1.16 shows that there exists a free module RX together with an injection χ : X → RX ,
x 7→ χx such that (χx)x∈X ⊆ RX is a basis for RX . In particular, X identifies (via χ) with a basis of
RX .

Similarly as for finite dimensional vector spaces, in a free module it makes sense the notion of
components (or coordinates) of an element in a basis. To see this, let R be any ring, and let M be a
free R-module. Fix a basis B = (qi)i∈I ⊆M of M. In the case when B is infinite, formalizing the
idea of coordinates is a little bit harder than for finite bases in a vector space. Let p ∈M. As B is a
set of generators for M, then p can be written as a (finite) linear combination of elements of B. In
other words

p = ∑
i∈I

aiqi (1.8)

for some family (ai)i∈I ⊆ R of scalars such that ai = 0 for all but finitely many i ∈ I. The linear
combination (1.8) defines a map a : B→ R, qi 7→ ai. Notice that a ∈ RB and it is uniquely defined
by p, i.e. if a′ : B→ R, qi 7→ a′i is another map in RB such that

p = ∑
i∈I

a′iqi

then necessarily a = a′, indeed

0 = ∑
i∈I

aiqi−∑
i∈I

a′iqi = ∑
i∈I
(ai−a′i)qi

and, from the independence, ai−a′i = 0, i.e. ai = a′i, for all i ∈ I. The ai are the components of p in
the basis B. In this way we constructed a map:

cB : M→ RB, p 7→ cB(p) := a, (1.9)

called the coordinate map. The coordinate map is injective, indeed if two elements p1, p2 have the
same components, they clearly agree. It is also surjective as, given a function a ∈ RB, a : qi 7→ ai,
the linear combination p = ∑i∈I aiqi is well defined and, by construction, its components are exactly
the ai. Finally, it is easy to see that the coordinate map is R-linear (do you see it?). So, it is an
isomorphism of R-modules. This shows that every free module M with a basis B is (canonically)
isomorphic to the free module RB.
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Proposition 1.2.1 Every free and finitely generated module possesses a finite basis.

Proof. Let M be a free R-module and let S = (p1, . . . , pn) be a finite set of generators. Pick any basis
B = (qi)i∈I of M. Every pα is a linear combination of finitely many qi, i.e. for every α = 1, . . . ,n
there is a finite subset Iα ⊆ I such that pα is a linear combination of the q j with j ∈ Iα . The set
J =

⋃n
α=1 Iα ⊆ I is a finite subset, hence the family B := (q j) j∈J ⊆ B is a finite subfamily. As B is

independent, B is independent as well, and as S is a set of generators, B is a set of generators (do
you see it?). We conclude that B is a finite basis as desired. ■

Free modules are characterized by a universal property that we now discuss. We begin
axiomatizing this universal property. Let X be a set.

Definition 1.2.2 — Free Module Spanned by a Set. A free module spanned by X is a pair
(M,χ) consisting of an R-module M and a map χ : X→M with the following universal property:
for every R-module N and every map φ : X → N there exists a unique R-module homomorphism
f : M→ N such that φ = f ◦χ , i.e. the diagram

X
φ
//

χ

��

N

M
f

>>

commutes.

■ Example 1.19 Let R = K be a field, and let V be a K-vector space of finite dimension n.
Moreover let B = (q1, . . . ,qn) ⊆ V be a basis and let iB : B→ V , qi 7→ qi be the inclusion. The
Linear Extension Theorem then shows that (V, iB) is a free K-module spanned by B. ■

Theorem 1.2.2 — Universal Property of Free Modules. Let R be a ring and let X be a set.
Then

(1) there exists a free module spanned by X ;
(2) the free module spanned by X is unique up to unique isomorphisms, i.e. if (M1,χ1),(M2,χ2)

are free modules spanned by X , then there exists a unique R-module isomorphism
Φ : M1→M2 such that the diagram

X
χ1

~~

χ2

  

M1
Φ // M2

(1.10)

commutes.

Proof. For item (1) consider the module RX and the map χ : X → RX , x 7→ χx that maps x to the
corresponding characteristic function. We want to show that (RX ,χ) is a free module spanned by
X . As we did in Example 1.16 we fix once for all an index set I with the same cardinality as X
and a bijection I→ X , i 7→ xi. In this way we interpret X as a family (xi)i∈I . As suggested at the
end of Example 1.16, we also denote χxi simply by xi, for all i ∈ I. With this notation, X becomes
just a subset in RX and χ is just the inclusion X → RX . Now, let N be another R-module and let
φ : X → N be a map. Define a map f : RX → N as follows. For a = ∑i∈I aixi ∈ RX put

f (a) = ∑
i∈I

aiφ(xi). (1.11)

As only finitely many of the ai are non-zero, f (a) is well-defined. We want to show that
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(i) f is an R-linear map;
(ii) f ◦χ = φ ;

(iii) f is uniquely determined by conditions (i), (ii).
We leave item (i) as Exercise 1.11 and prove items (ii) and (iii) here. So, let i ∈ I and compute

( f ◦χ)(xi) = f (xi) = φ(xi),

and (ii) follows from the arbitrariness of i. For (iii) let f ′ : RX → N be another linear map such that
f ′ ◦χ = φ . Take a ∈ RX . Then

a = ∑
i∈I

aixi.

for some family (ai)i∈I ⊆ R such that ai = 0 for all but finitely many i. Hence

f ′(a) = f ′
(

∑
i∈I

aixi

)
= ∑

i∈I
ai f ′ (xi) = ∑

i∈I
ai( f ′ ◦χ)(xi) = ∑

i∈I
aiφ(xi) = f (a),

and (iii) follows from the arbitrariness of a. This concludes the proof of item (1).
For item (2), let (M1,χ1),(M2,χ2) be free modules spanned by X . In particular, χ2 : X →M2 is

a map and, as (M1,χ1) satisfies the universal property of free modules spanned by X , there exists a
unique linear map Φ : M1→M2 such that the diagram (1.10) commutes. We want to show that Φ

is an R-module isomorphism. To do this, notice that, exchanging the roles of (M1,χ1) and (M2,χ2)
we find another linear map Ψ : M2→M1 such that Ψ◦χ2 = χ1. It is easy to see that Ψ inverts Φ.
Indeed, consider the linear map Ψ◦Φ : M1→M1. It satisfies

Ψ◦Φ◦χ1 = Ψ◦χ2 = χ1.

However there is only one linear map I : M1 → M1 such that I ◦ χ1 = χ1. As idM1 : M1 → M1
is another such linear map, we necessarily have Ψ ◦Φ = idM1 . Similarly Φ ◦Ψ = idM2 and this
concludes the proof. ■

Exercise 1.11 Prove that the map f defined by (1.11) in the proof of Proposition 1.2.2 is
R-linear. ■

Theorem 1.2.2 says that, for any set X , a free module spanned by X exists and it is unique up
to (unique) isomorphisms. The proof shows that (RX ,χ) is a canonical choice of a free module
spanned by X . For this reason we also say that (RX ,χ) (or simply RX) is the free module spanned
by X .

The following corollary shows that free modules are completely characterized by the defining
property of the free module spanned by a set, and motivates the terminology used in Definition
1.2.2.

Corollary 1.2.3 Let M be a free module with basis B = (qi)i∈I ⊆M, and let iB : B→M, qi 7→ qi

be the inclusion. Then (M, iB) is a free module spanned by B. Conversely, if X = (xi)i∈I is a set
and (M,χ) is a free module spanned by X , then χ : X →M is an injective map, and M is a free
module with basis (χxi)i∈I .

Proof. For the first part of the statement consider the coordinate map cB : M→ RB. It is an R-
module isomorphism that identifies the inclusion iB : B→M with the canonical injection χ : B→RB
(do you see it?). As (RB,χ) is a free module spanned by B, it easily follows that (M, iB) is also a free
module spanned by B (check the details as an exercise). For the second part of the statement notice
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that, from uniqueness, there is an R-module isomorphism Φ : RX →M that identifies χ : X →M
with the canonical injection X → RX . Hence χ : X →M is also an injection. As X is a basis in
RX and R-module isomorphisms map bases to bases (see Exercise 1.10), then (χxi)i∈I is a basis in
M. ■

R The proof of Corollary 1.2.3 was very quick. We invite the reader to check all the details and
fill in the possible gaps.

Proposition 1.2.4 Every module M is (isomorphic to) the quotient of a free module P (over an
appropriate submodule). If M is finitely generated then P can be chosen to have a finite basis.

Proof. Let S = (pi)i∈I ⊆M be a family of generators (there is always a family of generators: at
the worse one can choose S = M). Consider the free module RS spanned by S. By the universal
property of free modules there is a linear map f : RS→M such that f ◦χ : S→M is the inclusion
of S into M. In other words, f maps χpi to pi. As RS is spanned by (χpi)i∈I , this shows that f maps
a family of generators to a family of generators. It follows that it is a surjective linear map (Exercise
1.10). Hence, from Corollary 1.1.7, it induces an R-module isomorphism RS/ker f ∼= M. If M is
finitely generated, then S can be chosen finite so that RS has a finite basis. ■

1.3 Direct Sums and Direct Products
Let R be a ring and let (Mi)i∈I be a family of R-modules parameterized by a possibly infinite index
set I. Roughly, the direct sum of the Mi is the “smallest module containing the Mi as independent
submodules”. The correct way to formalize this idea is via a universal property similar to that of
the free module spanned by a set.

Definition 1.3.1 — Direct Sum. A direct sum of the modules (Mi)i∈I is a pair (D, ι) consisting
of an R-module D and a family ι = (ιi : Mi→D)i∈I of R-linear maps with the following universal
property: for every R-module M and every family λ = (λi : Mi→M)i∈I of linear maps, there
exists a unique R-module homomorphism λD : D→M such that λi = λD ◦ ιi for all i ∈ I, i.e. the
diagram

Mi

ιi

��

λi // M

D
λD

>>

commutes for all i ∈ I.

Direct sums are sometimes called exterior direct sums to distinguish them from the direct sum
of submodules in a given modules (which is a closely related construction generalizing the direct
sum of vector subspaces in a vector space in the obvious way).

Theorem 1.3.1 Let (Mi)i∈I be a family of R-modules. Then
(1) there exists a direct sum (D, ι) of (Mi)i∈I;
(2) direct sums are unique up to unique isomorphisms, i.e. if (D1, ι1 = (ι1i)i∈I),(D2, ι2 =

(ι2i)i∈I) are two direct sums of (Mi)i∈I then there exists a unique R-module isomorphism
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Φ : D1→ D2 such that the diagram

Mi
ι2i

  

ι1i

~~

D1
Φ // D2

(1.12)

commutes for all i ∈ I.

Proof. For item (1) define D as the set of families p = (pi)i∈I such that pi ∈Mi for all i ∈ I, with
the additional (extremely important!) assumption that pi = 0 for all but finitely many i. There is a
natural R-module structure on D: for all p = (pi)i∈I, p′ = (p′i)i∈I,q = (qi)i∈I ∈ D, and a ∈ R, we
put

p+ p′ := (pi + p′i)i∈I and aq := (aqi)i∈I.

We leave it to the reader to check that with this two operations D is indeed an R-module. For each
i ∈ I there is a map

ιi : Mi→ D, p 7→ ιi(p) := (p j) j∈I, with p j =

{
p if j = i
0 otherwise

.

This map is obviously R-linear (do you see it? If not, check the necessary details). Put ι = (ιi :
Mi→ D)i∈I . We want to check that (D, ι) satisfies the universal property of direct sums. So let
M be another R-module, and let λ = (λi : Mi→M)i∈I be a family of linear maps. Define a map
λD : D→M by putting

λD(p) := ∑
i∈I

λi(pi), for all p = (pi)i∈I ∈ D. (1.13)

Notice that the sum in (1.13) is well defined because the pi are all zero but finitely many. It is easy
to see that λD is a linear map (check the details as an exercise). Now, take j ∈ I and p ∈M j, then
all entries of ι j(p) vanish except the j-th one which is equal to p. Hence we have

λD(ι j(p)) = ∑
i∈I

λi (i-th entry of ι j(p)) = λ j(p)

as desired. To conclude with item (1) we have to show that λD is uniquely determined by R-
linearity and the condition λD ◦ ιi = λi for all i. So, let λ ′D : D→M be another linear map such that
λ ′D ◦ ιi = λi, then λ ′D = λD indeed, for any p = (pi)i∈I ∈ D, there are only finitely many i such that
pi ̸= 0. Denote them i1, . . . , ir. It should be clear that

p =
r

∑
k=1

ιik(pik). (1.14)

Hence

λ
′
D(p) = λ

′
D

(
r

∑
k=1

ιik(pik)

)
=

r

∑
k=1

λ
′
D (ιik(pik)) =

r

∑
k=1

λik(pik) =
r

∑
k=1

λD (ιik(pik))

= λD

(
r

∑
k=1

ιik(pik)

)
= λD(p),

where we used the linearity of both λD,λ
′
D. This concludes the proof of item (1).
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For item (2), let (D1, ι1),(D2, ι2) be direct sums of (Mi)i∈I . In particular, ι2 = (ι2i : Mi→D2)i∈I

is a family of linear maps and, as (D1, ι1) satisfies the universal property of the direct sum, there
exists a unique linear map Φ : D1→ D2 such that the diagram (1.12) commutes for all i ∈ I. We
want to show that Φ is an R-module isomorphism. To do this, notice that, exchanging the roles of
(D1, ι1) and (D2, ι2), we find another linear map Ψ : D2→ D1 such that Ψ◦ ι2i = ι1i for all i ∈ I.
It is easy to see that Ψ inverts Φ and we leave the details to the reader as Exercise 1.12. This
concludes the proof. ■

Exercise 1.12 Fill all the gaps in the proof of Theorem 1.3.1. In particular show that the
homomorphisms Φ,Ψ in the end of the proof are mutual inverses (Hint: use the same exact
argument as in the end of the proof of Theorem 1.2.2). ■

Theorem 1.3.1 shows that directs sums exist and are unique up to unique isomorphisms. The
direct sum (D, ι) constructed in the proof is a canonical choice. For this reason we call it the direct
sum of (Mi)i∈I and denote it by⊕

i∈I

Mi

(or also M1⊕·· ·⊕Mk, if the Mi are finitely many). Notice from the proof of Theorem 1.3.1 that
the maps ι j : M j→

⊕
i∈I Mi are injective, and we will often use them to identify the M j with their

images in
⊕

i∈I Mi. If we do this then, in view of (1.14), any element in
⊕

i∈I Mi can be seen as a
finite sum of the type

r

∑
k=1

pik

with pik ∈Mik for some i1, . . . , ir ∈ I.
It is some times convenient to consider direct sums different from the canonical choice.

■ Example 1.20 — Free Modules as Direct Sums. Let X = (xi)i∈I be a set (interpreted as a family
as usual). The free module RX spanned by X can also be seen as the direct sum⊕

i∈I

R

of a family (Mi = R)i∈I of copies of R. Indeed the map⊕
i∈I

R→ RX , (ai)i∈I 7→∑
i∈I

aixi

is clearly an R-module isomorphism (a canonical one). So we have already three interpretations of
elements of RX :

(1) as functions a : X → R, xi 7→ ai,
(2) as formal linear combinations ∑i∈I aixi,
(3) as families (ai)i∈I ,

with xi ∈ X , and ai ∈ R such that ai = 0 for all but finitely many i ∈ I. This is not surprising: each
of these interpretations is just a different way of encoding the same piece of information. What is
the best interpretation might depend on the concrete situation at hand. ■

■ Example 1.21 — Split Short Exact Sequence. Consider a short exact sequence of R-modules:

0−→ N α−→M
β−→ Q−→ 0. (1.15)
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We say that the sequence (1.15) splits if there is an R-linear map s : Q→M inverting β on the right:
β ◦ s = idQ. In this case s is called a splitting of the sequence.

Not all short exact sequences split. For instance, let R =Z and consider the short exact sequence
of abelian groups:

0 −→ Z −→ Z −→ Z2 −→ 0
n 7−→ 2n

(1.16)

where the arrow Z→ Z2 is the canonical projection. As there is no non-trivial abelian group
homomorphism Z2→ Z (let f : Z2→ Z be a Z-linear map, then 0 = f (0) = f (1+ 1) = f (1)+
f (1) = 2 f (1), hence f (1) = f (0) = 0) the short exact sequence (1.16) cannot split.

However some short exact sequences split. For instance, if R = K is a field, then any short
exact sequence of R-modules, i.e. K-vector spaces, splits. Indeed, let

0−→W α−→V
β−→U −→ 0

be such a short exact sequence. Consider the image α(W )⊆V of W in V . It is a vector subspace.
Hence, there is another vector subspace U ′ ⊆V such that α(V )+U ′ = α(V )⊕U ′ =V (usual direct
sum of vector subspaces). To see this, choose a basis BW of W , then α(BW ) is a basis of α(W ).
Complete it to a basis B of V adding an appropriate subset B′⊆V of vectors (this is always possible),
and let U ′ ⊆V be the subspace spanned by B′ (if you are not following, check all the details in the
finite dimensional case). The restriction β |U ′ : U ′→U is a vector space isomorphism. Indeed, it is
injective: let u′ ∈U ′ be such that 0 = β |U ′(u′) = β (u′). This means that u′ ∈ kerβ = imα = α(W ).
Hence u′ ∈U ′∩α(W ) = 0. It is also surjective: indeed let u ∈U . From the surjectivity of β there
exists v ∈ V such that u = β (v). As α(W )+U ′ = V , there exists w ∈W and u′ ∈U ′ such that
v = α(w)+u′. Hence u = β (v) = β (α(w)+u′) = (β ◦α)(w)+β (u′) = β |U ′(u′), where we used
that β ◦α = 0. Finally, put s = iU ′ ◦β |−1

U ′ : U →V , where iU ′ : U ′→V is the inclusion. Then s is
the splitting we were looking for (see Figure 1.1). Indeed

β ◦ s = β ◦ iU ′ ◦β |−1
U ′ = β |U ′ ◦β |−1

U ′ = idU

as desired.
The latter example suggests that, given a short exact sequence of R-modules together with a

splitting

0 // N α // M
β
// Q //

s
dd 0 , (1.17)

the middle module M might be a direct sum of the other two M ∼= N⊕Q. This is indeed the case.
More precisely the pair (M, ι) is a direct sum of the pair of modules (N,Q) with ι being the pair of
linear maps

ι =
(

α : N→M, s : Q→M
)
.

To see this it is enough to check that the linear map

Φ : N⊕Q→M, (p,q) 7→ α(p)+ s(q), (1.18)

is a module isomorphism (such that Φ ◦ ιN = α and Φ ◦ ιQ = s, where ιN : N → N ⊕Q and
ιQ : Q→ N⊕Q are the canonical monomorphisms). We leave the details to the reader as Exercise
1.13. ■
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Figure 1.1: A splitting of a short exact sequence of vector spaces.

Exercise 1.13 Prove that, given a short exact sequence of R-modules together with a splitting
as in (1.17), the middle module M together with the linear maps (α,s) is a direct sum of (N,Q)
(Hint: prove that the map (1.18) is a module isomorphism such that Φ◦ ιN = α and Φ◦ ιQ = s.
Why is this enough to solve the exercise?). ■

There is a construction somehow “dual” to direct sums, called direct product. The notion
of direct product is obtained from that of direct sum by inverting all the arrows in the definition.
Namely let (Mi)i∈I be a family of R-modules as above.

Definition 1.3.2 — Direct Product. A direct product of the modules (Mi)i∈I is a pair (P,π)
consisting of an R-module P and a family π = (πi : P→ Mi)i∈I of R-linear maps with the
following universal property: for every R-module M and every family µ = (µi : M→Mi)i∈I of
linear maps, there exists a unique R-module homomorphism µP : M→ P such that µi = πi ◦µP

for all i ∈ I, i.e. the diagram

Mi M
µi
oo

µP
~~

P

πi

OO

commutes for all i ∈ I.

Theorem 1.3.2 Let (Mi)i∈I be a family of R-modules. Then
(1) there exists a direct product (P,π) of (Mi)i∈I;
(2) direct products are unique up to unique isomorphisms, i.e. if (P1,π1 = (π1i)i∈I),(P2,π2 =

(π2i)i∈I) are two direct products of (Mi)i∈I then there exists a unique R-module isomor-
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phism Ψ : P1→ P2 such that the diagram

Mi

P1
Ψ //

π1i
>>

P2

π2i
``

(1.19)

commutes for all i ∈ I.

Proof. For item (1) define P as the set of families p = (pi)i∈I such that pi ∈Mi for all i ∈ I, with
no other assumption (beware the difference with the direct sum case!). There is a natural R-module
structure on P: for all p = (pi)i∈I, p′ = (p′i)i∈I,q = (qi)i∈I ∈ P, and a ∈ R ,we put

p+ p′ := (pi + p′i)i∈I and aq := (aqi)i∈I.

We leave it to the reader to check that with this two operations P is indeed an R-module (notice
that the module D constructed in the proof of Theorem 1.3.1 is then obviously a submodule of P.
However this fact will not play any role in what follows!). For each i ∈ I there is a map

πi : P→Mi, p = (p j) j∈I 7→ πi(p) := pi.

In other words P =× j∈IM j, the cartesian product of the Mi, and πi is the projection onto the i-th
factor. The map πi is obviously R-linear for all i (do you see it?). Put π = (πi : P→Mi)i∈I . We
want to check that (P,π) satisfies the universal property of direct products. So let M be another
R-module, and let µ = (µi : M→Mi)i∈I be a family of linear maps. Define a map µP : M→ P by
putting

µP(q) := (µi(q))i∈I , for all q ∈M. (1.20)

It is easy to see that µP is a linear map (check the details as an exercise). Now, take q ∈M and j ∈ I
and compute

π j(µP(q)) = π j (µi(q))i∈I = µ j(q)

as desired. To conclude with item (1) we have to show that µP is uniquely determined by R-linearity
and the condition πi ◦µP = µi for all i. We leave the easy check to the reader as part of Exercise
1.14.

For item (2), let (P1,π1),(P2,π2) be direct products of (Mi)i∈I . In particular, π1 = (π1i : P1→
Mi)i∈I is a family of linear maps and, as (P2,π2) satisfies the universal property of the direct sum,
there exists a unique linear map Ψ : P1→ P2 such that the diagram (1.19) commutes for all i ∈ I.
We want to show that Φ is an R-module isomorphism. To do this, notice that, exchanging the roles
of (P1,π1) and (P2,π2), we find another linear map Φ : P2→ P1 such that π1i ◦Φ = π2i for all i ∈ I.
It is easy to see that Ψ inverts Φ and we leave the details to the reader as the second part of Exercise
1.14. This concludes the proof. ■

Exercise 1.14 Fill all the gaps in the proof of Theorem 1.3.2. In particular show that
(1) the map µP is uniquely determined by R-linearity and the condition πi ◦µP = µi for all i,
(2) the homomorphisms Φ,Ψ in the end of the proof are mutual inverses.

■

Theorem 1.3.2 shows that direct products exist and are unique up to unique isomorphisms. The
direct product (P,π) constructed in the proof is a canonical choice. For this reason we call it the
direct product of (Mi)i∈I and denote it by

∏
i∈I

Mi.
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Notice from the proof of Theorem 1.3.2 that the maps π j : ∏i∈I Mi→M j are surjective.
It is sometimes convenient to consider direct products different from the canonical choice.

■ Example 1.22 — Function Modules as Direct Products. Let X = (xi)i∈I be a set (interpreted
as a family as usual). The module RX of functions X → R can also be seen as the direct product

∏
i∈I

R

of a family (Mi = R)i∈I of copies of R. Indeed the map

RX →∏
i∈I

R, f 7→ ( f (xi))i∈I

is clearly an R-module isomorphism (a canonical one). So we have two interpretations of elements
of RX :

(1) as functions f : X → R,
(2) as families ( fi)i∈I ,

with fi ∈ X , and no other constraint. Yet another interpretation will be provided in next Section
(see Example 1.25). ■

■ Example 1.23 — Finite Direct Products. Let (M1, . . . ,Mk) be a finite family of R-modules. It is
clear that, in this case, the direct sum and the direct product of the Mi are actually isomorphic as
R-modules, and they are often denoted both by M1⊕·· ·⊕Mk. Notice, however, that the direct sum
D comes, by definition, with maps Mi→ D, while the direct product P comes with maps P→Mi,
so D and P, even in this case, should be thought of as two distinct mathematical objects. ■

1.4 Tensor Products
In this section we discuss a new construction with modules that plays an important role in Algebra
and Geometry: the tensor product. Roughly, the tensor product of two modules M1,M2 is a new
module M1⊗M2 with the key property that homomorphisms M1⊗M2→ N (to a third arbitrary
module N) are “the same as” bilinear maps M1 ×M2 → N. In this sense the tensor product
“represents” bilinear maps.

We begin with a discussion on multilinear maps in the setting of modules. So let R be a ring,
and let M1, . . . ,Mk and N be R-modules.

Definition 1.4.1 — Multilinear Map. A k-multilinear map (defined on M1, . . . ,Mk and with
values in N) is a map

µ : M1×·· ·×Mk→ N

which is R-linear in each entry, i.e. for all i = 1, . . . ,k

µ(. . . ,ap+bq︸ ︷︷ ︸
i-th place

, . . .) = aµ(. . . , p︸︷︷︸
i-th place

, . . .)+bµ(. . . , q︸︷︷︸
i-th place

, . . .), p,q ∈Mi, a,b ∈ R.

■ Example 1.24 Let R =K be a field and let n be a positive integer. The determinant

det : Kn×·· ·×Kn︸ ︷︷ ︸
n-times

→K, (A(1), . . . ,A(n)) 7→ det(A(1) · · ·A(n))

is a multilinear map. ■

We have the following multilinear map analogue of Corollary 1.2.3.
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Proposition 1.4.1 — Multilinear Extension Theorem. Let M1, . . . ,Mk be free R-modules with
bases B1, . . . ,Bk respectively. Then for any R-module N and any map m : B1×·· ·×Bk → N
there exists a unique multilinear map µ : M1×·· ·×Mk→ N such that the diagram

M1×·· ·×Mk
µ
// N

B1×·· ·×Bk

OO

m

99

commutes, where the vertical arrow is the inclusion.

Proof. Left as Exercise 1.15. ■

Exercise 1.15 Prove Proposition 1.4.1. ■

Proposition 1.4.1 says two things: 1) in the existence it says that if we fix a map on the bases
then this can be extended multilinearly to the whole modules; 2) in the uniqueness it says that a
multilinear map is uniquely determined by its action on the basis elements.

Multilinear maps M1×·· ·×Mk→ N can be added and multiplied by a scalar as follows. For
any two multilinear maps µ,ν : M1×·· ·×Mk→ N we define

µ+ν : M1×·· ·×Mk→N, (p1, . . . , pk) 7→ (µ+ν)(p1, . . . , pk) := µ(p1, . . . , pk)+ν(p1, . . . , pk).

For any multilinear map µ : M1×·· ·×Mk→ N and any scalar a ∈ R we define

aµ : M1×·· ·×Mk→ N, (p1, . . . , pk) 7→ (aµ)(p1, . . . , pk) := aµ(p1, . . . , pk).

It is easy to see that µ +ν and aµ are again multilinear maps. With this two operations the space
of multilinear maps M1×·· ·×Mk→ N is an R-module that we denote by

MultkR(M1, . . . ,Mk;N),

or simply Multk(M1, . . . ,Mk;N) if it is clear which is the ring of scalars.
We also make sense of 0-multilinear maps by putting Mult0(N) := N. When k = 1 a multilinear

map M1 → N is just a linear map. The R-module Mult1R(M1;N) is also denoted HomR(M1,N),
or simply Hom(M1,N). Multilinear maps M1×M2 → N are also called bilinear maps and the
R-module Mult2R(M1,M2;N) is also denoted BilR(M1,M2;N), or simply Bil(M1,M2;N).

■ Example 1.25 — Dual of a Free Module. For an R-module M, Denote M∗ := Hom(M,R) and
call it the dual module of M. It is indeed a module with the operations on (multi)linear maps
described above. Now let X be a set. We want to show that the dual (RX)∗ of the free module RX
generated by X is canonically isomorphic to the function module RX . To see this interpret X as a
family as usual: X = (xi)i∈I , and define a map

ι : RX → (RX)∗

as follows. For every f ∈ RX and every

p = ∑
i∈I

aixi ∈ RX ,

put

ι( f )(p) = ∑
i∈I

ai f (xi) ∈ R.
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In other words, ι( f ) : RX → R is the unique linear map that acts as f on the basis X ⊆ RX . As all
the ai are zero but finitely many, ι( f )(p) is well-defined. It is easy to see that ι( f ) : RX → R is
indeed a linear map for every f ∈ RX . It is also easy to see that ι is a linear map. It remains to show
that ι is bijective. It is injective. Indeed, if f ∈ RX is such that ι( f ) = 0, in particular f (xi) = 0
for all i ∈ I, i.e. f (x) = 0 for all x ∈ X , i.e. f = 0. For the surjectivity, let ϕ ∈ (RX)∗ and define
f : X → R by putting f (x) = ϕ(x) for all x ∈ X ⊆ RX . It is now clear that ι( f ) = ϕ .

The isomorphism ι provides yet a third interpretation for elements in RX , namely as linear
forms on RX . ■

■ Example 1.26 The present example simultaneously generalizes Examples 1.22 and 1.25. Let
(Mi)i∈I be a family of R-modules, indexed by some (possibly infinite) set I. We want to show
that the dual (⊕i∈IMi)

∗ of the direct sum ⊕i∈IMi is canonically isomorphic to the direct product
∏i∈I M∗i :(⊕

i∈I

Mi

)
∗ ∼= ∏

i∈I
M∗i .

To see this define a map

Φ :
(⊕

i∈I

Mi

)
∗→∏

i∈I
M∗i

as follows. For every linear form

ϕ :
⊕
i∈I

Mi→ R

and every j ∈ I, let ϕ j := ϕ|M j : Mi → R be the linear form obtained by restricting ϕ to the
submodule M j ⊆

⊕
i∈I Mi (equivalently, ϕ j = ϕ ◦ ι j, where ι j : M j→

⊕
i∈I Mi is the j-th structure

monomorphism of the direct sum). Now put

Φ(ϕ) := (ϕi)i∈I ∈∏
i∈I

M∗i .

We leave it to the reader to check that Φ is indeed an R-module isomorphism as Exercise 1.16. ■

Exercise 1.16 Show that the map Φ : (
⊕

i∈I Mi)
∗→ ∏i∈I M∗i defined in Example 1.26 is an

R-modules isomorphism. ■

■ Example 1.27 Let M,N,P be R-modules. As the composition of R-module homomorphisms is
an R-module homomorphism we get a map

◦ : HomR(N,P)×HomR(M,N)→ HomR(M,P), ( f ,g) 7→ f ◦g.

It is easy to see that this map is bilinear, i.e. for all f1, f2 ∈ HomR(N,P) all a1,a2 ∈ R and all
g ∈ HomR(M,N) we have

(a1 f1 +a2 f2)◦g = a1( f1 ◦g)+a2( f2 ◦g),

and likewise with respect to the second argument. We leave the details to the reader as Exercise
1.17. ■
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Exercise 1.17 Prove that composing linear maps is a bilinear operation (see Example 1.27 for a
precise formulation). ■

Proposition 1.4.2 Let R be a ring, let k be a non-negative integer, and let M1, . . . ,Mk,N be
R-modules. Then

(1) For every l ≤ k there is a canonical R-module isomorphism

MultlR(M1, . . . ,Ml;Multk−l
R (Ml+1, . . . ,Mk;N))∼= MultkR(M1, . . . ,Mk;N).

(2) There is a canonical R-module isomorphism

Multk+1
R (M1, . . . ,Mk,R;N)∼= MultkR(M1, . . . ,Mk;N).

(3) For every permutation σ ∈ Sk there is a canonical R-module isomorphism

MultkR(Mσ(1), . . . ,Mσ(k);N)∼= MultkR(M1, . . . ,Mk;N).

Proof. For item (1), define a map

MultlR(M1, . . . ,Ml;Multk−l
R (Ml+1, . . . ,Mk;N))→MultkR(M1, . . . ,Mk;N), µ 7→ µ

by putting

µ(p1, . . . , pl, pl+1, . . . , pk) := µ(p1, . . . , pl)(pl+1, . . . , pk), pi ∈Mi, i = 1, . . . ,k. (1.21)

It is clear that the assignment µ 7→ µ is well-defined and it is almost obvious that it is R-linear.
Additionally, it is inverted by the assignment µ 7→ µ defined by reading Formula (1.21) from the
right to the left. This completes the proof of item (1).

For item (2), define a map

Multk+1
R (M1, . . . ,Mk,R;N)→MultkR(M1, . . . ,Mk;N), µ 7→ µ (1.22)

by putting

µ(p1, . . . , pk) := µ(p1, . . . , pk,1), pi ∈Mi, i = 1, . . .k. (1.23)

The assignment µ 7→ µ is well-defined and R-linear. We want to show that it is bijective. This
essentially follows from the fact that an R-linear map defined on R itself is completely determined
by its value on 1 ∈ R (as R is actually a free R-module with basis {1}). More specifically, define a
map

MultkR(M1, . . . ,Mk;N)→Multk+1
R (M1, . . . ,Mk,R;N), ν 7→ ν̂ (1.24)

by putting

ν̂(p1, . . . , pk,a) := aν(p1, . . . , pk), pi ∈Mi, i = 1, . . .k. (1.25)

This is again a well-defined R-linear map that inverts the map (1.22) defined by (1.23).
For item (3) define a map

MultkR(Mσ(1), . . . ,Mσ(k);N)→MultkR(M1, . . . ,Mk;N), µ 7→ µσ

by putting

µσ (p1, . . . , pk) := µ(pσ(1), . . . , pσ(k)), pi ∈Mi, i = 1, . . .k.

This is a well-defined R-linear map inverted by ν 7→ νσ−1 . ■
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Exercise 1.18 Show that the map (1.24) defined by (1.25) is well-defined (i.e. ν̂ : M1×·· ·×
Mk×R→ N is a multilinear map) and inverts the map (1.22) defined by (1.23) (i.e. µ̂ = µ and
ν̂ = ν for all µ ∈MultkR(M1, . . . ,Mk;N) and all ν ∈Multk+1

R (M1, . . . ,Mk,R;N)). ■

It is clear that combining the isomorphisms (1), (2) and (3) in Proposition 1.4.2 we find
numerous new canonical isomorphisms. Notice that

✓ when k = 0, item (2) says that there is a canonical isomorphism

HomR(R,N)
∼=−→ N,

and the proof of Proposition 1.4.2 reveals that this isomorphism is given by φ 7→ φ(1);
✓ when k = 2, item (1) says that there is a canonical isomorphism

HomR(M1,HomR(M2,N))
∼=−→ BilR(M1,M2;N), µ 7→ µ,

given by µ(p1, p2) = µ(p1)(p2), and
✓ item (3) says that there is a canonical isomorphism

BilR(M2,M1;N)
∼=−→ BilR(M1,M2;N), µ 7→ µ

′,

given by µ ′(p1, p2) = µ(p2, p1).
We are now ready to introduce the main construction in this section. Let M1, . . . ,Mk be R-

modules.
Definition 1.4.2 — Tensor Product. A tensor product (over R) of M1, . . . ,Mk is a pair (T, t)
consisting of an R-module T and a multilinear map t : M1×·· ·×Mk→ T with the following
universal property: for every R-module M and every multilinear map µ : M1×·· ·×Mk→ N
there exists a unique R-module homomorphism µT : T →N such that µ = µT ◦t, i.e. the diagram

M1×·· ·×Mk

t
��

µ
// N

T
µT

88

(1.26)

commutes.

In other words a tensor product allows one to encode a multilinear map µ : M1×·· ·×Mk→ N
into a plain linear map µT : T → N (similarly as the direct sum encodes a family of linear maps
into one single linear map). In this sense, the tensor product represents multilinear maps.

Theorem 1.4.3 Let M1, . . . ,Mk be R-modules. Then
(1) there exists a tensor product (T, t) of M1, . . . ,Mk;
(2) tensor products are unique up to unique isomorphisms, i.e. if (T1, t1),(T2, t2) are two tensor

products of M1, . . . ,Mk then there exists a unique R-module isomorphism Φ : T1→ T2 such
that the diagram

M1×·· ·×Mk
t1

||

t2

""

T1
Φ // T2

commutes.
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Proof. For item (1) consider the free R-module spanned by M1×·· ·×Mk. For simplicity we denote
it by T̃ (instead of R(M1×·· ·×Mk)). We also denote by t̃ : M1×·· ·×Mk→ T̃ (instead of χ) the
inclusion. Finally, we adopt a further slight change in notation. For all (p1, . . . , pk) ∈M1×·· ·×Mk
we denote by

p1 ⊗̃ · · · ⊗̃ pk

(instead of χ(p1,...,pk) or simply (p1, . . . , pk)) the image of (p1, . . . , pk) under t̃. It is clear that

t̃ : M1×·· ·×Mk→ T̃ , (p1, . . . , pk) 7→ p1 ⊗̃ · · · ⊗̃ pk

is not a multilinear map. However it can be “turned into” a multilinear map with a simple trick: in
T̃ consider the submodule K spanned by elements τ̃ of the form

τ̃ =
(
· · · ⊗̃ (ap+bq)︸ ︷︷ ︸

i-th place

⊗̃ · · ·
)
−a
(
· · · ⊗̃ p︸︷︷︸

i-th place

⊗̃ · · ·
)
−b
(
· · · ⊗̃ q︸︷︷︸

i-th place

⊗̃ · · ·
)

(1.27)

(for all p,q ∈Mi, all a,b ∈ R, and all i = 1, . . . ,k). Were these elements all zero, i.e. was K = 0,
the map t̃ would be multilinear. But K ̸= 0, and to force it to be 0, we pass to the quotient module
T := T̃/K. Denote by t : M1× ·· · ×Mk → T the composition of t̃ followed by the projection
π : T̃ → T . We want to show that (T, t) is a tensor product of M1×·· ·×Mk. To do this first check
that t : M1×·· ·×Mk→ T is a multilinear map. This is easy, indeed, for all i = 1, . . . ,k, all p,q∈Mi,
and all a,b ∈ R,

t
(
. . . ,ap+bq︸ ︷︷ ︸

i-th place

, . . .
)
= π

(
t̃
(
. . . ,ap+bq︸ ︷︷ ︸

i-th place

, . . .
))

= π
(
· · · ⊗̃ (ap+bq)︸ ︷︷ ︸

i-th place

⊗̃ · · ·
)

= · · · ⊗̃ (ap+bq)︸ ︷︷ ︸
i-th place

⊗̃ · · ·mod K = a
(
· · · ⊗̃ p︸︷︷︸

i-th place

⊗̃ · · ·mod K
)
+b
(
· · · ⊗̃ q︸︷︷︸

i-th place

⊗̃ · · ·mod K
)

= aπ
(
· · · ⊗̃ p︸︷︷︸

i-th place

⊗̃ · · ·
)
+bπ

(
· · · ⊗̃ q︸︷︷︸

i-th place

⊗̃ · · ·
)

= at
(
. . . , p︸︷︷︸

i-th place

, . . .
)
+bt

(
. . . , q︸︷︷︸

i-th place

, . . .
)
,

where we used that(
· · · ⊗̃ (ap+bq)︸ ︷︷ ︸

i-th place

⊗̃ · · ·
)
−a
(
· · · ⊗̃ p︸︷︷︸

i-th place

⊗̃ · · ·
)
−b
(
· · · ⊗̃ q︸︷︷︸

i-th place

⊗̃ · · ·
)
∈ K,

hence

· · · ⊗̃ (ap+bq)︸ ︷︷ ︸
i-th place

⊗̃ · · ·mod K = a
(
· · · ⊗̃ p︸︷︷︸

i-th place

⊗̃ · · ·
)
+b
(
· · · ⊗̃ q︸︷︷︸

i-th place

⊗̃ · · ·
)

mod K

= a
(
· · · ⊗̃ p︸︷︷︸

i-th place

⊗̃ · · ·mod K
)
+b
(
· · · ⊗̃ q︸︷︷︸

i-th place

⊗̃ · · ·mod K
)
.

Now take any other R-module N and let µ : M1× ·· ·×Mk → N be a multilinear map. By the
universal property of the free module spanned by M1×·· ·×Mk, the map µ determines a unique
R-linear map µ̃ : T̃ → N such that µ = µ̃ ◦ t̃. As µ is multilinear the kernel ker µ̃ contains the



36 Chapter 1. Multilinear Algebra

submodule K ⊆ T̃ . Indeed let τ̃ ∈ K be an elements of the form (1.27), and compute

µ̃(τ̃)

= µ̃

((
· · · ⊗̃ (ap+bq)︸ ︷︷ ︸

i-th place

⊗̃ · · ·
)
−a
(
· · · ⊗̃ p︸︷︷︸

i-th place

⊗̃ · · ·
)
−b
(
· · · ⊗̃ q︸︷︷︸

i-th place

⊗̃ · · ·
))

= µ̃
(
· · · ⊗̃ (ap+bq)︸ ︷︷ ︸

i-th place

⊗̃ · · ·
)
−aµ̃

(
· · · ⊗̃ p︸︷︷︸

i-th place

⊗̃ · · ·
)
−bµ̃

(
· · · ⊗̃ q︸︷︷︸

i-th place

⊗̃ · · ·
)

(µ̃ is R-linear)

= µ
(
. . . ,ap+bq︸ ︷︷ ︸

i-th place

, . . .
)
−aµ

(
. . . , p︸︷︷︸

i-th place

, . . .
)
−bµ

(
. . . , q︸︷︷︸

i-th place

, . . .
)

(µ = µ̃ ◦ t̃)

= 0 (µ is multilinear).

As elements of the form (1.27) span K (by definition of K) we have K ⊆ ker µ̃ as desired. Hence,
from the Homomorphism Theorem 1.1.6, µ̃ descends to a (unique) linear map µT : T = T̃/K→ N
(such that µ̃ = µT ◦π), and we have

µT ◦ t = µT ◦π ◦ t̃ = µ̃ ◦ t̃ = µ.

In order to complete the proof of item (1), it remains to check that, if µ ′T : T → N is another linear
map such that µ ′T ◦ t = µ , then µ ′T = µT . This is indeed the case. To see this, first of all, notice that,
as T̃ is generated by the image of t̃ and the projection π : T̃ → T is surjective, then T is generated
by π(im t̃) which consists of elements τ of the form

τ = p1 ⊗̃ · · · ⊗̃ pk mod K = t(p1, . . . , pk), pi ∈Mi, i = 1, . . . ,k.

Now compute

µ
′
T (τ) = µ

′
T ◦ t

(
p1, . . . , pk

)
= µ

(
p1, . . . , pk

)
= µT ◦ t

(
p1, . . . , pk

)
= µT (τ).

So µT and µ ′T agree on a set of generators, hence they agree on the whole T (do you see it? If not,
try to show as an exercise that two R-module homomorphisms f , f ′ : N→ P agreeing on a set of
generators are actually the same map), i.e. µT = µ ′T . This concludes the proof of item (1).

For item (2), let (T1, t1),(T2, t2) be two tensor products of M1, . . . ,Mk. In particular, t2 : M1×
·· ·×Mk → T2 is a multilinear map and, as (T1, t1) satisfies the universal property of the tensor
product, there exists a unique linear map Φ : T1→ T2 such that the diagram (1.26) commutes. We
want to show that Φ is an R-module isomorphism. To do this, notice that, exchanging the roles of
(T1, t1) and (T2, t2) we find another linear map Ψ : T1→ T2 such that Ψ◦ t2 = t1. It is easy to see that
Ψ inverts Φ and we leave the details to the reader as Exercise 1.19. This concludes the proof. ■

Exercise 1.19 Show that the homomorphisms Φ,Ψ in the end of the proof of Theorem 1.4.3
are mutual inverses (Hint: use the same exact argument as in the end of the proof of Theorem
1.2.2). ■

Theorem 1.4.3 shows that tensor products exist and are unique up to unique isomorphisms.
The tensor product (T, t) constructed in the proof is a canonical choice. For this reason we call it
the tensor product of M1, . . . ,Mk and denote it by M1⊗R · · ·⊗R Mk (or simply M1⊗·· ·⊗Mk if this
does not lead to confusion). Given a k-tuple (p1, . . . , pk) ∈M1×·· ·×Mk, its image t(p1, . . . , pk) ∈
M1⊗·· ·⊗Mk under t will be always denoted by

p1⊗·· ·⊗ pk.
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In other words

p1⊗·· ·⊗ pk = p1 ⊗̃ · · · ⊗̃ pk mod K.

The tensor product M1⊗·· ·⊗Mk is spanned, by construction, by the image of the multilinear
map t : M1×·· ·×M1→M1⊗·· ·⊗Mk, i.e. M1⊗·· ·⊗Mk is spanned by elements of the type

p1⊗·· ·⊗ pk, pi ∈Mi, i = 1, . . . ,k.

Such elements are sometimes called decomposable elements (while a generic element in M1⊗
·· ·⊗Mk is a linear combination of decomposable elements). If S1, . . . ,Sk are sets of generators in
M1, . . . ,Mk respectively, then M1⊗·· ·⊗Mk is also spanned by t(S1×·· ·×Sk), i.e. by elements of
the form

q1⊗·· ·⊗qk, qi ∈ Si ⊆Mi, i = 1, . . . ,k.

The universal property of tensor products says that, for any R-module N, there exists a map

MultkR(M1, . . . ,Mk;N)→ HomR(M1⊗R · · ·⊗R Mk,N), µ 7→ µT . (1.28)

This map is injective, indeed, if µ,µ ′ ∈MultkR(M1, . . . ,Mk;N) are two multilinear maps such that
µT = µ ′T , then

µ
′ = µ

′
T ◦ t = µT ◦ t = µ.

The map (1.28) is also surjective. Indeed, let F : M1⊗R · · · ⊗R Mk → N be a linear map. Then
µ := F ◦ t : M1×·· ·×Mk→ N is a multilinear map and, from the universal property again, F = µT .
Concluding (1.28) is a canonical bijection.

Proposition 1.4.4 The bijection (1.28) is an R-module isomorphism:

MultkR(M1, . . . ,Mk;N)∼= HomR(M1⊗R · · ·⊗R Mk,N).

Proof. Left as Exercise 1.20. ■

Exercise 1.20 Prove Proposition 1.4.4. ■

In view of its universal property, the tensor product construction inherits noteworthy properties
from that of multilinear maps (see Proposition 1.4.2). Namely, we have the following

Proposition 1.4.5 Let R be a ring, let k be a non-negative integer, and let M1, . . . ,Mk be R-
modules. Then

(1) For every l ≤ k there is a canonical R-module isomorphism(
M1⊗R · · ·⊗R Ml

)
⊗R

(
Ml+1⊗R · · ·⊗R Mk

)
∼= M1⊗R · · ·⊗R Mk. (1.29)

(2) There is a canonical R-module isomorphism

M1⊗R · · ·⊗R Mk⊗R R∼= M1⊗R · · ·⊗R Mk.

(3) For every permutation σ ∈ Sk there is a canonical R-module isomorphism

Mσ(1)⊗R · · ·⊗R Mσ(k)
∼= M1⊗R · · ·⊗R Mk.
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Proof. Begin with item (1). We will prove the following refinement of the statement: there exists a
unique R-module isomorphism (M1⊗·· ·⊗Ml)⊗ (Ml+1⊗·· ·⊗Mk)∼= M1⊗·· ·⊗Mk identifying
(p1⊗·· ·⊗ pl)⊗(pl+1⊗·· ·⊗ pk) with p1⊗·· ·⊗ pk for all pi ∈Mi, i = 1, . . . ,k. To do this, consider
the map

t : M1×·· ·×Mk →
(

M1⊗·· ·⊗Ml

)
⊗
(

Ml+1⊗·· ·⊗Mk

)
(p1, . . . , pk) 7→ (p1⊗·· ·⊗ pl)⊗ (pl+1⊗·· ·⊗ pk)

It is clear that t is multilinear. In order to conclude with item (1), it is enough to show that
((M1⊗·· ·⊗Ml)⊗(Ml+1⊗·· ·⊗Mk), t) is a tensor product, indeed, in this case, from the uniqueness,
it follows that there exists an isomorphism exactly as desired (do you see it?). So, to see that
((M1⊗·· ·⊗Ml)⊗ (Ml+1⊗·· ·⊗Mk), t) is a tensor product, take another multilinear map

µ : M1×·· ·×Mk→ N.

We can identify µ with a linear map

µT : (M1⊗·· ·⊗Ml)⊗ (Ml+1⊗·· ·⊗Mk)→ N

using the following chain of R-module isomorphisms

Multk(M1, . . . ,Mk;N) µ

∼= Multl(M1, . . . ,Ml;Multk−l(Ml+1, . . . ,Mk;N)) µ1
∼= Hom(M1⊗·· ·⊗Ml,Hom(Ml+1⊗·· ·⊗Mk,N)) µ2
∼= Bil(M1⊗·· ·⊗Ml,Ml+1⊗·· ·⊗Mk;N) µ3
∼= Hom((M1⊗·· ·⊗Ml)⊗ (Ml+1⊗·· ·⊗Mk),N) µT

(1.30)

The linear map µT satisfies µ = µT ◦ t. To see this we have to understand how does µT act. In
(1.30) we gave a name to each of the maps with which µ identifies along the chain of isomorphisms.
Then, for all (p1, . . . , pk) ∈M1×·· ·×Mk we have

µT ◦ t(p1, . . . , pk) = µT ((p1⊗·· ·⊗ pl)⊗ (pl+1⊗·· ·⊗ pk))

= µ3(p1⊗·· ·⊗ pl, pl+1⊗·· ·⊗ pk)

= µ2(p1⊗·· ·⊗ pl)(pl+1⊗·· ·⊗ pk)

= µ1(p1, . . . , pl)(pl+1, . . . , pk)

= µ(p1, . . . , pk),

as desired (it might seem complicated but, in practice, we are only choosing a different symbol for
the same object at each step!!). It is easy to see that µT is the unique linear map such that µ = µT ◦ t.
This follows from the fact that the image of t generates (M1⊗·· ·⊗Ml)⊗ (Ml+1⊗·· ·⊗Mk) which
in turn follows from the fact that each of the two factors M1⊗ ·· ·⊗Ml and Ml+1⊗ ·· ·⊗Mk is
generated by decomposable elements (at this point the reader is strongly suggested to stop and
think about all the details). We conclude that ((M1⊗·· ·⊗Ml)⊗ (Ml+1⊗·· ·⊗Mk), t) is a tensor
product of M1, . . . ,Mk as desired. This concludes the proof of item (1) (in the refined version at the
beginning of this proof).

Items (2) and (3) can be proved in a similar way, and we only sketch the main arguments
leaving the details to the reader. One can prove the following refinement of item (2): there exists
a unique R-module isomorphism M1⊗·· ·⊗Mk⊗R∼= M1⊗·· ·⊗Mk identifying p1⊗·· ·⊗ pk⊗1
with p1⊗·· ·⊗ pk for all pi ∈Mi, i = 1, . . . ,k. To do this, ne can consider the multilinear map

t : M1×·· ·×Mk→M1⊗·· ·⊗Mk⊗R, (p1, . . . , pk) 7→ p1⊗·· ·⊗ pk⊗1
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and show that (M1⊗·· ·⊗Mk⊗R, t) is a tensor product of M1, . . .Mk using Proposition 1.4.2 in a
very similar way as we did for item (1). Finally, for item (3) we can prove that there exists a unique
R-module isomorphism Mσ(1)⊗·· ·⊗Mσ(k)

∼= M1⊗·· ·⊗Mk identifying pσ(1)⊗·· ·⊗ pσ(k) with
p1⊗·· ·⊗ pk, with pi ∈Mi, i = 1, . . . ,k. We leave the details to the reader as Exercise 1.21. ■

Exercise 1.21 Complete the proof of Proposition 1.4.5 discussing in details items (2) and (3).
(Hint: use a similar strategy as for item (1)). ■

Similarly as for multilinear maps, combining the isomorphisms (1), (2) and (3) in Proposition
1.4.5 we find numerous new canonical isomorphisms. Notice that

✓ when k = 1, item (2) says that there is a canonical isomorphism

M⊗R R
∼=−→M

and the proof of Proposition 1.4.5 reveals that this isomorphism maps p⊗1 to p;
✓ when k = 3, item (1) says that there are canonical isomorphisms

(M1⊗R M2)⊗R M3
∼=−→M1⊗R M2⊗R M3

∼=−→M1⊗R (M2⊗R M3),

identifying (p1⊗ p2)⊗ p3 with p1⊗ p2⊗ p3 with p1⊗ (p2⊗ p3) (pi ∈Mi, i = 1,2,3);
✓ when k = 2, item (3) says that there is a canonical isomorphism

M2⊗R M1
∼=−→M1⊗R M2

identifying p2⊗ p1 with p1⊗ p2 (pi ∈Mi, i = 1,2).
Finally, we remark that the isomorphisms (1.29) can be thought of as “operations”

⊗ : (M1⊗·· ·⊗Ml)× (Ml+1⊗·· ·⊗Mk)→M1⊗·· ·⊗Mk, (T ,S ) 7→T ⊗S

mapping (p1⊗·· ·⊗ pl, pl+1⊗·· ·⊗ pk) to p1⊗·· ·⊗ pk, and satisfying R-bilinearity, associativity,
and existence of a neutral element 1 ∈ R (up to the identification M⊗R R ∼= M), but beware that
they are not commutative.

R It is important to learn how to compute with tensor products. The main property is multilin-
earity:

· · ·⊗ (ap+bq)⊗·· ·= a(· · ·⊗ p⊗·· ·)+b(· · ·⊗q⊗·· ·) .

for all p,q module elements and all a,b scalars.

When M1, . . . ,Mk are free (and finitely generated), then the tensor product M1⊗·· ·⊗Mk is free
(and finitely generated) as well according to the following

Proposition 1.4.6 Let M1, . . . ,Mk be free R-modules, and let B1 = (q(1)i1 )i1∈I1 , . . . ,Bk = (q(k)ik )ik∈Ik

be bases in M1, . . . ,Mk respectively. Then the family

B⊗ :=
(

q(1)i1 ⊗·· ·⊗q(k)ik

)
(i1,...,ik)∈I1×···×Ik

is a basis of M1⊗·· ·⊗Mk.
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Proof. As Br generates Mr for each r = 1, . . .k, then B⊗ generates M1⊗·· ·⊗Mk. It remains to
check that B⊗ is independent. So take a zero (finite) linear combination

A = ∑
(i1,...,ik)∈I1×···×Ik

ai1···ik q
(1)
i1 ⊗·· ·⊗q(k)ik = 0.

From the Multilinear Extension Theorem 1.4.1, for any ( j1, . . . , jk) ∈ I1×·· ·× Ik there exists a
unique multilinear map

µ j1··· jk : M1×·· ·×Mk→ R

such that

µ j1··· jk(q
(1)
i1 , . . . ,q(k)ik ) = δ j1i1 · · ·δ jkik , for all (i1, . . . , ik) ∈ I1×·· ·× Ik.

From the universal property of the tensor product we get a unique linear map

µ
T
j1··· jk : M1⊗·· ·⊗Mk→ R

such that

µ
T
j1··· jk(q

(1)
i1 ⊗·· ·⊗q(k)ik ) = µ j1··· jk(q

(1)
i1 , . . . ,q(k)ik ) = δ j1i1 · · ·δ jkik ,

for all (i1, . . . , ik) ∈ I1×·· ·× Ik. Hence we have

0 = µ
T
j1··· jk(A) = µ

T
j1··· jk

(
∑

i1,...,ik

ai1···ik q
(1)
i1 ⊗·· ·⊗q(k)ik

)
= ∑

i1,...,ik

ai1···ik µ
T
j1··· jk

(
q(1)i1 ⊗·· ·⊗q(k)ik

)
= ∑

i1,...,ik

ai1···ik δ j1i1 · · ·δ jkik = a j1··· jk .

So a j1··· jk = 0 for all ( j1, . . . , jk) ∈ I1×·· ·× Ik and B⊗ is independent. ■

Notice that if the bases Br in Proposition 1.4.6 are finite then the basis B⊗ is also finite so that
M1⊗·· ·⊗Mk is also finitely generated.

Corollary 1.4.7 Let X1, . . . ,Xk be (non-necessarily finite) sets and let R be a ring. The free mod-
ule R(X1×·· ·×Xk) generated by the cartesian product X1×·· ·×Xk is canonically isomorphic
to the tensor product of the free modules RX1, . . . ,RXk:

R(X1×·· ·×Xk)∼= RX1⊗R · · ·⊗R RXk.

Proof. The sets Xr can be seen as bases in RXr, r = 1, . . . ,k. From Proposition 1.4.6, the family

X⊗ = (x1⊗·· ·⊗ xk)(x1,...,xk)∈X1×···×Xr

is then a basis in RX1⊗R · · ·⊗R RXk. The set X1×·· ·×Xk can be seen as a basis in R(X1×·· ·×Xk).
Clearly there is a unique R-module isomorphism R(X1×·· ·×Xk)∼= RX1⊗R · · ·⊗R RXk identifying
the basis elements (x1, . . . ,xk) and x1⊗·· ·⊗ xk. ■
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Corollary 1.4.8 Let M1, . . . ,Mk be free and finitely generated R-modules. Denote by M∗r :=
Hom(Mr,R) their dual modules, r = 1, . . . ,k. Then there are canonical isomorphisms

M1⊗·· ·⊗Mk ∼= Multk(M∗1 , . . . ,M
∗
k ;R) and M∗1 ⊗·· ·⊗M∗k ∼= Multk(M1, . . . ,Mk;R).

Before proving Corollary 1.4.8 we make some remarks that might have an independent interest.
For an R-module M, the module M∗∗ (dual of the dual module) is also called the bidual. There is a
canonical linear map

ι : M→M∗∗

given by

ι(p)(ϕ) = ϕ(p), p ∈M, ϕ ∈M∗.

In general, this map is neither injective nor surjective. For instance, when R = Z and M = Z2,
then M∗ = 0 (can you prove it?), hence M∗∗ = 0 and ι is the zero map, so it is not injective. On
the other hand when M is not finitely generated, M∗ is too big and M∗∗ is even bigger, and ι

cannot be surjective (to get an intuition of this, try to describe the dual of the free module RN).
However, when M is free and finitely generated, then ι is an isomorphism. Indeed, take a finite
basis (q1, . . . ,qn)⊆M. Exactly as for finite dimensional vector spaces, one can show that M∗ is
free and finitely generated. More precisely, there exists a unique basis (q∗1, . . . ,q

∗
n) of M∗ such

that q∗i (q j) = δi j for all i, j = 1, . . . ,n (try to reproduce the proof in the present case). It follows
that, in this case, M∗∗ is also free and finitely generated. It is easy to check that ι(qi) = q∗∗i for all
i = 1, . . . ,n and it follows that ι is an isomorphism. We are now ready to prove Corollary 1.4.8.

Proof of Corollary 1.4.8. Notice that the discussion preceding the present proof takes care of the
case k = 1. Additionally, as M∗∗r

∼= Mr canonically for all i = 1, . . . ,k, it is enough to prove that
there is a canonical isomorphism

M1⊗·· ·⊗Mk ∼= Multk(M∗1 , . . . ,M
∗
k ;R),

generalizing ι : M→M∗∗ to the case k ≥ 1. So, first of all, there is a unique linear map

ιk : M1⊗·· ·⊗Mk→Multk(M∗1 , . . . ,M
∗
k ;R),

such that

ιk(p1⊗·· ·⊗ pk)(ϕ1, . . . ,ϕk) = ϕ1(p1) · · ·ϕk(pk), (1.31)

for all pr ∈Mr, and all ϕr ∈M∗r , r = 1, . . . ,k. This follows from the universal property of the tensor
product and the fact that the expression in the rhs of (1.31) is multilinear both in (p1, . . . , pk), and
in (ϕ1, . . . ,ϕk) (we leave it to the reader to make sense of the last claim as Exercise 1.22. We also
stress that ιk exists independently of the Mi being free, finitely generated). We want to show that ιk
is the isomorphism we are looking for. We adopt a slightly different strategy than in the k = 1 case
and prove that ιk is injective and surjective. So fix finite bases Br = (q(r)ir )ir∈Ir in Mr, r = 1, . . . ,k,

and let B⊗ = (q(1)i1 ⊗·· ·⊗q(k)ik )(i1,...,ik)∈I1×···×Ik
be the associated basis of M1⊗·· ·⊗Mk. Consider

A = ∑
i1,...,ik

ai1···ik q
(1)
i1 ⊗·· ·⊗q(k)ik ∈M1⊗·· ·⊗Mk
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and assume that A ∈ ker ιk. This means that, for all (ϕ1, . . . ,ϕk) ∈M∗1 ×·· ·×M∗k we have

0 = ιk(A)(ϕ1, . . . ,ϕk) = ιk

(
∑

i1,...,ik

ai1···ik q
(1)
i1 ⊗·· ·⊗q(k)ik

)
(ϕ1, . . . ,ϕk)

= ∑
i1,...,ik

ai1···ik ιk

(
q(1)i1 ⊗·· ·⊗q(k)ik

)
(ϕ1, . . . ,ϕk) = ∑

i1,...,ik

ai1···ik ϕ1(q
(1)
i1 ) · · ·ϕk(q

(k)
ik ).

(1.32)

In particular, when ϕr = (q(r)jr )
∗, the jr-th element in the dual basis, r = 1, . . . ,k, we get

0 = ∑
i1,...,ik

ai1···ik(q
(1)
j1 )∗(q(1)i1 ) · · ·(q(k)jk )

∗(q(k)ik ) = ∑
i1,...,ik

ai1···ik δi1 j1 · · ·δik jk = a j1··· jk . (1.33)

From the arbitrariness of ( j1, . . . jk) we get A = 0. Hence ιk is injective.
For the surjectivity, take µ ∈Multk(M∗1 , . . . ,M

∗
k ;R). Denote

b j1... jk := µ

(
(q(1)j1 )∗, . . . ,(q(k)jk )

∗
)
∈ R, ( j1, . . . , jk) ∈ I1×·· ·× Ik.

We want to show that µ = ιk(B) where

B := ∑
i1,...,ik

bi1...ik q
(1)
i1 ⊗·· ·⊗q(k)ik .

To do this, recall that a multilinear map is completely determined by its values on the basis elements.
Finally, a computation identical to (1.32), as continued in (1.33), shows that

ιk(B)
(
(q(1)j1 )∗, . . . ,(q(k)jk )

∗
)
= b j1... jk = µ

(
(q(1)j1 )∗, . . . ,(q(k)jk )

∗
)
,

and therefore µ = ιk(B). This concludes the proof. ■

Exercise 1.22 Let M1, . . . ,Mk be (non-necessarily free nor finitely generated) R-modules. Prove
that there is a unique R-linear map

ιk : M1⊗·· ·⊗Mk→Multk(M∗1 , . . . ,M
∗
k ;R)

such that

ιk(p1⊗·· ·⊗ pk)(ϕ1, . . . ,ϕk) = ϕ1(p1) · · ·ϕk(pk), (1.34)

for all pi ∈ Mi, and all ϕi ∈ M∗i , i = 1, . . . ,k (Hint: first define a map µ : M1× ·· · ×Mk →
Multk(M∗1 , . . . ,M

∗
k ;R) by putting µ(p1, . . . , pk)(ϕ1, . . . ,ϕk) = ϕ1(p1) · · ·ϕk(pk). Second show

that µ is well-defined and multilinear. Finally use the universal property of tensor products). ■

Let R be a ring and let M1, . . . ,Mk,N be R-modules. When M1 = · · · = Mk =: M, it makes
sense to talk about symmetric and alternating multilinear maps M1×·· ·×Mk→ N. We begin with
symmetric multilinear maps.

Definition 1.4.3 — Symmetric Multilinear Maps. A k-multilinear map

µ : M×·· ·×M︸ ︷︷ ︸
k-times

→ N

is symmetric if µ(p1, . . . , pk) doesn’t change when we swap two entries, p1, . . . , pk ∈M, equiva-
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lently, when for any permutation σ ∈ Sk and all p1, . . . , pk ∈M we have

µ(pσ(1), . . . , pσ(k)) = µ(p1, . . . , pk).

From now on, we adopt the following compact notation:

M×k := M×·· ·×M︸ ︷︷ ︸
k-times

.

The space of symmetric multilinear maps M×k→ N is a submodule in MultkR(M, . . . ,M;N) denoted

Symk
R(M;N),

or simply Symk(M;N). We also put Sym0(M;N) := N.

Definition 1.4.4 A k-th symmetric power (over R) of M is a pair (S,s) consisting of an R-module
S and a symmetric multilinear map s : M×k→ S with the following universal property: for every
R-module N and every symmetric multilinear map µ : M×k→ N there exists a unique R-module
homomorphism µS : S→ N such that µ = µS ◦ s, i.e. the diagram

M×k

s
��

µ
// N

S
µS

== (1.35)

commutes.

Theorem 1.4.9 Let M be an R-module, and let k be a non-negative integer. Then
(1) there exists a k-th symmetric power (S,s) of M;
(2) if (S1,s1),(S2,s2) are two k-th symmetric powers then there exists a unique R-module

isomorphism Φ : S1→ S2 such that the diagram

M×k

s1

��

s2

��

S1
Φ // S2

commutes.

Proof. The proof is similar in spirit to that of Theorem 1.4.3. For k > 0, consider the tensor product

M⊗k := M⊗R · · ·⊗R M︸ ︷︷ ︸
k times

,

(it is sometimes called the k-th tensor power of M) and the canonical multilinear map

t : M×k→M⊗k, (p1, . . . , pk) 7→ p1⊗·· ·⊗ pk.

For k = 0 we put M⊗k = R, and for k = 1 we have M⊗1 = M. Clearly t is not symmetric in general.
However it can be “turned into” a symmetric multilinear map with the following trick: in M⊗k

consider the submodule O spanned by elements τ of the form

τ = pσ(1)⊗·· ·⊗ pσ(k)− p1⊗·· ·⊗ pk

(for all pi ∈ M, i = 1, . . . ,k, and all permutations σ ∈ Sk). Now pass to the quotient module
S := M⊗k/O, and denote by s : M×k → S the composition π ◦ t, where π : M⊗k → S is the usual
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projection. One can show that (S,s) is a k-th symmetric power of M in a very similar way as in the
proof of Theorem 1.4.3 and we leave the details as Exercise 1.23.(1). For item (2) we can use the
same exact argument as for item (2) of Theorem 1.4.3 (check the details as Exercise 1.23.(2)). This
concludes the proof. ■

Exercise 1.23 Let M be an R-module and k a non-negative integer.
(1) prove that the pair (S,s) defined in the proof of Theorem 1.4.9 is a k-th symmetric power

of M.
(2) prove item (2) in Theorem 1.4.9

(Hint: for item (1) get inspired by the proof of Theorem 1.4.3). ■

The proof of Theorem 1.4.9 reveals that there is a canonical choice of k-th symmetric power
of M, namely (M⊗k/O,s). We call it the k-th symmetric power of M and denote it by (Sk

RM,s) (or
simply SkM). Notice that S0M = R and S1M = M. Given a k-tuple (p1, . . . , pk) ∈M×k, its image
s(p1, . . . , pk) under s will be always denoted by

p1∨·· ·∨ pk.

In other words p1∨·· ·∨ pk = p1⊗·· ·⊗ pk mod O. It is clear that SkM is spanned by the image of
s. If S is a set of generators in M, then SkM is also spanned by s(S×k).

It is easy to see that the map

Symk
R(M;N)→ HomR(Sk

RM,N), µ 7→ µT

is an R-module isomorphism. Notice that this makes sense even when k = 0, in which case
Symk

R(M;N) = N (by definition of 0-multilinear map) and SkM = R.
Finally we remark that, for any l,m there is a unique bilinear map

∨ : SlM×SmM→ Sl+mM, (P,Q) 7→P ∨Q

mapping (p1 ∨ ·· · ∨ pl, p′1 ∨ ·· · ∨ p′m) to p1 ∨ ·· · ∨ pl ∨ p′1 ∨ ·· · ∨ p′m, and called the symmetric
product. The symmetric product is (bilinear) associative, commutative and there exists a neutral
element: 1 ∈ R∼= S0M.

Proposition 1.4.10 Let M be a free and finitely generated R-module, and let B = (q1, . . . ,qn)
be an ordered basis of M. Then, for all k ≥ 0, the family

B∨ :=
(
qi1 ∨·· ·∨qik

)
i1≤···≤ik

is a (finite) basis in SkM. Additionally there are canonical isomorphisms

SkM ∼= Symk(M∗;R) and SkM∗ ∼= Symk(M;R).

Proof. We do not provide a proof. We only remark that the isomorphism SkM ∼= Symk(M∗;R)
mentioned in the second part of the statement is the only isomorphism mapping p1∨·· ·∨ pk to the
following symmetric multilinear map

(M∗)×k→ R, (ϕ1, . . . ,ϕk) 7→ ∑
σ∈Sk

ϕσ(1)(p1) · · ·ϕσ(k)(pk)

(and likewise for the isomorphism SkM∗ ∼= Symk(M∗;R)). ■

We conclude this chapter with a short discussion of alternating multilinear maps.
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Definition 1.4.5 — Alternating Multilinear Maps. A k-multilinear map µ : M×k → N is
alternating if µ(p1, . . . , pk) vanishes whenever two entries coincide, p1, . . . , pk ∈M.

It is easy to see that every alternating multilinear map µ : M×k→ N is also skew-symmetric,
i.e. µ(p1, . . . , pk) changes in sign when we swap two entries or, equivalently, for any permutation
σ ∈ Sk and all p1, . . . , pk ∈M we have

µ(pσ(1), . . . , pσ(k)) = (−)σ
µ(p1, . . . , pk),

where (−)σ is the sign of σ . The converse in false in general, but is true sometimes.

R For any ring R there is a ring homomorphism ψ : Z→ R: the unique ring homomorphism
mapping 1 to 1. The kernel of ψ is an ideal in Z, hence it is of the form kerψ = nZ for some
non-negative integer n, called the characteristic of R. If R is a field and its characteristic is
not 2 then skew-symmetric multilinear maps are also alternating. For instance, for a bilinear
map µ : M×M→ N, from µ(p,q) =−µ(q, p), we have µ(p, p) =−µ(p, p) for all p ∈M,
hence

0 = 2µ(p, p) = ψ(2)µ(p, p).

As ψ(2) ̸= 0 and R is a field, then ψ(2) is invertible and µ(p, p) = 0. But in general skew-
symmetric multilinear maps are not alternating (while, as already mentioned, the converse is
always true).

■ Example 1.28 The determinant is an alternating multilinear map (see Example 1.24). ■

The space of alternating multilinear maps M×k → N is a submodule in MultkR(M, . . . ,M;N)
denoted

AltkR(M;N),

or simply Altk(M;N). We also put Alt0(M;N) := N.

Definition 1.4.6 A k-th exterior power (over R) of M is a pair (Λ,λ ) consisting of an R-module
Λ and an alternating multilinear map λ : M×k→ Λ with the following universal property: for
every R-module N and every alternating multilinear map µ : M×k → N there exists a unique
R-module homomorphism µΛ : Λ→ N such that µ = µΛ ◦λ , i.e. the diagram

M×k

λ

��

µ
// N

Λ

µΛ

==

commutes.

Theorem 1.4.11 Let M be an R-module, and let k be a non-negative integer. Then
(1) there exists a k-th exterior power (Λ,λ ) of M;
(2) if (Λ1,λ1),(Λ2,λ2) are two k-th exterior powers then there exists a unique R-module

isomorphism Φ : S1→ S2 such that the diagram

M×k

λ1

��

λ2

��

Λ1
Φ // Λ2
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commutes.

Proof. The proof is similar in spirit to that of Theorem 1.4.3. We only sketch it. In M⊗k consider
the submodule P spanned by elements of the form

p1⊗·· ·⊗ p︸︷︷︸
i-th place

⊗·· ·⊗ p︸︷︷︸
j-th place

⊗·· ·⊗ pk

(for all p, pi ∈ M, and all i < j = 1, . . . ,k). Denote Λ := M⊗k/P, and put λ = π ◦ t : M×k → Λ.
Then (Λ,λ ) is a k-th exterior power of M. Uniqueness is proved exactly as item (2) of Theorem
1.4.3. ■

As discussed in the proof of 1.4.11, there is a canonical choice of a k-th exterior power of M,
namely (M⊗k/P,λ ). We call it the k-th exterior power of M and denote it by (∧k

RM,λ ) (or simply
∧kM). Notice that ∧0M = R and ∧1M = M. Given a k-tuple (p1, . . . , pk) ∈M×k, its image under λ

will be denoted by

p1∧·· ·∧ pk.

It is clear that ∧kM is spanned by the image of λ . If S is a set of generators in M, then ∧kM is also
spanned by λ (S×k).

The map

AltkR(M;N)→ HomR(∧k
RM,N), µ 7→ µΛ

is an R-module isomorphism (which makes sense for k = 0 as well). Finally we remark that, for all
l,m there is a unique bilinear map

∧ : ∧lM×∧mM→∧l+mM, (ω,ρ) 7→ ω ∧ρ

mapping (p1∧·· ·∧ pl, p′1∧·· ·∧ p′m) to p1∧·· ·∧ pl ∧ p′1∧·· ·∧ p′m, and called the exterior product,
or the wedge product. The exterior product is associative and there exists a neutral element:
1 ∈ R∼= Λ0M. Additionally, it satisfies the following graded commutativity property:

ω ∧ω
′ = (−)kk′

ω
′∧ω,

for all ω ∈ ∧kM and all ω ′ ∈ ∧k′M.

Proposition 1.4.12 Let M be a free and finitely generated R-module, and let B = (q1, . . . ,qn)
be an ordered basis of M. Then, for all k ≥ 0, the family

B∧ :=
(
qi1 ∧·· ·∧qik

)
i1<···<ik

is a (finite) basis in ∧kM. Additionally there are canonical isomorphisms

∧kM ∼= Altk(M∗;R) and ∧k M∗ ∼= Altk(M;R).

Proof. We do not provide a proof. We only remark that the isomorphism ∧kM ∼= Altk(M∗;R) in
the second part of the statement is the only isomorphism mapping p1∧ ·· ·∧ pk to the following
alternating multilinear map

(M∗)×k→ R, (ϕ1, . . . ,ϕk) 7→ ∑
σ∈Sk

(−)σ
ϕσ(1)(p1) · · ·ϕσ(k)(pk)

(and likewise for the isomorphism ∧kM∗ ∼= Altk(M;R)). ■
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■ Example 1.29 — Cross Product. Let R = R, and M = R3. Let (E1,E2,E3) be the canonical
basis in R3. Then ∧1

RR3 = R3 and ∧2
RR3 is spanned by

E2∧E3, E3∧E1, E1∧E2.

Now take A,B ∈ R3. Then

A = A1E1 +A2E2 +A3E3, and B = B1E1 +B2E2 +B3E3.

A direct computation exploiting all the properties of the wedge product shows that

A∧B =

∣∣∣∣ A2 A3
B2 B3

∣∣∣∣E2∧E3−
∣∣∣∣ A1 A3

B1 B3

∣∣∣∣E3∧E1 +

∣∣∣∣ A1 A2
B1 B2

∣∣∣∣E1∧E2,

whose coefficients are the components of the cross product of A and B. This shows that the wedge
product generalizes the standard cross product in R3. ■





2. Chain and Cochain Complexes

In this chapter, we introduce and discuss our main objects of study, namely chain (resp. cochain)
complexes and their homology (resp. cohomology). These objects appear frequently (both) in (pure
and applied) Mathematics, particularly Topology, Algebra and Geometry (see Part II of the present
notes). Here we develop the elementary theory of (co)chain complexes, while motivations and
applications are postponed to Chapters 4, 5, and 6.

2.1 (Co)Chain Complexes
Let R be a commutative ring with unit.

Definition 2.1.1 — Chain Complex. A chain complex of R-modules is a pair (C•,d) where
C• = (Ci)i∈Z is a sequence of R-modules and d = (di : Ci→Ci−1)i∈Z is a sequence of R-linear
maps:

· · · di−1←−Ci−1
di←−Ci

di+1←−Ci+1←− ·· · (2.1)

such that di ◦di+1 = 0 for all i ∈ Z, i.e. composing two successive arrows in (2.1) we get the
0 linear map. Elements in Ci are called degree i chains, or simply i-chains, while di is called
the i-th differential. Degree i chains c such that dic = 0, i.e. c ∈ ker(di : Ci→Ci−1), are called
degree i cycles, or i-cycles, while chains a ∈ Ci such that there exists a chain b ∈ Ci+1 with
a = di+1b, i.e. a ∈ im(di+1 : Ci+1 → Ci), are called degree i boundaries, or i-boundaries. If
S ⊆ Z is a subset, a chain complex (C•,d) is concentrated in degree S if Ci = 0, the trivial
module, for i /∈ S.

If (C•,d) is a chain complex of R-modules, we will often denote all the linear maps di :Ci→Ci−1
by the same symbol d : Ci→Ci−1 and write, for instance,

· · · d←−Ci−1
d←−Ci

d←−Ci+1←− ·· ·

instead of (2.1), or d ◦d = 0, instead of di ◦di+1 = 0 for all i.
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R A chain complex (C•,d) can also be encoded into a single R-module C together with an
R-module endomorphism, also denoted d : C → C, by putting C :=

⊕
i∈ZCi. Then the

endomorphism d : C→ C is the unique linear map such that dc = dic ∈ Ci−1 ⊆ C for all
i-chains c ∈Ci ⊆C. Yet in other words d : C→C maps a sequence (ci)i∈Z ∈C =

⊕
i∈I Ci

to the sequence (c′i := di+1ci+1)i∈I ∈C. Any R-module of the type C =
⊕

i∈ZCi for some
sequence (Ci)i∈Z is called a graded R-module, and any linear map f : C→ C for which
there exists k ∈ Z such that f (Ci)⊆Ci+k is called a graded homomorphism of degree k. We
conclude that a chain complex can be encoded into a graded module C together with a graded
endomorphism d : C→C of degree −1 such that d ◦d = 0. This point of view is very useful
in many situations, but will not be adopted in these lecture notes.

Given a chain complex (C•,d), the condition di ◦di+1 = 0 is equivalent to

imdi+1 ⊆ kerdi

(do you see it?). As both kerdi and imdi+1 are submodules in Ci, we can take the quotient module

Hi(C,d) := kerdi/ imdi+1.

The submodules kerdi ⊆Ci and imdi+1 ⊆Ci are often denoted Zi(C,d) and Bi(C,d) (B for bound-
aries), ad we will also adopt this notation in what follows.

Definition 2.1.2 — Homology. The homology of the chain complex (C•,d) is the sequence of
R-modules H•(C,d) := (Hi(C,d))i∈Z with

Hi(C,d) := Zi(C,d)/Bi(C,d), i ∈ Z.

The i-th space Hi(C,d) in the sequence is called degree i homology space, or simply the i-th
homology, and its elements are degree i homology classes. If c ∈Ci is an i-cycle, i.e. dc = 0,
its class in Hi(C,d) is called the homology class of c and it is denoted by [c]C (or simply [c]
if this does not lead to confusion). Two i-cycles c,c′ ∈ Ci are homologous if they have the
same homology class: [c] = [c′]; in other words there exists an (i+1)-chain b ∈Ci+1 such that
c− c′ = db. A chain complex (C•,d) is acyclic if Hi(C,d) = 0 for all i ∈ Z. Equivalently a
chain complex (C•,d) is acyclic if kerdi = imdi+1 for all i, i.e. all cycles are boundaries. An
acyclic chain complex is also called an exact sequence (of R-modules).

We now discuss a few examples.

■ Example 2.1 Let C• = (Ci)i∈Z be a sequence of R-modules. We can define a chain complex
(C•,d) by putting di = 0 for all i:

· · · 0←−Ci−1
0←−Ci

0←−Ci+1←− ·· · .

In this case

Hi(C,d) =
ker(0 : Ci→Ci−1)

im(0 : Ci+1→Ci)
=

Ci

0
=Ci

for all i. ■

■ Example 2.2 Every R-module homomorphism f : M → N can be seen as a chain complex
concentrated, e.g., in degrees −1,0 as follows. Put

Ci :=


N if i =−1
M if i = 0
0 otherwise

,
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and

di :=
{

f if i = 0
0 otherwise

,

Then (C•,d) is a chain complex. In other words (C•,d) is the sequence

0 Noo M
f

oo 0oo

−1 0

where everything else is 0, and we denoted the degrees explicitly. The homology is clearly 0 in
degrees i ̸=−1,0. The 0-th homology is

H0(C,d) =
Z0(C,d)
B0(C,d)

=
ker( f : M→ N)

im(0 : 0→M)
=

ker f
0

= ker f .

The −1-st homology is

H−1(C,d) =
Z−1(C,d)
B−1(C,d)

=
ker(0 : N→ 0)
im( f : M→ N)

=
N

im f
.

The quotient N/ im f is also called the cokernel of f and it is denoted coker f . ■

■ Example 2.3 Define a chain complex (C•,d) of abelian groups as follows. Put Ci = Z8 for all
i ∈ Z and

d : Z8→ Z8, n mod 8 7→ 4 · (n mod 8) = 4n mod 8.

It is clear that d2 = 0 (do you see it?). So the sequence

· · · d←− Z8
d←− Z8

d←− Z8←− ·· ·

is a chain complex. We want to compute the homology H•(C,d). In general, computing the
homology of a chain complex means describing it in the most explicit/efficient possible way. In the
present case, we will prove by hands that, for each i ∈ Z, there is canonical isomorphism

ϕ : Hi(C,d)→ Z2.

This will represent a good enough description for us. We begin describing the i-cycles and the
i-boundaries. Notice that the discussion is actually independent of i. So let c = n mod 8 ∈ Z8 be a
cycle. This means that 0 = dc = 4n mod 8, i.e. 4n = 8k, or equivalently n = 2k, for some k ∈ Z. So

Zi(C,d) =
{

2k mod 8 : k ∈ Z
}
⊆ Z8.

Similarly,

Bi(C,d) =
{

4h mod 8 : h ∈ Z
}
⊆ Zi(C,d).

Next define a map ϕ : Zi(C,d)→ Z2 by putting

ϕ
(
2k mod 8

)
= k mod 2.

It is easy to see that ϕ is a well-defined homomorphism of abelian groups, and Bi(C,d)⊆ kerϕ

(Exercise 2.1). It follows that ϕ descends to a well-defined homomorphism

ϕ : Hi(C,d) =
Zi(C,d)
Bi(C,d)

→ Z2, [2k mod 8]C 7→ k mod 2.

Now, prove that ϕ is an isomorphism as part of Exercise 2.1. ■
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Exercise 2.1 Prove that the map ϕ : Zi(C,d)→ Z2 in Example 2.3 is a well defined abelian
group homomorphism such that Bi(C,d)⊆ kerϕ . Prove also that the induced homomorphism
ϕ : Hi(C,d)→ Z2 is an isomorphism. ■

■ Example 2.4 Every short exact sequence (1.6) can be seen as an acyclic chain complex concen-
trated, e.g., in degrees −1,0,1, extending it by 0 (do you see it?). ■

■ Example 2.5 Let M be an R-module and let ϕ : M→ R be a linear map. With these data we can
construct a chain complex (C•,dϕ) as follows. For each i ∈ Z put

Ci :=
{

0 if i < 0
∧iM if i≥ 0

,

and notice that there exists a unique linear map

dϕ : ∧iM→∧i−1M

such that

dϕ(p1∧·· ·∧ pi) =
i

∑
j=1

(−) j−1
ϕ(p j)p1∧·· ·∧ p̂ j ∧·· ·∧ pi (2.2)

for all p1, . . . , pi ∈ M, where a hat −̂ denotes omission. To see this it is enough to show that
the rhs of (2.2) is multilinear alternating in the arguments (p1, . . . , pi) and then use the universal
property of the exterior power (see Exercise 2.2). The pair (C•,dϕ) is a chain complex. Indeed, let
p1, . . . , pi ∈M and compute

dϕ ◦dϕ(p1∧·· ·∧ pi)

= dϕ ∑
j
(−) j−1

ϕ(p j)p1∧·· ·∧ p̂ j ∧·· ·∧ pi

= ∑
k< j

(−)k+ j
ϕ(p j)ϕ(pk)p1∧·· ·∧ p̂k∧·· ·∧ p̂ j ∧·· ·∧ pi

+ ∑
j<k

(−)k+ j−1
ϕ(p j)ϕ(pk)p1∧·· ·∧ p̂ j ∧·· ·∧ p̂k∧·· ·∧ pi = 0,

where, for the last step, we just renamed the indexes. As ∧iM is generated by elements of the form
p1 ∧ ·· · ∧ pi, this is enough to conclude that dϕ ◦ dϕ = 0 (do you see it?). We will compute the
homology of (C•,dϕ) in the next section (under appropriate simplifying hypothesis). ■

Exercise 2.2 With the same notation as in Example 2.5, show that there is a unique linear map
dϕ : ∧iM→∧i−1M such that (2.2) holds (Hint: follow the indications in the Example). ■

It is often convenient to interpret a chain complex as an ascending sequence (rather than a
discending one). This is implemented in the following

Definition 2.1.3 — Cochain Complex. A cochain complex of R-modules is a pair (C•,d)
where C• = (Ci)i∈Z is a sequence of R-modules and d = (di : Ci→Ci+1)i∈Z is a sequence of
R-linear maps:

· · · −→Ci−1 di−1

−→Ci di

−→Ci+1 di+1

−→ ·· · (2.3)

such that di+1 ◦ di = 0 for all i ∈ Z. Elements in Ci are called degree i cochains, or simply
i-cochains, while di is also called the i-th differential. Degree i cochains c such that dic = 0, are
called degree i cocycles, or i-cocycles, while cochains a ∈Ci such that there exists a cochain
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b ∈Ci−1 with a = di−1b are called degree i coboundaries, or i-coboundaries.

There is no conceptual difference between chain and cochain complexes as, given a chain com-
plex (C•,d), we can construct a cochain complex (C•,d) (containing exactly the same information)
by putting Ci =C−i for all i ∈ Z. So the difference is purely conventional. However, as customary
in the literature, we will keep the distinction and will adopt different notation/terminology for chain
and cochain complexes. For instance, given a cochain complex (C•,d) we denote

H i(C,d) := kerdi/ imdi−1

and we also put Zi(C,d) := kerdi and Bi(C,d) := imdi−1. Additionally we give the

Definition 2.1.4 — Cohomology. The cohomology of the cochain complex (C•,d) is the
sequence of R-modules H•(C,d) := (H i(C,d))i∈Z with

H i(C,d) := Zi(C,d)/Bi(C,d), i ∈ Z.

The i-th space H i(C,d) in the sequence is called degree i cohomology space, or simply the i-th
cohomology, and its elements are degree i cohomology classes. If c ∈Ci is an i-cocycle, its class
in H i(C,d) is called the cohomology class of c and it is denoted by [c]C (or simply [c] if this
does not lead to confusion). Two i-cocycles c,c′ ∈Ci are cohomologous if they have the same
cohomology class: [c] = [c′]. A cochain complex (C•,d) is acyclic if H i(C,d) = 0 for all i ∈ Z.
An acyclic cochain complex is also called an exact sequence (of R-modules).

■ Example 2.6 Let M be an R-module and let q ∈M. With these data we can construct a cochain
complex (C•,dq) as follows. For each i ∈ Z put

Ci :=
{

0 if i < 0
∧iM if i≥ 0

,

and let dq be given by

dq : ∧iM→∧i+1M, ω 7→ q∧ω.

From q∧q = 0, it immediately follows that dq ◦dq = 0. ■

2.2 (Co)Chain Maps
We now introduce a way to compare (co)chain complexes.

Definition 2.2.1 — (Co)Chain Map. A chain map (resp. a cochain map) between the chain
complexes (C•,dC),(D•,dD) (resp. the cochain complexes (C•,dC),(D•,dD)) of R-modules is
a sequence f = ( fi : Ci→ Di)i∈Z (resp. f = ( f i : Ci→ Di)i∈Z) of R-linear maps such that the
diagram

· · · Ci−1
dCoo

fi−1

��

Ci
dCoo

fi

��

Ci+1
dCoo

fi+1

��

· · ·oo

· · · Di−1
dDoo Ci

dDoo Di+1
dDoo · · ·oo

(2.4)
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(resp. the diagram

· · · // Ci−1

f i−1

��

dC // Ci

f i

��

dC // Ci+1

f i+1

��

dC // · · ·

· · · // Di−1 dD // Di dD // Di+1 dD // · · ·

)

commutes, i.e. fi(dCc) = dD fi+1(c) for all c ∈Ci+1 (resp. f i(dCc) = dD f i−1(c) for all c ∈Ci−1),
i ∈ Z. In this case we write

f : (C•,dC)→ (D•,dD) (resp. f : (C•C,d)→ (D•,dD)).

Let f : (C•,dC)→ (D•,dD) be a chain map. We will often denote the linear maps fi : Ci→ Di

simply by f : Ci→ Di and write, for instance,

· · · Ci−1
dCoo

f
��

Ci
dCoo

f
��

Ci+1
dCoo

f
��

· · ·oo

· · · Di−1
dDoo Di

dDoo Di+1
dDoo · · ·oo

instead of (2.4), or f ◦dC = dD ◦ f , instead of fi ◦dC = dD ◦ fi+1. Likewise for cochain maps.
Before providing examples we discuss the main properties of (co)chain maps. We discuss the

chain case and leave it to the reader to translate all the statement to the “cochain language”.

Proposition / Definition 2.2.1 Let (C•,d),(D•,dD),(E•,dE),(C′•,d
′) be chain complexes.

(1) We define the identity chain map

idC : (C•,d)→ (C•,d)

as the sequence idC := (idCi : Ci→Ci)i∈Z and it is a chain map.
(2) Let

(C•,d)
f−→ (D•,dD)

g−→ (E•,dE)

be chain maps. We define the composition

g◦ f : (C•,d)→ (E•,dE)

of f followed by g as the sequence g◦ f := (gi ◦ fi : Ci→ Ei)i∈Z and it is a chain map.
(3) If

Φ : (C•,d)→ (C′•,d
′)

is an invertible chain map, i.e. Φi : Ci→C′i is invertible for all i, then we also call Φ a
chain isomorphism and define its inverse

Φ
−1 : (C′•,d

′)→ (C•,d)

as the sequence Φ−1 := (Φ−1
i : C′i →Ci)i∈Z and it is a chain isomorphism. Two chain

complexes that can be connected by a chain isomorphism are called isomorphic.
Likewise for cochain complexes and cochain maps.

Proof. Left as Exercise 2.3. ■
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Exercise 2.3 Prove the “Proposition part” of Proposition / Definition 2.2.1. ■

Let f : (C•,dC)→ (D•,dD) be a chain map. Then f maps cycles to cycles and boundaries to
boundaries, i.e., for all i ∈ Z,

f
(
Zi(C,dC)

)
⊆ Zi(D,dD) and f

(
Bi(C,dC)

)
⊆ Bi(D,dD),

indeed let c ∈ Zi(C,dC) be an i-cycle. Compute

dD f (c) = f (dCc) = f (0) = 0,

showing that f (c) is an i-cycle as well. Similarly, if c is an i-boundary, then there exists an
(i+1)-chain b such that c = dCb and

f (c) = f (dCb) = dD f (b),

showing that f (c) is also an i-boundary. It immediately follows from Corollary 1.1.8 that f induces
a linear map in homology, i.e. the assignment

Hi( f ) : Hi(C,dC)→ Hi(D,dD), [c]C 7→ [ f (c)]D

is a well-defined linear map for all i ∈ Z. We also use the symbol H•( f ) for the sequence (Hi( f ) :
Hi(C,dC)→ Hi(D,dD))i∈Z. Similarly, a cochain map f : (C•,dC)→ (D•,dD) maps cocycles to
cocycles and coboundaries to coboundaries, hence it induces a well-defined linear map

H i( f ) : H i(C,dC)→ H i(D,dD), [c]C 7→ [ f (c)]D

in cohomology, for all i, and we put H•( f ) := (H i( f ) : H i(C,dC)→ H i(D,dD))i∈Z.

■ Example 2.7 Let M be an R-module and let f : M→ N be a linear map. First of all, notice that,
for any i ∈ Z, there exists a unique linear map

∧i f : ∧iM→∧iN

such that

∧i f (p1∧·· ·∧ pi) = f (p1)∧·· ·∧ f (pi) (2.5)

for all p1, . . . , pi ∈M. This follows in the usual way from the universal property of the exterior
power and the fact that the rhs of (4.38) is multilinear and alternating in the arguments p1, . . . , pi.
Put ∧• f := (∧i f : ∧iM→∧iN)i∈Z. Now, let ϕ ∈M∗ and let (∧•M,dϕ) be the associated chain
complex as in Example 2.5. We claim that, when ϕ = ψ ◦ f for some ψ ∈ N∗, then ∧• f is a chain
map:

∧• f : (∧•M,dϕ)→ (∧•N,dψ)

We leave it to the reader to check the details as Exercise 2.4. ■

Exercise 2.4 Prove all the unproved claims in Example 2.7. ■

Exercise 2.5 Let M be an R-module, let q ∈ M and let (∧•M,dq) be the cochain complex
described in Example 2.6. Prove that, for any linear map f : M → N, the sequence ∧• f
described in Example 2.7 is a cochain map

∧• f : (∧•M,dq)→ (∧•N,d f (q)).
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■

Proposition 2.2.2 Let (C•,d),(D•,dD),(E•,dE),(C′•,d
′) be chain complexes. Then

(1) The identity chain map idC : (C•,d)→ (C•,d) induces the identity in homology:

Hi(idC) = idHi(C,d) for all i ∈ Z.

(2) The composition g◦ f of two chain maps (C•,d)
f−→ (D•,dD)

g−→ (E•,dE) induces the
compositions of the induced maps in homology:

Hi(g◦ f ) = Hi(g)◦Hi( f ) for all i ∈ Z.

(3) An isomorphism of chain complexes Φ : (C•,d)→ (C′•,d
′) induces an R-module isomor-

phism in homology whose inverse is the map induced by the inverse isomorphism:

there exists Hi(Φ)−1 and Hi(Φ)−1 = Hi(Φ
−1) for all i ∈ Z.

In particular isomorphic chain complexes have isomorphic homologies. Likewise for cochain
complexes.

Proof. Left as Exercise 2.6. ■

Exercise 2.6 Prove Proposition 2.2.2. ■

It might happen that a (co)chain map is not an isomorphism of (co)chain complexes, yet it
induces an isomorphism in cohomology. We will see various examples of this phenomenon in what
follows.

Definition 2.2.2 — Quasi-isomorphism. A quasi-isomorphism of chain (resp. cochain) com-
plexes is a chain map f : (C•,d)→ (C′•,d

′) (resp. a cochain map f : (C•,d)→ (C′•,d′)) inducing
an isomorphism in homology (resp. in cohomology), i.e. for all i ∈ Z the induced linear map
Hi( f ) : Hi(C,d)→Hi(C′,d′) (resp. H i( f ) : H i(C,d)→H i(C′,d′)) is an R-module isomorphism.

■ Example 2.8 Let (C•,d) be a chain complex. Consider also the trivial complex (0•,0) where all
the chains and all the differentials are zero. The latter is obviously an acyclic complex. There is
a unique chain map 0 : (C•,d)→ (0•,0), the zero map (do you see that it is a chain map?). Such
chain map induces the zero map in homology 0 : H•(C,d)→ 0. It is clear that (C•,d) is acyclic if
and only if 0 : (C•,d)→ (0•,0) is a quasi-isomorphism. Likewise for cochain complexes. ■

The (co)homology contains an important information about a (co)chain complex. Hence it is
important to develop techniques to compute it. In the next two sections we will present two such
techniques that will play a particularly important role in Chapters 5 and 6.

2.3 Algebraic Homotopies
Let f : (C•,dC)→ (D•,dD) be a chain map between chain complexes. As we already mentioned, it
might happen that f is not an isomorphism of chain complexes yet Hi( f ) : Hi(C,dC)→ Hi(D,dD)
is an isomorphism (for some or) for all i. In order to illustrate this phenomenon we begin presenting
a sufficient condition under which two chain maps f ,g : (C•,dC)→ (D•,dD) induce the same map
in homology: H•( f ) = H•(g).
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Definition 2.3.1 — Homotopy. A homotopy (more precisely an algebraic homotopy) between
the chain maps f ,g : (C•,dC)→ (D•,dD) is a sequence h = (hi : Ci→Di+1)i∈Z of R-linear maps
such that

fi−gi = dD ◦hi +hi−1 ◦dC, for all i ∈ Z. (2.6)

Similarly, a homotopy between the cochain maps f ,g : (C•,dC)→ (D•,dD) is a sequence
h = (hi : Ci→ Di−1)i∈Z of R-linear maps such that

f i−gi = dD ◦hi +hi+1 ◦dC, for all i ∈ Z. (2.7)

Two (co)chain maps f ,g are said to be homotopic (or to agree up to homotopy) if there exists a
homotopy h between them. In this case we write f ∼h g. A (co)chain map f is null-homotopic
if it is homotopic to the zero (co)chain map, i.e. f ∼h 0 for some homotopy h.

The situation in Definition 2.3.1 is illustrated in the following two diagrams: for chain maps

· · ·

!!

Ci−1

h

!!

dCoo

g

��

f

��

Ci

h

!!

dCoo

g

��

f

��

Ci+1

h

!!

dCoo

g

��

f

��

· · ·oo

· · · Di−1
dDoo Di

dDoo Di+1
dDoo · · ·oo

and for cochain maps

· · · // Ci−1

h

}}

g

��

f

��

dC // Ci

h

}}

g

��

f

��

dC // Ci+1

h

}}

g

��

f

��

dC // · · ·

}}

· · · // Di−1 dD // Di dD // Di+1 dD // · · ·

.

(beware that such diagrams do not commute). Sometimes we simply write f −g = dD ◦h+h◦dC

instead of (2.6) or (2.7).

Exercise 2.7 Show that “being homotopic” is an equivalence relation on the set of (co)chain
maps (between two given (co)chain complexes). More precisely, if f ,g, j : (C•,dC)→ (D•,dD)
are chain maps such that f ∼h g and g∼k j for some homotopies h,k then

✓ f ∼0 f (reflexivity),
✓ g∼−h f (symmetry),
✓ f ∼h+k j (transitivity).

Likewise for cochain maps. ■

We discuss a few more examples at the end of the section. Now, we develop a little bit further
the theory and show how homotopies may help computing (co)homologies of (co)chain complexes.

Proposition 2.3.1 Homotopies respect the composition of (co)chain maps. More precisely if

(C•,dC)
f
//

g
// (D•,dD)

f ′
//

g′
// (E•,dE)
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are chain maps such that f ∼h g and f ′ ∼h′ g′ for some homotopies h,h′, then there exists a
homotopy H (to be specified in the proof) such that f ′ ◦ f ∼H g′ ◦g. Likewise for cochain maps.

Proof. We want to compare f ′ ◦ f and g′ ◦g and show that they agree up to homotopy. We use a
trick: compute

f ′ ◦ f −g′ ◦g

= f ′ ◦ f − f ′ ◦g+ f ′ ◦g−g′ ◦g

= f ′ ◦ ( f −g)+( f ′−g′)◦g (Example 1.27)

= f ′ ◦ (dD ◦h+h◦dC)+(dE ◦h′+h′ ◦dD)◦g ( f ∼h g and f ′ ∼h′ g′)

= f ′ ◦dD ◦h+ f ′ ◦h◦dC +dE ◦h′ ◦g+h′ ◦dD ◦g (Example 1.27)

= dE ◦ f ′ ◦h+ f ′ ◦h◦dC +dE ◦h′ ◦g+h′ ◦g◦dC ( f ′ and g are chain maps)

= dE ◦ ( f ′ ◦h+h′ ◦g)+( f ′ ◦h+h′ ◦g)◦dC (Example 1.27).

This shows that

H := f ′ ◦h+h′ ◦g =
(

f ′i+1 ◦hi +h′i ◦gi : Ci→ Ei+1

)
i∈Z

is the desired homotopy. ■

Proposition 2.3.2 Let f ,g : (C•,dC)→ (D•,dD) be homotopic chain maps. Then f and g induce
the same map in homology:

Hi( f ) = Hi(g), for all i ∈ Z.

Likewise for cochain maps.

Proof. Let h be a homotopy such that f ∼h g. Pick a cycle c ∈ Z•(C,dC) in (C,dC), and let [c] be
its cohomology class. Compute

H•( f )[c] = [ f (c)] = [g(c)+dDh(c)+h(dCc)] = [g(c)] = H•(g)[c],

where, in the second step, we used that f ∼h g, and, in the third step, we used that dCc = 0 and that
g(c)+dDh(c) and g(c) are homologous. It follows from the arbitrariness of c that H•( f ) = H•(g)
as desired. The same exact proof works for cochain complexes and we invite the reader to check
the details. ■

Corollary 2.3.3 If f : (C•,dC)→ (D•,dD) is a null-homotopic chain map then H•( f ) = 0, i.e. f
induces the zero map in homology. Likewise for cochain maps.

Corollary 2.3.4 Let (C•,d) be a chain complex. If there exists a sequence of maps h = (hi :
Ci→Ci+1)i∈Z such that

d ◦h+h◦d = idC,

then (C•,d) is acyclic. Likewise for cochain complexes.

Proof. The hypothesis means that the identity chain map idC is null-homotopic. Hence it induces
the null map in homology, i.e. for every cycle c

[c] = [idC(c)] = H•(idC)[c] = 0.

This concludes the proof. ■
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Definition 2.3.2 — Contracting Homotopy. A sequence h as in Corollary 2.3.4 is called a
contracting homotopy or simply a contraction for the chain complex (C•,d). Likewise for
cochain complexes.

The terminology “contraction” will be clarified in Chapter 5. We now illustrate the theory of
algebraic homotopies with various examples of (co)chain complexes equipped with a contracting
homotopy showing that the (co)homology does actually vanish. We will discuss more examples
(and examples of a more general nature) in Chapters 5 and 6.

■ Example 2.9 Let M be an R-module, let q ∈M and let ϕ : M→ R be a linear map. Consider
the chain complex (∧•M,dϕ) of Example 2.5 and the cochain complex (∧•M,dq) of Example 2.6.
We claim that, if ϕ(q) = 1, then dϕ is a contracting homotopy for (∧•M,dq) and vice-versa dq is a
contracting homotopy for (∧•M,dϕ). We can discuss the two things at once proving that

dϕ ◦dq +dq ◦dϕ = id∧•M .

In order to check that dϕ ◦ dq + dq ◦ dϕ and id∧•M agree it is enough to check that they agree on
elements of the form p1∧·· ·∧ pi, p1, . . . , pi ∈M. So compute

dϕ ◦dq(p1∧·· ·∧ pi)

= dϕ(q∧ p1∧·· ·∧ pi)

= ϕ(q)p1∧·· ·∧ pi−
i

∑
j=1

(−) j−1
ϕ(p j)q∧ p1∧·· ·∧ p̂i∧·· ·∧ pi

= p1∧·· ·∧ pi−q∧
i

∑
j=1

(−) j−1
ϕ(p j)p1∧·· ·∧ p̂i∧·· ·∧ pi

= p1∧·· ·∧ pi−dq ◦dϕ(p1∧·· ·∧ pi).

This shows that dϕ ◦dq +dq ◦dϕ = id∧•M as claimed.
We conclude that, when there exists q′ ∈M such that a := ϕ(q′) ∈ R is an invertible element

(with respect to the product) then the chain complex (∧•M,dϕ) is acyclic (just use da−1q′ as a
contracting homotopy). Similarly, when there exists ϕ ′ ∈M∗ such that b := ϕ ′(q) is invertible, then
(∧•M,dq) is acyclic (use db−1ϕ ′ as a contracting homotopy). This happens, e.g., when R =K is a
field and both ϕ,q are non-zero (do you see it?). ■

■ Example 2.10 — Polynomial de Rham Complex. Let M be an R-module. For this example we
assume that the canonical ring homomorphism Z→ R maps every non-zero integer to an invertible
element in R. This happens, e.g., when R is a field of zero characteristic. For every integer n we
construct a different cochain complex (C(n)•,d) by putting

C(n)i = Sn−iM⊗∧iM.

The differential d is defined as follows. At the level i it is the unique R-linear map

di : C(n)i = Sn−iM⊗∧iM→C(n)i+1 = Sn−i−1M⊗∧i+1M

such that

di(p1∨·· ·∨ pn−i⊗ω) :=
n−i

∑
j=1

p1∨·· ·∨ p̂ j ∨·· ·∨ pn−i⊗ p j ∧ω,

for all p1, . . . , pn−i ∈M and all ω ∈ ∧iM. It is not hard to see that di+1 ◦di = 0 for all i (and all n),
so (C(n)•,d) is a cochain complex (called the polynomial de Rham complex). When n > 0, there is
a canonical contracting homotopy h for (C(n)•,d). Namely

hi : C(n)i = Sn−iM⊗∧iM→C(n)i−1 = Sn−i−1M⊗∧i−1M
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is the unique linear map such that

hi(P⊗q1∧·· ·∧qi) =
1
n

i

∑
j=1

(−) j−1P ∨q j⊗q1∧·· ·∧ q̂ j ∧·· ·∧qi,

for all P ∈ Sn−iM and all q1, . . . ,qi ∈M. Notice that the factor 1/n in the latter formula makes
sense exactly because we are assuming that n is invertible in R. A direct computation shows that

d ◦h+h◦d = idC(n)• ,

hence (C(n)•,d) is acyclic. ■

Exercise 2.8 Prove all unproved claims in Example 2.10. ■

■ Example 2.11 Let M be an R-module. As in Example 2.10 we assume that every non-zero
integer is invertible in R. For every integer n define a chain complex (C(n)•,d) by putting

C(n)i = Sn+iM∗⊗∧iM.

The differential d is defined, on C(n)i, as the unique linear map such that

d (ϕ1∨·· ·∨ϕn+i⊗ω) =
i

∑
j=1

ϕ1∨·· ·∨ ϕ̂ j ∨·· ·∨ϕi⊗dϕ j ω

∈C(n)i−1 = Sn+i−1M∗⊗∧i−1M,

for all ϕ1, . . . ,ϕn+i ∈M∗, and all ω ∈∧iM, where, for every ϕ ∈M∗, dϕ is the differential defined in
Example 2.5. Now assume that M is free and finitely generated, and let (ea)a=1,...,m be a finite basis
of M (of cardinality m). In this special case, if n+m > 0, then (C(n)•,d) possesses a contracting
homotopy h defined as follows. Let (ea)a=1,...,m be the dual basis in M∗. Then h is defined, on
C(n)i, as the unique linear map such that

h(P⊗ω) =
1

n+m

m

∑
a=1

P ∨ ea⊗ ea∧ω

∈C(n)i+1 = Sn+i+1M∗⊗∧i+1M,

for all P ∈ Sn+iM∗ and all ω ∈ ∧iM. Notice that the factor 1/(n+m) in the last formula makes
sense when n ̸= m (and non-zero integers are invertible in R). A direct computation (exploiting
some little tricks) shows that h◦d +d ◦h− idC(n)• vanishes on elements of the form

ea1 ∨·· ·∨ ean+i⊗ eb1 ∧·· ·∧ ebi

hence it vanishes everywhere. This shows that h is a contracting homotopy and (C(n)•,d) is acyclic.
■

Exercise 2.9 Prove all unproved claims in Example 2.11. ■

■ Example 2.12 — de Rham Complex of R3. Let U ⊆ Rn be a non-empty open subset in
the standard Euclidean space Rn. We will denote by C∞(U,Rm) the real vector space of smooth
Rm-valued maps on U , i.e. functions U → Rm that are differentiable arbitrarily many times (as
usual, maps taking values in a module, in this case a vector space, are added and multiplied by a
scalar point-wisely). When m = 1, we simply denote C∞(U) (instead of C∞(U,R)). Smooth maps
C∞(U,Rn) (i.e. m = n) can also be interpreted as vector fields on U (see also Chapter 6).
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We define a cochain complex (C•,d) by putting

Ci =


R if i =−1

C∞(R3) if i = 0,3
C∞(R3,R3) if i = 1,2

0 otherwise

.

In order to describe the differential, we introduce the following useful notation for vector calculus
on R3. We will put an arrow “−⃗” over vector (i.e. 3 component) quantities. For instance, we
denote by x⃗ = (x1,x2,x3) the standard coordinates on R3, or by F⃗ = (F1,F2,F3) a vector valued map
F⃗ : R3→ R3. Additionally, we denote by ∇⃗ the standard vector operator

(
∂

∂x1
, ∂

∂x2
, ∂

∂x3

)
. Finally,

we denote by a cross “×” and by a dot “·” the usual vector and scalar products in R3 (both can be
applied to vector operators in the obvious way). The differential is now given by

d−1c = c (the constant function equal to c)
d0 f = grad f := ∇⃗ f ∈C∞(R3,R3)

d1F⃗ = rot F⃗ := ∇⃗× F⃗ ∈C∞(R3,R3)

d2G⃗ = div G⃗ := ∇⃗ · G⃗ ∈C∞(R3)
di = 0 for i /∈ {−1,0,1,2}

,

for all f ∈C∞(R3), all F⃗ , G⃗ ∈C∞(R3,R3), and all c ∈ R.
In this way we get a sequence

0−→ R−→C∞(R3)
grad−→C∞(R3,R3)

rot−→C∞(R3,R3)
div−→C∞(R3)−→ 0. (2.8)

A direct computation shows that this sequence is actually a cochain complex of R-vector spaces
(concentrated in degrees −1,0,1,2,3), i.e. rot◦grad = div◦ rot = 0. This cochain complex pos-
sesses a canonical contracting homotopy

0←− R h0

←−C∞(R3)
h1

←−C∞(R3,R3)
h2

←−C∞(R3,R3)
h3

←−C∞(R3)←− 0.

given by

h0 f = f (0) ∈ R
h1F⃗ =

∫ 1
0 F⃗(t⃗x) · x⃗ dt ∈C∞(R3)

h2G⃗ =
∫ 1

0 G⃗(t⃗x)× x⃗ tdt ∈C∞(R3,R3)

h3g =
∫ 1

0 g(t⃗x) x⃗ t2dt ∈C∞(R3,R3)
hi = 0 for i /∈ {0,1,2,3}

.

That h = (hi)i∈Z is a contracting homotopy can be proved by hands and we leave the details to the
reader as Exercise 2.10. Here we conclude that the cochain complex (2.8) is acyclic. This means in
particular that

✓ the only gradient-free functions on R3 are the constant ones;
✓ the only rotor-free vector fields on R3 are the gradients;
✓ the only divergence-free vector fields on R3 are the rotors;
✓ every function is a divergence.

This example will be greatly generalized in Chapter 6. ■

Exercise 2.10 Prove all unproved claims in Example 2.12. ■

There is a special class of quasi-isomorphisms, called homotopy equivalences, that play an
important role in Homological Algebra. In the last part of this section we define them and discuss
their basic properties. We postpone (non-trivial) examples to Chapters 5 and 6.



62 Chapter 2. Chain and Cochain Complexes

Definition 2.3.3 — Homotopy Equivalence. A chain map F : (C•,d)→ (C′•,d
′) is a homotopy

equivalence if there exists a chain map in the other direction G : (C′•,d
′)→ (C•,d) such that

G◦F is homotopic to the identity of (C•,d) and F ◦G is homotopic to the identity of (C′•,d
′).

In symbols

G◦F ∼J idC and F ◦G∼K idC′

for some homotopies J,K. In this situation G is clearly a homotopy equivalence as well. We
also say that G is a homotopy inverse of F (and viceversa) or that G inverts F up to homotopy.
If (C•,d),(C′•,d

′) are connected by a homotopy equivalence, we say that they are homotopy
equivalent or isomorphic up to homotopy. Likewise for cochain complexes.

Proposition 2.3.5 Let F : (C•,d)→ (C•,d′) be a homotopy equivalence with homotopy inverse
G : (C′•,d

′)→ (C•,d). Then both F,G are quasi-isomorphisms inducing mutually inverse module
isomorphisms in homology, i.e. Hi(F) : Hi(C,d)→Hi(C′,d′) and Hi(G) : Hi(C′,d′)→Hi(C,d)
are module isomorphisms and

Hi(F)−1 = Hi(G) for all i ∈ Z.

In particular, homotopy equivalent chain complexes have isomorphic homologies. Likewise for
cochain complexes.

Proof. Let J,K be homotopies such that G◦F ∼J idC and F ◦G∼K idC′ . From the first homotopy
we get

Hi(F)◦Hi(G) = Hi(F ◦G) = Hi(idC′) = idHi(C′,d′),

where we also used Proposition 2.2.2.(1)-(2) for all i. Swapping the roles of F and G we get
Hi(G)◦Hi(F) = idHi(C,d). This concludes the proof. ■

Exercise 2.11 Let (C•,d) be a chain complex possessing a contracting homotopy h. Show
that the only chain map (C•,d)→ (0•,0) to the zero chain complex is a homotopy equivalence.
Likewise for cochain complexes. ■

Proposition 2.3.6 Homotopy equivalence of (co)chain complexes is an equivalence relation.

Proof. We discuss the chain complex case, and we leave to the reader the translation to the “cochain
language”. It is clear that the identity chain map idC : (C•,d)→ (C•,d) is a homotopy equivalence,
with the involved homotopies being the zero maps (do you see it?). Hence homotopy equivalence is
a reflexive relation. It is also clear that it is a symmetric relation and it remains to prove that it is
transitive. So let

(C•,d)
F //
oo

G
(C′•,d

′)
F ′ //
oo

G′
(C′′• ,d

′′)

be homotopy equivalences with their homotopy inverses. We want to show that F ′ ◦F is a homotopy
equivalence with homotopy inverse given by G◦G′. So let h,h′ be homotopies such that G◦F ∼h idC

and G′ ◦F ′ ∼h′ idC′ . Then, from the proof of Proposition 5.2.2, we have

G◦G′ ◦F ′ ∼G◦h′ G◦ idC′ = G
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where we used that G∼0 G. Hence, again from the proof of Proposition 5.2.2,

G◦G′ ◦F ′ ◦F ∼G◦h′◦F G◦F ∼h idC

where we used that F ∼0 F , and, from Exercise 2.7,

G◦G′ ◦F ′ ◦F ∼G◦h′◦F+h idC .

Similarly there is a homotopy K such that F ′ ◦F ◦G◦G′ ∼K idC′′ . This concludes the proof. ■

2.4 The Snake Lemma
In this section we present another (elementary) technique which is often useful in computing
the (co)homology of a (co)chain complex. Let R be a ring and let (C•,d) be a chain complex of
R-modules.

Definition 2.4.1 — Subcomplex. A subcomplex in (C•,d) is a family A• = (Ai)i∈Z of submod-
ules Ai ⊆Ci such that d(Ai)⊆ Ai−1 for all i ∈ Z. Likewise for cochain complexes.

Let A• be a subcomplex in (C•,d). For each i ∈ Z we can restrict the differential d : Ci→Ci−1
to Ai in the domain and to Ai−1 in the codomain, obtaining a (new) R-module homomorphism

dA : Ai→ Ai−i.

It is clear that the pair (A•,dA) is a chain complex again. Obviously the family iA := (iAi : Ai→
Ci)i∈Z of inclusions is a chain map, i.e. the diagram

· · · Ai−1
dAoo

iA
��

Ai
dAoo

iA
��

Ai+1
dAoo

iA
��

· · ·oo

· · · Ci−1
doo Ci

doo Ci+1
doo · · ·oo

commutes, and we sometimes write (A•,dA)⊆ (C•,d) (instead of iA : (A•,dA)→ (C•,d)). Likewise
for cochain complexes.

■ Example 2.13 Let f : (C•,d)→ (D•,dD) be a chain map. The kernel of f is the family ker f :=
(ker( f : Ci→ Di))i∈Z. Similarly the image of f is the family im f := (im( f : Ci→ Di))i∈Z. The
kernel of f is a subcomplex in (C•,d). Indeed, let c ∈ Cn be an n-chain in the kernel of f ,
i.e. f (c) = 0. Then f (dc) = dD f (c) = 0, i.e. dc is in the kernel of f as well. Similarly, the image
of f is a subcomplex in (D•,dD) (do you see it?). Likewise for cochain maps. ■

Now, let (A•,dA) ⊆ (C•,d) be a subcomplex in the chain complex (C•,d). For each i ∈ Z
we can take the quotient module Ci/Ai and get a new family C•/A• := (Ci/Ai)i∈Z of R-modules.
Additionally, from d(Ai) ⊆ Ai−1 the differential d induces unique R-linear maps dC/A : Ci/Ai→
Ci−1/Ai−1 such that dC/A(c mod Ai) = dc mod Ai−1 for all i-chains c ∈Ci (see Corollary 1.1.8). The
new sequence of R-linear maps

· · ·
dC/A←−Ci−1/Ai−1

dC/A←−Ci/Ai
dC/A←−Ci+1/Ai+1←− ·· ·

is a chain complex, indeed, for all c ∈Ci+1,

dC/A ◦dC/A(c mod Ai+1) = dC/A(dc mod Ai) = (d ◦d)c mod Ai−1 = 0,

showing that dC/A ◦dC/A = 0. Additionally, the projection π = (π : Ci→Ci/Ai)i∈Z is a chain map,
indeed, for all c ∈Ci

dC/A(π(c)) = dC/A(c mod Ai) = dc mod Ai−1 = π(dc).
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Definition 2.4.2 — Quotient complex. The chain complex (C•/A•,dC/A) is called the quotient
complex (of (C•,d) over the subcomplex (A•,dA)). Likewise for cochain complexes.

■ Example 2.14 — Relative de Rham Subcomplex. Let (C•,d) be the cochain complex of real
vector spaces described in Example 2.12. We consider the subcomplex (A•,dA)⊆ (C•,d) defined
as follows. First of all, denote by W ⊆ R3 the vector subspace

W :=
{
(x1,x2,0) ∈ R3 : (x1,x2) ∈ R2} .

It is clear that W is a 2-dimensional vector subspace spanned by E1 = (1,0,0),E2 = (0,1,0). Hence
it identifies canonically with R2 via the vector space isomorphism

R2→W, (x1,x2) 7→ (x1,x2,0).

In the following we will use this isomorphism to identify W and R2. For instance, we will interpret
R2 as a subspace in R3. Now put

Ai =



{
f ∈C∞(R3) : f |R2 = 0

}
if i = 0{

F⃗ ∈C∞(R3,R3) : F1|R2 = F2|R2 = 0
}

if i = 1{
G⃗ ∈C∞(R3,R3) : G3|R2 = 0

}
if i = 2

C∞(R3) if i = 3
0 otherwise

.

We leave it to the reader to prove that the subcomplex condition d(Ai) ⊆ Ai+1 is fulfilled. We
want to describe the quotient complex (C•/A•,dC/A). We claim that it is isomorphic to the cochain
complex

(B•,dB) : 0 // R dB // C∞(R2)
dB // C∞(R2,R2)

dB // C∞(R2) // 0
−1 0 1 2

(2.9)

where the differential dB is given by

d−1
B c = c (the constant function equal to c)

d0
B f =

(
∂ f
∂x1

, ∂ f
∂x2

)
∈C∞(R2,R2)

d1
B(F1,F2) = ∂F2

∂x1
− ∂F1

∂x2
∈C∞(R2)

di
B = 0 for i /∈ {−1,0,1}

(do you agree that (B•,dB) is really a cochain complex?). To prove that (C•/A•,dC/A)∼= (B•,dB)
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consider the commutative diagram

0 0 0

0 // A3 iA //

OO

C∞(R3) //

OO

0 //

OO

0

0 // A2 iA //

div

OO

C∞(R3,R3)
p
//

div

OO

C∞(R2) //

OO

0

0 // A1 iA //

rot

OO

C∞(R3,R3)
p
//

rot

OO

C∞(R2,R2) //

OO

0

0 // A0 iA //

grad

OO

C∞(R3)
p

//

grad

OO

C∞(R2) //

OO

0

0 // 0 //

OO

R
p

//

OO

R //

OO

0

0

OO

0

OO

0

OO

A• C• B•

. (2.10)

All the columns are cochain complexes, while the horizontal arrows define cochain maps. Here the
cochain map p : (C•,d)→ (B•,dB) is defined by

p−1c = c ∈ R
p0 f = f |R2 ∈C∞(R2)

p1(F1,F2,F3) = (F1|R2 ,F2|R2) ∈C∞(R2,R2)
p2(G1,G2,G3) = G3|R2 ∈C∞(R2)

pi = 0 for i /∈ {−1,0,1,2}

.

It is easy to see that, with this definition, the diagram indeed commutes and, additionally, the
rows are short exact sequence of vector spaces. Hence, from Corollary 1.1.7, we get vector space
isomorphisms p : Ci/Ai→ Bi such that p(c mod Ai) = p(c). Finally, from the commutativity of
(2.10), it easily follows that the diagram

B• : 0 // R // C∞(R2)
dB // C∞(R2,R2)

dB // C∞(R2)
dB // 0 // 0

C•/A• :

p

OO

0 // C−1/A−1 //

p

OO

C0/A0
dC/A

//

p

OO

C1/A1
dC/A

//

p

OO

C2/A2
dA/C
//

p

OO

C3/A3 //

OO

0

commutes as well. Hence p : (C•/A•,dC/A)→ (B•,dB) is an isomorphism of cochain complexes as
claimed. ■

Example 2.14 suggests a slight generalization of the picture “complex, subcomplex, quotient
complex”. Namely, consider a sequence of chain maps:

0−→ (A•,dA)
α−→ (C•,dC)

β−→ (B•,dB)−→ 0 (2.11)
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where the 0s at the two extremes are the zero chain complexes (0•,0). We call any sequence of the
type (2.11) a short exact sequence of chain complexes if the sequence

0−→ Ai
α−→Ci

β−→ Bi −→ 0

is a short exact sequence of modules for all i, i.e. α : Ai→Ci is injective, βi : Ci→ Bi is surjective
and ker(β : Ci→ Bi) = im(α : Ai→Ci). Likewise for cochain complexes.

■ Example 2.15 Let (C•,d) be a chain complex and let (A•,dA)⊆ (C•,d) be a subcomplex. The
sequence

0−→ (A•,dA)
iA−→ (C•,d)

π−→ (C•/A•,dC/A)−→ 0

is a short exact sequence of chain complexes. Every short exact sequence of chain complexes
is of this type up to appropriate isomorphisms. Indeed, take a short exact sequence (2.11). As
α is (degree-wise) injective, it identifies (A•,dA) with a subcomplex (α(A•),dα(A)) ⊆ (C•,d).
Additionally, as α(A•) = imα = kerβ , from Proposition 1.1.7, we get an isomorphism of chain
complexes (B•,dB)∼= (C•/α(A•),dC/α(A)) identifying (2.11) with the short exact sequence

0−→ (α(A•),dα(A))
iα(A)−→ (C•,d)

π−→ (C•/α(A•),dC/α(A))−→ 0

(the chain complex isomorphism (B•,dB)∼= (C•/α(A•),dC/α(A)) intertwines the chain maps; we
leave the obvious details to the reader). Likewise for cochain complexes. ■

Lemma 2.4.1 Consider a short exact sequence of chain complexes (2.11). for every i ∈ Z the
induced sequence in homology,

Hi(A,dA)
H(α)−→ Hi(C,dC)

H(β )−→ Hi(B,dB), (2.12)

is exact: kerH(β ) = imH(α). Likewise for cochain complexes

Proof. First of all, from Proposition 2.2.2

H(β )◦H(α) = H(β ◦α) = H(0) = 0.

This shows that imH(α)⊆ kerH(β ). It remains to prove the reverse inclusion kerH(β )⊆ imH(α).
So let c ∈ Zi(C,dC) be an i-cycle in (C•,dC) and let [c]C ∈Hi(C,dC) be its homology class. Assume
that

0 = H(β )[c]C = [β (c)]B.

This means that there exists b ∈ Bi+1 such that β (c) = dBb. As β is surjective there also exists
c′ ∈Ci+1 such that b = β (c′). Hence

β (c) = dBb = dB(β (c′)) = β (dCc′),

where we used that β is a chain map. In other words

0 = β (c)−β (dCc′) = β (c−dCc′),

i.e. c−dCc′ ∈ kerβ . But kerβ = imα , therefore there exists a ∈ Ai such that

c−dCc′ = α(a) ⇒ c = α(a)+dCc′ ⇒ [c]C = [α(a)]C = H(α)[a]A,

showing that [c]C ∈ imH(α) as desired. ■
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Althought the sequence (2.12) is exact, the map H(α) : Hi(A,dA)→ Hi(C,dC) is not injective
nor the map H(β ) : Hi+1(C,dC)→ Hi+1(B,dB) is surjective in general. Interestingly, the failure of
H(α) from being injective and that of H(β ) from being surjective are measured by a natural family
of R-module homomorphisms ∆ : Hi+1(B,dB)→ Hi(A,dA), with the property that im∆ = kerH(α)
and imH(β ) = ker∆. Overall, the exact sequences

...

Hi+1(A,dA)
H(α)

// Hi+1(C,dC)
H(β )

// Hi+1(B,dB)

Hi(A,dA)
H(α)

// Hi(C,dC)
H(β )

// Hi(B,dB)

Hi−1(A,dA)
H(α)

// Hi−1(C,dC)
H(β )

// Hi−1(B,dB)

...

are connected by R-linear maps ∆, such that the sequence

· · ·
∆

00 Hi+1(A,dA)
H(α)

// Hi+1(C,dC)
H(β )

// Hi+1(B,dB)
∆

// Hi(A,dA)
H(α)

// Hi(C,dC)
H(β )

// Hi(B,dB)
∆

// Hi−1(A,dA)
H(α)

// Hi−1(C,dC)
H(β )

// Hi−1(B,dB)
∆

00 · · ·

(2.13)

is exact. Summarizing we have the following

Theorem 2.4.2 — Snake Lemma. Let

0−→ (A•,dA)
α−→ (C•,dC)

β−→ (B•,dB)−→ 0

be a short exact sequence of chain complexes. For every i ∈ Z there exists a natural R-module
homomorphism ∆ : Hi(B,dB)→ Hi−1(A,dA) (to be defined in the proof) such that the sequence
(2.13) is exact.

Proof. Here we only define ∆ : Hi(B,dB)→ Hi−1(A,dA). The rest uses similar arguments as those
in the proof of Lemma 2.4.1 and is left as Exercise 2.12. So, let b ∈ Zi(B,dB) be an i-cycle in
(B•,dB) and let [b]B ∈ Hi(B,dB) be its homology class. As β is surjective, there exists c ∈Ci such
that b = β (c). Consider the differential dCc ∈Ci−1 and notice that

β (dCc) = dBβ (c) = dBb = 0,
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where we used that β is a chain map and that b is a cycle. The latter computation shows that
dCc ∈ kerβ = imα . Hence there exists (a unique) a ∈ Ai−1 such that α(a) = dCc. Additionally we
have

α(dAa) = dCα(a) = dCdCc = 0

where we used that α is a chain map. So, dAa ∈ kerα . But α is injective, hence dAa = 0 and a is an
(i−1)-cycle in (A•,dA). In particular, we can take its homology class [a]A ∈ Hi−1(A,dA). We put

∆[b]B := [a]A.

We still have to show that ∆ : Hi(B,dB)→ Hi−1(A,dA) is a well-defined R-linear map. In order to
see that it is well-defined we have to show that ∆[b]B does only depend on [b]B, i.e. it is independent
of the arbitrary choices that we made to define it. Actually we made only two choices: we chose a
representative b in the homology class [b]B, and we chose an element c in the pre-image β−1(b).
So, take b′ homologous to b and take (another) c′ such that β (c′) = b′. Define a′ ∈ Ai−1 from c′

exactly as we defined a from c (i.e. a′ is the unique cycle such that α(a′) = dCc′). We want to show
that a′ is homologous to a so that [a]A = [a′]A. We have b′ = b+db′′ for some b′′ ∈ Bi+1. As β is
surjective, there exists c′′ ∈Ci+1 such that β (c′′) = b′′. Hence

β (c′) = b′ = b+dBb′′ = β (c)+dBβ (c′′) = β (c+dCc′′) ⇒ β (c′− c−dCc′′) = 0.

This shows that c′− c− dCc′′ ∈ kerβ . As kerβ = imα , there exists a′′ ∈ Ai such that α(a′′) =
c′− c−dCc′′, which in turn implies

α(dAa′′) = dCα(a′′) = dC(c′− c−dCc′′) = dCc′−dCc = α(a′)−α(a) = α(a′−a).

We are almost done. As α is injective, a′−a = dAa′′, i.e. a′ and a are homologous as desired. It
remains to show that ∆ is R-linear. So let b1,b2 be i-cycles in (B•,dB), and let λ1,λ2 ∈ R. We have
to show that

∆

(
λ1[b1]B +λ2[b2]B

)
= λ1∆[b1]B +λ2∆[b2]B.

To do this, choose c1,c2 ∈Ci and a1,a2 ∈ Zi−1(A,dA) such that β (c1) = b1,β (c2) = b2 and α(a1) =
dCc1,α(a2) = dCc2 (as we have showed above, this is always possible). Then we have ∆[b1]B =
[a1]A,∆[b2]B = [a2]A. In order to compute ∆(λ1[b1]B +λ2[b2]B) we notice that

λ1[b1]B +λ2[b2]B = [λ1b1 +λ2b2]B.

Now we have to choose c ∈Ci and a ∈ Zi−1(A,dA) such that β (c) = λ1b1 +λ2b2 and α(a) = dCc.
It is easy to see that we can choose c = λ1c1 +λ2c2 and a = λ1a1 +λ2a2 (do you see it?). We
stress that this is not the only possible choice (but any other choice will give the same result for
∆(λ1[b1]B +λ2[b2]B)). Nonetheless it is a particularly convenient one for our purposes. Indeed

∆

(
λ1[b1]B +λ2[b2]B

)
= ∆[λ1b1 +λ2b2]B = [a]A = [λ1a1 +λ2a2]A = λ1[a1]A +λ2[a2]A

= λ1∆[b1]B +λ2∆[b2]B.

So ∆ : Hi(B,dB)→ Hi−1(A,dA) is a well-defined R-linear map. The rest is left to the reader. ■
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Exercise 2.12 Complete the proof of the Snake Lemma showing that ker∆ = imH(β ) and
im∆ = kerH(α). ■

There is an obvious version of the Snake Lemma for cochains giving a degree ascending (rather
than descending) long exact sequence in cohomology. We state it for completeness.

Theorem 2.4.3 — Snake Lemma for Cochains. Let

0−→ (A•,dA)
α−→ (C•,dC)

β−→ (B•,dB)−→ 0

be a short exact sequence of cochain complexes. For every i ∈ Z there exists a natural R-module
homomorphism ∆ : H i(B,dB)→H i+1(A,dA) (defined in the same way as in the proof of Theorem
2.4.2, up to the obvious modifications) such that the following sequence:

· · ·

H i+1(A,dA)
H(α)

// H i+1(C,dC)
H(β )

// H i+1(B,dB)
∆

..

H i(A,dA)
H(α)

// H i(C,dC)
H(β )

// H i(B,dB)
∆

//

H i−1(A,dA)
H(α)

// H i−1(C,dC)
H(β )

// H i−1(B,dB)
∆

//

· · ·
∆

..

(2.14)

is exact.

Definition 2.4.3 — Connecting Homomorphism. The family

∆ =
(
∆ : Hi(B,dB)→ Hi−1(A,dA)

)
i∈Z (resp. ∆ =

(
∆ : H i(B,dB)→ H i+1(A,dA)

)
i∈Z)

in the Snake Lemma (Theorem 2.4.2) (resp. Theorem 2.4.3) is called the connecting homomor-
phism and the exact sequence (2.13) (resp. (2.14)) is called the homology (resp. cohomology)
long exact sequence (determined by the short exact sequence of chain complexes (2.11)).

Corollary 2.4.4 Let

0−→ (A•,dA)
α−→ (C•,dC)

β−→ (B•,dB)−→ 0

be a short exact sequence of chain complexes. Assume that 2 out of three among the chain
complexes (A•,dA),(B•,dB),(C•,dC) are acyclic. Then the third one is also acyclic. Likewise
for cochain complexes.

Proof. Suppose that (A•,dA) and (B•,dB) are acyclic and prove that (C•,dC) is also acyclic (the
other two cases can be discussed exactly in the same way). Then the long exact sequence in
homology looks as follows:

· · · −→ 0−→ Hi(C,dC)−→ 0−→ ·· · .
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As it is an exact sequence, the image of 0→ Hi(C,dC) (which is 0) agrees with the kernel of
Hi(C,dC)→ 0. This shows that Hi(C,dC)→ 0 is injective. The only possibility is that Hi(C,dC) =
0. ■

■ Example 2.16 Consider the short exact sequence of cochain complexes

0−→ (A•,dA)
iA−→ (C•,dC)

p−→ (B•,dB)−→ 0

described in Example 2.14. We know already that (C•,dC) is acyclic (Example 2.12). Actually
(B•,dB) possesses a similar contracting homotopy (that will be discussed in Chapter 4). We
conclude that (A•,dA) is acyclic as well. ■

■ Example 2.17 — Cohomological Integral. Here, we discuss a toy example that is relevant
for the integration theory of smooth real valued functions of a real variable. Let [a1,a2]⊆ R be a
closed interval in R (a2 > a1) and denote by t the standard coordinate in R. Consider the diagram

0 0 0

0 // C∞
(
[a1,a2]

) id //

OO

C∞
(
[a1,a2]

)
//

OO

0 //

OO

0

0 // C∞
rel

(
[a1,a2]

) i //

d
dt

OO

C∞
(
[a1,a2]

) p
//

d
dt

OO

R2 //

OO

0

0

OO

0

OO

0

OO

A• C• B•

, (2.15)

where C∞
rel

(
[a1,a2]

)
consists of those smooth functions f : [a1,a2]→ R such that f (a1) = f (a2) =

0, i : C∞
rel

(
[a1,a2]

)
→ C∞

(
[a1,a2]

)
is the inclusion and p : C∞

(
[a1,a2]

)
→ R2 is given by f 7→

( f (a1), f (a2)). The columns of diagram (2.15) are (particularly simple) cochain complexes of real
vector spaces that we denoted (A•,dA),(C•,dC),(B•,dB) respectively (the first two are concentrated
in degrees 0,1, the third one in concentrated in degree 0). The rows are short exact sequences of
vector spaces. For the upper row this is obvious. For the lower row, i is injective and its image is
the kernel of p by definition of C∞

rel

(
[a1,a2]

)
. Additionally p is surjective. Indeed, for (y1,y2) ∈ R2

we can take the smooth function

g(t) := y1 +
t−a1

a2−a1
(y2− y1) (2.16)

which clearly satisfies p( f ) = (y1,y2). Finally Diagram (2.15) obviously commutes, so it is a short
exact sequence of cochain complexes. The cohomology of (C•,dC) can be computed by hands:

H0(C,dC) = ker
(

d
dt

: C∞
(
[a1,a2]

)
→C∞

(
[a1,a2]

))
= {constant functions} ∼= R.

and H1(C,dC) = 0, indeed the linear map d
dt : C∞

(
[a1,a2]

)
→C∞

(
[a1,a2]

)
is surjective: for any

g ∈C∞
(
[a1,a2]

)
there is f ∈C∞

(
[a1,a2]

)
such that g = d f

dt (just take g(t) :=
∫ t

a1
f (s)ds). Similarly,

H0(A,dA) consists of constant functions vanishing on both a1,a2, so H0(A,dA) = 0. It remains
to compute H1(A,dA). This can be done by hands. We prefer to use the long exact cohomology
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sequence associated to the short exact sequence of cochain complexes (2.15). Several cohomologies
vanish and we remain with

0 // H0(C,dC)
H(p)

// H0(B,dB)
∆ // H1(A,dA) // 0

R R2

,

which is a short exact sequence of vector spaces. The map H(p) : R→ R2 is given by y 7→ (y,y)
and we can complete it to a short exact sequence of vector spaces as illustrated in the following
diagram:

0 // H0(C,dC)
H(p)

// H0(B,dB)
∆ // H1(A,dA) //

I
��

0

0 // R
H(p)

// R2 ∆′ // R // 0

(y1,y2)
� // y2− y1

, (2.17)

We conclude that H1(A,dA) is a 1-dimensional vector space and there exists a unique vector space
isomorphism

I : H1(A,dA)→ R

such that the diagram (2.17) commutes. We claim that I is given by

I[ f ]A =
∫ a2

a1

f (t)dt, f ∈ A1 =C∞
(
[a1,a2]

)
, (2.18)

so giving a cohomological flavour to the usual definite integral. First notice that Formula (2.18) gives
a well-defined R-linear map I : H1(A,dA)→R. Indeed, when f = dh/dt for some h∈C∞

rel

(
[a1,a2]

)
then ∫ a2

a1

f (t)dt =
∫ a2

a1

dh
dt

(t)dt = h(a2)−h(a1) = 0.

Now, take (y1,y2) ∈ R2 = H0(B,dB) and compute ∆(y1,y2). We use the definition: there exists a
smooth function g such that p(g) = (g(a1),g(a2)) = (y1,y2), for instance (2.16). Then ∆(y1,y2) =
[dg/dt]A. Hence

I ◦∆(y1,y2) = I[dg/dt]A =
∫ a2

a1

dg
dt

(t)dt = g(a2)−g(a1) = y2− y1 = ∆
′(y1,y2).

Summarizing, the integral
∫ a2

a1
: C∞

(
[a1,a2]

)
→ R can be characterized as the composition

C∞
(
[a1,a2]

)
−→ H1(A,dA)

I−→ R,

where I is the unique isomorphism making the diagram (2.17) commutative. ■

We conclude this section and this chapter showing that the connecting homomorphism is
compatible with “transforming short exact sequences of (co)chain complexes”. We begin explaining
what does it mean “transforming short exact sequences”.
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Definition 2.4.4 — Morphism of Short Exact Sequences of (Co)Chain Complexes. A
morphism of short exact sequence of chain complexes is a commutative diagram

0 // (A•,dA)

FA
��

α // (C•,dC)

FC
��

β
// (B•,dB)

FB
��

// 0

0 // (A′•,dA′)
α ′ // (C′•,dC′)

β ′
// (B′•,dB′) // 0

(2.19)

such that the rows are short exact sequences of chain complexes, and the columns are chain
maps. Like-wise for cochain complexes.

Exercise 2.13 In this exercise we ask the reader to guess various definitions (and prove that
they are well-posed).

(1) Define the identity morphism of short exact sequences of (co)chain complexes.
(2) Define the composition of morphisms of short exact sequence of (co)chain complexes

and prove that it is a morphism again.
(3) Define isomorphisms of short exact sequences of (co)chain complexes and their inverses.

Prove that the inverse of an isomorphism is an isomorphism again.
■

Proposition 2.4.5 — Naturality of the Connecting Homomorphism. For any morphism
(2.19) of short exact sequences of chain complexes, the diagram

· · · // Hi(C,dC)

H(FC)
��

H(β )
// Hi(B,dB)

H(FB)
��

∆ // Hi−1(A,dA)

H(FA)
��

H(α)
// Hi−1(C,dC)

H(FC)
��

H(β )
// · · ·

· · · // Hi(C′,dC′)
H(β ′)

// Hi(B′,dB′)
∆ // Hi−1(A′,dA′)

H(α ′)
// Hi−1(C′,dC′)

H(β )
// · · ·

(2.20)

commutes. Likewise for cochain complexes.

Proof. We know more or less already that the squares in (2.20) not involving the connecting
homomorphism commute. Indeed, it immediately follows from the properties of the induced map
in homology (Proposition 2.2.2) that the induced diagram in homology from a commuting diagram
of chain complexes is commutative as well. For instance, from FB ◦β = β ′ ◦FC we get

Hi(FC)◦Hi(β ) = Hi(FC ◦β ) = Hi(β
′ ◦FC) = Hi(β

′)◦Hi(FC)

for all i ∈ Z. It remains to show that H(FA)◦∆ = ∆◦H(FB). So, let b ∈ Zi(B,dB) be an i-cycle in
(B•,dB) and let [b]B ∈ Hi(B,dB) be its homology class. Choose a ∈ Zi−1(A,dA) and c ∈Ci such
that α(a) = dCc and b = β (c). This is always possible and ∆[b]B = [a]A. Now put a′ = FA(a),
c′ = FC(c) and b′ = FB(b). Then we have

α
′(a′) = α

′(FA(a)) = FC(α(a)) = FC(dCc) = dC′FC(c) = dC′c′,

and

β
′(c′) = β

′(FC(c)) = FB(β (c)) = FB(b) = b′.

This shows that ∆[b′]B′ = [a′]A′ , hence

∆◦H(FB)[b]B = ∆[FB(b)]B′ = ∆[b′]B′ = [a′]A′ = [FA(a)]A′ = H(FA)[a]A = H(FA)◦∆[b]B

and the claim follows from the arbitrariness of b. ■



3. Categories and Functors

In this short chapter we briefly introduce categories and functors. This language puts under the
same umbrella several (similar) situations in Mathematics. As a byproduct it also allows a compact
formulation of various statements. Roughly a category is a collection of objects together with arrows
that we use to compare two objects. The arrows come with a composition law with appropriate
properties. A functor is a correspondence of categories that maps objects to objects and arrows
to arrows preserving the composition law of arrows. See below for a precise statement. Beware
however that, in the discussion below, we will skip most of the foundational aspects.

3.1 Categories

Not every collection of objects in Mathematics can be safely called a set. If we insisted in doing so,
we would incur in paradoxes (i.e. statements that are equivalent to their negations, hence if they are
true they are also false and viceversa, in simple words, self-contradictions) like the famous Russell
Paradox.

■ Example 3.1 — Russell Paradox. Assume that for any property there is a set consisting exactly
of all objects with that property. Now consider the set

R := {x is a set such that x /∈ x}

of all sets that do not contain themselves as elements. It is then clear that, by the very definition of
R, the set R belongs to R itself if and only if R does not belong to R and we have a paradox. ■

The Russell paradox stems from the (unsafe) assumption that every property defines a set, in
other words that every collection of objects (defined via a property) is a set. The easiest way to
avoid Russell (and related) paradoxes is giving up on insisting that every collection is a set. If we
do so we need a new terminology for those collections of objects that cannot be sets.

Definition 3.1.1 — Class. A class is a collection of objects that can be defined via a property
(that its elements share) without producing paradoxes. A proper class is a class which is not a
set.
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For instance the collection R in Example 3.1 is a proper class. Every set is a class, while other
popular examples of classes which are not sets are the class of all sets and the class of all groups.
For classes we use a similar notation as for sets (including ∈ for “belongs to” and {x : x satisfies P}
for “the class of objects x satisfying the property P”).

Our next aim is defining categories. The main motivation here is the following principle of a
meta-mathematical nature: given a class Ob of mathematical objects (groups, modules, topological
spaces, (co)chain complexes, etc.) there is also a class of arrows suitable for comparing objects of
Ob. Any two such arrows can be composed to produce a new one. This is the case, for instance,
for groups and group homomorphisms, for modules and linear maps, for topological spaces and
continuous maps, for (co)chain complexes and (co)chain maps, etc.

Definition 3.1.2 — Category. A category C is a pair (ObC ,HomC ) where ObC is a class
while HomC is a family of sets

HomC =
{

HomC (X ,Y )
}

X ,Y∈ObC

parameterized by pairs of elements in ObC . Additionally, for any X ,Y,Z ∈ ObC there is a
composition law

◦ : HomC (Y,Z)×HomC (X ,Y )→ HomC (X ,Z), ( f ,g) 7→ f ◦g

such that
(1) ◦ is associative, i.e. for all X ,Y,Z,W ∈ ObC and all f ∈ HomC (Z,W ), g ∈ HomC (Y,Z)

and h ∈ HomC (X ,Y ) we have

( f ◦g)◦h = f ◦ (g◦h).

(2) ◦ admits units, i.e. for all X ∈ ObC there exists a, necessarily unique, element idX ∈
HomC (X ,X) such that for all Y,Z ∈ ObC , all f ∈ HomC (X ,Y ) and all g ∈ HomC (Z,X)
we have

f ◦ idX = f , and idX ◦g = g.

The elements of ObC are called objects of C , while the elements of HomC (X ,Y ) are called
morphisms, or arrows, between X and Y . Given two objects X ,Y ∈ ObC , a morphism f ∈
HomC (X ,Y ) will be also denoted by f : X → Y or X

f−→ Y . Then X is called the source and
Y is called the target of f . The morphism idX is called the identity morphism of X or the unit.
An isomorphism between two objects X ,X ′ is a morphism Φ : X → X ′ such that there exists a,
necessarily unique, morphism Φ−1 : X ′→ X , called the inverse of Φ, such that Φ−1 ◦Φ = idX

and Φ◦Φ−1 = idX ′ . A small category is a category whose class of objects is a set.

Clearly it makes sense to talk about commutative diagrams in any category. We now present a
long list of examples that should help the reader getting an intuition of what a category really is.

■ Example 3.2 — The Category of Sets. Sets (as objects) and maps (as morphisms) form a
category called the category of sets and denoted Set. The composition law of morphisms in Set is
the usual composition of maps and the units are the identity maps. The isomorphisms in Set are the
invertible maps. ■

■ Example 3.3 — The Category of Groups. Groups and group homomorphisms form a category
called the category of groups and denoted Gr. The composition law of morphisms in Gr is the
usual composition of maps and the units are the identity homomorphisms. The isomorphisms in Gr
are the group isomorphisms. ■
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Next, fix a ring R.

■ Example 3.4 — The Category of R-Modules. R-modules and R-module homomorphisms form
a category called the category of R-modules and denoted ModR. The composition law of morphisms
in ModR is the usual composition of (linear) maps and the units are the identity homomorphisms.
The isomorphisms in ModR are the R-module isomorphisms. The category ModZ is also called the
category of abelian groups and denoted Ab. If R =K is a field, we often write VectK instead of
ModK and call it the category of K-vector spaces. ■

■ Example 3.5 — The Category of (Co)Chain Complexes. (Co)Chain complexes of R-modules
and (co)chain maps between them form a category called the category of (co)chain complexes
and denoted (Co)ChR. The composition law of morphisms in (Co)ChR is the composition of
(co)chain maps and the units are the identity (co)chain maps. The isomorphisms in (Co)ChR are
the (co)chain isomorphisms. ■

■ Example 3.6 — The Category of Short Exact Sequences of (Co)Chain Complexes. Exercise
2.13 shows that short exact sequences of (co)chain complexes and their morphisms form a category.
■

■ Example 3.7 — The Category of Topological Spaces. Topological spaces and continuous
maps (with the composition of maps) form a category called the category of topological spaces and
denoted Top. The isomorphisms is Top are the homeomorphisms. ■

Exercise 3.1 Show that, in every category, the composition Φ◦Ψ of two isomorphisms is an
isomorphism with inverse Ψ−1 ◦Φ−1. ■

Not all categories consist of a class of sets together with a family of maps.

■ Example 3.8 — Monoids as Categories. A monoid M (in particular a group) can be seen as a
(small) category (ObM,HomM) where ObM := {∗} is a one element class (the only element in ObM
is conventionally denoted ∗) and HomM = HomM(∗,∗) :=M. The composition law of morphisms
in M is just the monoid multiplication and the unit is just the unit of the monoid. Isomorphisms in
M are invertible elements in the monoid. ■

■ Example 3.9 — Preordered sets as Categories. Remember that a preordered set is a set P
with a preorder, i.e. a reflexive and transitive relation≤. A preordered set P can be seen as a (small)
category (ObP,HomP) where ObP := P and, for all a,b ∈ P, the set of arrows HomP(a,b) is either
a singleton (when a≤ b) or empty (when a ≰ b). The composition law of morphisms in P is the
only possible one (write it explicitly!). ■

Exercise 3.2 Show that every category with just one object ∗ is a monoid. Show also that every
small category with at most one arrow between any two objects is a preordered set. ■

■ Example 3.10 — The Category of Matrices. Fix a field K. Matrices on K of arbitrary order
can be seen as a (small) category Mat = (ObMat,HomMat) as follows. Put ObMat = N, and for all
n,m ∈ N put HomMat(n,m) = Mm,n(K). The composition law is the matrix multiplication. The
units are the identity matrices and the isomorphisms are the invertible matrices. ■

■ Example 3.11 — The Homotopy Category of (Co)Chain Complexes. Fix a ring R again.
We will consider the category ChR of chain complexes of R-modules. For simplicity we will denote
it simply by Ch. Define a new category hCh (or hChR if we want to insist on the fact that we work
on the ring R) as follows. The objects in hCh are chain complexes of R-module, i.e. ObhCh = ObCh.
In order to define morphisms, recall that “being homotopic” is an equivalence relation on the set
HomCh

(
(C•,dC),(D•,dD)

)
of chain maps between the chain complexes (C•,dC),(D•,dD) (Exer-



76 Chapter 3. Categories and Functors

cise 2.7). Denote by∼ this equivalence relation and, for any two chain complexes (C•,dC),(D•,dD)
put

HomhCh

(
(C•,dC),(D•,dD)

)
= HomCh

(
(C•,dC),(D•,dD)

)/
∼ ,

the set of homotopy classes of chain maps. Given a chain map f : (C•,dC)→ (D•,dD) we will
denote [ f ]∼ ∈ HomhCh((C•,dC),(D•,dD)) its homotopy class. The composition law of morphisms
in hCh is defined as follows. Let

(C•,dC)
f−→ (D•,dD)

g−→ (E•,dE)

be chain maps. We put

[g]∼ ◦ [ f ]∼ := [g◦ f ]∼.

As homotopies respect the composition of chain maps (Proposition 5.2.2), this is well defined (do
you see it?). The composition law of morphisms in hCh defined in this way is clearly associative.
The units are the homotopy classes of the identity chain maps. The isomorphisms in hCh are the
(homotopy classes of) homotopy equivalences of chain complexes (do you see it?). The category
hCh is called the homotopy category of chain complexes of R-modules and it is extremely useful
when one wants to study chain complexes only u to homotopy equivalence. The homotopy category
of cochain complexes is defined is a similar (obvious) way. This example shows that the structure
of a category can change significantly changing the morphisms without changing the objects. ■

3.2 Functors

Roughly functors are maps of categories: they map objects to objects and morphisms to morphisms
preserving the category structure. Let C ,D be categories.

Definition 3.2.1 — Functor. A functor F : C →D between C and D is the assignment
(1) of an object F(X) ∈ ObD for every object X ∈ ObC , and
(2) of an arrow F( f ) : F(X)→ F(Y ) ∈ HomD for every arrow f : X → Y ∈ HomC , where

X ,Y ∈ ObC ,
in such a way that

✓ F(idX) = idF(X) for all X ∈ ObC ;
✓ F( f ◦g) = F( f )◦F(g) for all pairs ( f ,g) of composable arrows in C .

More precisely, an F as in Definition 3.2.2 is a covariant functor. There is also a notion of a
contravariant functor which is often useful. A contravariant functor is the same as a (covariant)
functor except that it inverts the arrows (and their compositions).

Definition 3.2.2 — Contravariant Functor. A contravariant functor G : C →D between the
categories C and D is the assignment

(1) of an object G(X) ∈ ObD for every object X ∈ ObC , and
(2) of an arrow G( f ) : G(Y )→G(X) ∈ HomD for every arrow f : X → Y ∈ HomC , where

X ,Y ∈ ObC ,
in such a way that

✓ G(idX) = idG(X) for all X ∈ ObC ;
✓ G( f ◦g) =G(g)◦G( f ) for all pairs ( f ,g) of composable arrows in C .

Several natural constructions in Mathematics are functors (either covariant or contravariant).
Here is a short list. Many more examples will pop up in the sequel of the notes. Fix again a ring R.
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■ Example 3.12 — The Free Module Construction is a Functor. The free module construction
can be seen as a (covariant) functor Free : Set→ModR as follows. An object X in Set is just a set
and we put Free(X) := RX (the free module spanned by X) which is duly an object in ModR. Next,
a morphism f : X → Y in Set is just a map of sets. Notice that, from the universal property of free
modules, there exists a unique linear map R f : RX → RY such that R f (x) = f (x) ∈ Y ⊆ RY for all
x ∈ X ⊆ RX (here we interpret X , resp. Y , as a subset in RX , resp. RY , as usual). Put Free( f ) := R f .
We leave it as Exercise 3.3 to check that the assignment Free : Set→ModR defined in this way is
indeed a functor. ■

Exercise 3.3 Show that the assignment Free : Set→ ModR defined in Example 3.12 is a
covariant functor. ■

■ Example 3.13 — The Dual Module Construction is a Functor. Let M be an R-module. Recall
that its dual module is M∗ = Hom(M,R) (with the module structure on linear maps). If M,N are
two R-modules and f : M→ N is a linear map, we can define a linear map f ∗ : N∗→M∗, called
the transpose of f , by putting

f ∗(ϕ) := ϕ ◦ f , ϕ ∈ N∗.

It is clear that f ∗(ϕ) : M→ R is a linear map for all ϕ ∈ N∗ (the composition of linear maps is a
linear map). Additionally, the map f ∗ : N∗→M∗ defined in this way is indeed linear (Exercise
3.4, see also Example 1.27). This construction defines a contravariant functor ∗ : ModR→ModR.
Namely, for every object in ModR, i.e. every R-module M, put ∗(M) := M∗, and, for every arrow
(in ModR), i.e. every linear map f : M→ N, put ∗( f ) = f ∗ : N∗→M∗. We leave it to the reader to
check the details as Exercise 3.4. ■

Exercise 3.4 Prove that the transpose map f ∗ : N∗→M∗ defined in Example 3.13 is a linear
map. Prove also that the assignment ∗ : ModR→ModR is a contravariant functor. ■

■ Example 3.14 — (Co)Homology is a Functor. For all n ∈ Z, the n-th homology of chain
complexes is a covariant functor Hn : ChR → ModR. Namely, an object in ChR is a chain
complex (C•,d). Its n-th homology Hn(C,d) is an R-module, i.e. an object in ModR. A mor-
phism f : (C•,dC)→ (D•,dD) in ChR is a chain map and the induced map in n-th homology
Hn( f ) : Hn(C,dC)→ Hn(D,dD) is an R-module homomorphism, i.e. a morphism in ModR. Finally
the assignment Hn : ChR → ModR defined in this way preserves the identity chain maps and
the composition of chain maps (Proposition 2.2.2). Similarly, the n-th cohomology of cochain
complexes is a covariant functor Hn : CoChR→ModR. ■

Exercise 3.5 Let M,N be monoids. Show that a covariant functor between the corresponding
categories is “essentially the same” as a monoid homomorphisms f : M→ N. ■

Exercise 3.6 Let P,Q be preordered sets. Show that a covariant (resp. contravariant) functor
between the corresponding categories is “essentially the same” as an increasing (resp. decreasing)
map f : P→Q (remember that a map f : P→Q is increasing if, whenever a,b ∈ P are such
that a≤ b then f (a)≤ f (b), and it is decreasing if, whenever a≤ b, then f (b)≤ f (a)). ■

Lemma 3.2.1 Functors transform isomorphisms to isomorphisms.

Proof. Let C ,D be categories and let F : C → D be a functor. We want to show that, for every
isomorphism Φ : X → Y in C , its image F(Φ) : F(X)→ F(Y ) under F is an isomorphism (in D).
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So, let Φ−1 : Y → X be the inverse isomorphism. Then

F(Φ)◦F(Φ−1) = F(Φ◦Φ
−1) = F(idY ) = idF(Y ) .

Swapping the roles of Φ and Φ−1 we see that F(Φ−1)◦F(Φ) = idF(X). This shows that F(Φ) is an
isomorphism and that F(Φ−1) is its inverse. ■

Functors can be composed obtaining new functors. Namely let C ,D ,E be categories and let

C
F−→D

G−→ E

be functors. We define a new functor G◦F : C →D by putting,

G◦F(X) :=G(F(X)) ∈ ObE , for all X ∈ ObC ,

and

G◦F( f ) :=G(F( f )) ∈ HomE , for all f ∈ HomC .

Notice that
✓ If F,G are covariant functors then G◦F is a covariant functor;
✓ If F,G are contravariant functors then G◦F is a covariant functor;
✓ If F,G are a covariant and a contravariant functor (not necessarily in this order) then G◦F is

a contravariant functor.
We leave it to the reader to check all the details.

■ Example 3.15 — Biduality Functor. Composing the duality functor ∗ : ModR→ModR with
itself we get a covariant functor ∗∗ : ModR→ModR mapping an R-module M to its bidual M∗∗

and an R-module homomorphism f : M→ N to the transpose f ∗∗ : M∗∗→ N∗∗ of its transpose. ■

More examples of composition of functors will pop up in the sequel of these notes.

3.3 Natural Transformations
We conclude this chapter defining natural transformations of functors, which allow to compare
two functors between the same two categories. So, let C ,D be categories and let F,G : C →D be
functors.

Definition 3.3.1 — Natural Transformation. A natural transformation τ : F→G between the
functors F and G is the assignment of a morphism τX : F(X)→G(X) ∈ HomD for every object
X ∈ ObC in such a way that for every morphism f : X → Y ∈ HomC the diagram

F(X)
F( f )

//

τX

��

F(Y )

τY

��

G(X)
G( f )

// G(Y )

of arrows in D commutes. A natural transformation τ : F→ G is a natural isomorphism of
functors if the arrow τX is an isomorphism in D for every object X in C .

Several natural arrows in Mathematics are actually natural transformations of functors. Here
we present just two examples. More examples will actually pop up in the sequel but we will
not (always) highlight them. We invite the reader to look themselves at natural transformations
throughout these lecture notes.
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■ Example 3.16 — Biduality Map. Let R be a ring. Remember that, for any R-module there is
a natural linear map ι : M→M∗∗ defined by putting ι(p)(ϕ) = ϕ(p) for all p ∈M, and ϕ ∈M∗

(see the discussion immediately after the statement of Corollary 1.4.8). This construction can be
seen as a natural transformation ι between the following two functors. The source functor of ι is
the identity functor id : ModR→ModR mapping every object and every arrow to itself (do you see
that it is indeed a functor?). The target functor of ι is the biduality functor ∗∗ : ModR→ModR.
Finally, for every object in ModR, i.e. every R-module M, we put ιM := ι : M→M∗∗. We leave it
to the reader to check that this assignment defines indeed a natural transformation ι : id→∗∗ as
Exercise 3.7. ■

Exercise 3.7 Prove that the assignment ι : id→ ∗∗ defined in Example 3.16 is a natural
transformation of functors. ■

We also provide an example of a natural isomorphism.

■ Example 3.17 Let R be a ring. We begin noticing that the function module construction can
be seen as a contravariant functor Fun : Set→ModR as follows. For any set X ∈ ObSet we put
Fun(X) := RX ∈ObModR (the module of functions f : X→ R). Next, for any map of sets f : X→Y ,
we define a map

R f : RY → RX

between the corresponding function modules (but in the reverse order) by putting

R f (a) = a◦ f : X → R

for all functions a : Y → R. The function R f (a) is also called the pull-back of a along f and it is
sometimes denoted by f ∗(a). It is easy to see that R f is a linear map, hence it is an arrow in ModR.
Put Fun( f ) := R f . The assignment Fun : Set→ModR is a contravariant functor. We want to show
that there is a natural isomorphism ι : Fun→∗◦Free. To see this, recall from Example 1.25 that,
for any set X , there is a natural module isomorphism

ι : RX = Fun(X)→ (RX)∗ = ∗◦Free(X),

defined by putting

ι( f )

(
∑

i
aixi

)
:= ∑

i
ai f (xi),

for all f ∈ RX and all linear combinations ∑i aixi ∈ RX , ai ∈ R, xi ∈ X . We put ιX := ι : RX → (RX)∗.
The rest is left to the reader. ■

Exercise 3.8 Prove all unproved claims in Example 3.17. ■

Exercise 3.9 Let τ :F→G be a natural isomorphism between the functors F,G : C →D . Prove
that the assignment τ−1 : G→ F defined by putting (τ−1)X := (τX)

−1 : G(X)→ F(X) ∈HomD

for all X ∈ ObC is a natural isomorphism between G and F (such natural isomorphism is called
the inverse of the natural isomorphism τ). ■





II
4 Applications in Algebra . . . . . . . . . . . . . . 83
4.1 Simplicial Objects
4.2 Group (Co)Homology
4.3 Hochschild (Co)Homology
4.4 Chevalley-Eilenberg (Co)Homology

5 Singular Homology . . . . . . . . . . . . . . . . . 115
5.1 Singular (Co)Chains and Singular (Co)Homology
5.2 Geometric Homotopies
5.3 Mayer-Vietoris Sequence

6 de Rham Cohomology . . . . . . . . . . . . . 161
6.1 Differential Forms and de Rham Cohomology
6.2 Homotopies and de Rham Cohomology
6.3 Mayer-Vietoris Sequence in de Rham Cohomology

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Applications





4. Applications in Algebra

In this chapter we show that (co)chain complexes arise naturally in Algebra from various algebraic
structures. We will discuss groups, associative algebras and Lie algebras. All these structures
play an important role both in Algebra and in Geometry. Our focus will be on how associating
(co)chain complexes to these structures (usually in a functorial way) rather than on computing the
associated (co)homology. We will also provide an interpretation of low degree (co)homologies. All
the (co)chain complexes in this chapter have natural generalizations to the case when the algebraic
structure acts (group modules, algebra bimodules, Lie algebra representations) that we will not
discuss.

4.1 Simplicial Objects

It is possible to construct a (co)chain complex from certain data, called semi-(co)simplicial modules
(and, more generally, semi-(co)simplicial sets). There are several important (co)chain complexes
that arise in this way. We present two examples in this Chapter and one more example in Chapter 5.
We begin with the definition of semi-simplicial set.

Definition 4.1.1 — Semi-Simplicial Set. A semi-simplicial set is a pair (X•,d) where
(1) X• = (Xn)n∈N0 is a family of sets (indexed by non-negative integers), and
(2) d = (dn

i : Xn→ Xn−1)0≤i≤n∈N is a family of maps called the face maps (or simply the
faces),

satisfying the following semi-simplicial identities:

dn−1
i ◦dn

j = dn−1
j−1 ◦dn

i , for all 0≤ i < j ≤ n. (4.1)

When it is clear what is the value of n, we will denote simply by di : Xn→ Xn−1 the i-th face
map on Xn (instead of dn

i : Xn→ Xn−1). In this short notation, the semi-simplicial identities become
di ◦d j = d j−1 ◦di for all i < j. Sometimes a semi-simplicial set (X•,d) is schematically indicated

· · ·
//////// X2 //

//
// X1 //

// X0
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where the arrows stand for the maps di. Inverting all the arrows in the definition of a semi-simplicial
set we get a (dual) definition of semi-cosimplicial set. More precisely a semi-cosimplicial set
is a pair (Y•,d) where Y• = (Yn)n∈N0 is a family of sets and d = (dn

i : Yn−1 → Yn)0≤i≤n∈N is a
family of maps (sometimes called the coface maps or simply the cofaces), and also denoted simply
di : Yn−1→ Yn satisfying the semi-cosimplicial identities:

dn
j ◦dn−1

i = dn
i ◦dn−1

j−1 , for all 0≤ i < j ≤ n.

A semi-cosimplicial set (Y•,d) is also indicated

· · ·
oo oooooo Y2

oo
oo
oo Y1

oo
oo Y0 .

R The prefix “semi” in “semi-(co)simplicial set” refers to the fact that there exists a (more
fundamental) notion of (co)simplicial set where faces and semi-(co)simplicial identities
are complemented by certain degeneracy maps (going in the other direction) satisfying
appropriate (co)simplicial identities. We will not need these notions in these notes.

■ Example 4.1 — Nerve of a Group. Let G be a (non-necessarily abelian) group. Consider the
family N•(G) = (G×n)n∈N0 of sets, where we put G×0 := {∗}: a one point set, whose only element
is conventionally denoted ∗. The family N•(G) can be given the structure of a semi-simplicial set

· · ·
//////// G×2 //

//
// G //

// {∗}

with faces d = (dn
i : G×n→ G×(n−1))0≤i≤n∈N given by

dn
i (g1, . . . ,gn) =


(g2, . . . ,gn) if i = 0

(g1, . . . ,gi−1,gigi+1,gi+2, . . . ,gn) if i = 1, . . . ,n−1
(g1, . . . ,gn−1) if i = n

,

(g1, . . . ,gn) ∈ G×n. We leave it to the reader to check the semi-simplicial identities as Exercise 4.1.
The semi-simplicial set (N•(G),d) is called the nerve of the group G. ■

Exercise 4.1 Prove the semi-simplicial identities for the faces of the nerve of a group G (see
Example 4.1). ■

■ Example 4.2 — Standard Simplex. The following example motivates the terminology “semi-
(co)simplicial set” and “(co)face map”. Let n ∈ N0 be a non-negative integer. The standard
n-dimensional simplex (or, for short, n-simplex) is the subset ∆n in Rn+1 defined by

∆n :=

{
(x0, . . . ,xn) ∈ Rn+1 :

n

∑
i=0

xi = 1 and x j ≥ 0 for all j = 0, . . . ,n

}
⊆ Rn+1.

So, ∆0 is a point, ∆1 is a segment, ∆2 is an equilateral triangle, ∆3 is a regular tetrahedron, and so
on (see Figure 4.1).

The family of sets ∆• = (∆n)n∈N0 can be given the structure of a semi-cosimplicial set

· · ·
oo oooooo ∆2

oo
oo
oo ∆1

oo
oo ∆0 .

with cofaces d = (dn
i : ∆n−1→ ∆n)0≤i≤n∈N given by

dn
i (x0, . . . ,xn−1) = (x0, . . . ,xi−1,0,xi, . . . ,xn−1) ∈ ∆n, for all (x0, . . . ,xn−1) ∈ ∆n−1.
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Figure 4.1: The first three standard simplexes.

Notice that dn
i identifies the (n− 1)-simplex with the face in the n-simplex opposite to the i-th

vertex

Ei = (0, . . . , 1︸︷︷︸
i-th place

, . . . ,0), i = 0, . . . ,n

(this should explain the term “faces” for the structure maps of a semi-simplicial set). We leave it
to the reader to check the semi-cosimplicial identities as Exercise 4.2. The semi-cosimplicial set
(∆•,d) is called the standard simplex.

We notice for later use that, for all n, the standard n-simplex ∆n is a topological space when
equipped with the subspace topology induced from the standard topology in Rn+1. Additionally, the
coface maps di : ∆n−1→ ∆n of the standard simplex (∆•,d) are continuous maps (with respect to
this topology). Indeed they are the restrictions to a subspace both in the domain and the codomain
of the linear, hence continuous (even smooth), maps

Rn→ Rn+1, (x0, . . . ,xn−1) 7→ (x0, . . . ,xi−1,0,xi, . . . ,xn−1).

■

Exercise 4.2 Prove the semi-cosimplicial identities for the cofaces of the standard simplex (see
Example 4.2). ■

We can compare two semi-(co)simplicial sets using appropriate “maps”, that we now define.

Definition 4.1.2 — Semi-(Co)Simplicial Map. A semi-simplicial map between the semi-
simplicial sets (X•,X d),(Y •,Y d) is a family f = ( f n : Xn→ Y n)n∈N0 of maps preserving the
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faces in the sense that

f n−1 ◦ X dn
i = Y dn

i ◦ f n, for all 0≤ i≤ n ∈ N0. (4.2)

In this case we write:

f : (X•,X d)→ (Y •,Y d).

Likewise for semi-cosimplicial sets.

Similarly as we do for the face maps (and for cochain maps), given a semi-simplicial map
f = ( f n)n∈N0 we will often drop the “ n ” from f n when it is clear on which set we are acting. For
instance, we will simply write f ◦ X di = Y di ◦ f for the identity 4.2.

Now, let R be a ring.

Definition 4.1.3 — Semi-(Co)Simplicial Module. A semi-simplicial R-module is a semi-
simplicial set (M•,d) such that every set Mn in the family M• = (Mn)n∈N0 is an R-module
and all the faces are R-linear. semi-cosimplicial modules are defined in a similar way. A
semi-simplicial homomorphism between the semi-simplicial modules (M•,Md),(N•,Nd) is a
semi-simplicial map f : (M•,Md)→ (N•,Nd) which is additionally component-wise linear.
Like-wise for semi-cosimplicial modules.

It is clear that the identity semi-simplicial map id=(id : Mn→Mn)n∈N0 is a semi-simplicial map.
The composition of semi-simplicial maps is defined component-wise and it is a semi-simplicial map
as well. A component-wise invertible semi-simplicial map is a semi-simplicial isomorphism. Like-
wise for semi-cosimplicial sets and semi-(co)simplicial modules. We conclude that semi-simplicial
(resp. semi-cosimplicial) sets and semi-simplicial (resp. semi-cosimplicial) maps form a category,
denoted ssSet (resp. sCosSet). Similarly semi-simplicial (resp. semi-cosimplicial) modules over
a fixed ring R and semi-simplicial (resp. semi-cosimplicial) homomorphisms form a category,
denoted sCosModR (resp. sCosModR). The details are left es an exercise.

Exercise 4.3 Prove that semi-(co)simplicial sets and semi-(co)simplicial maps form a category.
■

The category s(Co)sModZ is denoted simply s(Co)sAb, and when R =K is a field we write
s(Co)sVectK (instead of s(Co)sModK).

We now present the main construction in this section. Namely, we show that there is a functor

ssModR→ ChR,

from semi-simplicial modules to chain complexes (and like-wise for semi-cosimplicial modules
and cochain complexes). This construction is important because several (co)chain complexes in
Algebra and Geometry arise in this way.

Theorem 4.1.1 — (Co)Chain Complexes from Semi-(Co)Simplicial Modules. Let R be a
ring and let (M•,d) be a semi-simplicial R-module. For all n ∈ Z define

Cn(M) =

{
0 if n < 0

Mn if n≥ 0

and

Dn =
n

∑
i=0

(−)idn
i : Cn(M)→Cn−1(M).
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Then (C•(M),D) is a chain complex. Likewise for semi-cosimplicial modules (in which case the
analogous construction gives a cochain complex).

If f : (M•,Md)→ (N•,Nd) is a semi-simplicial map, then it is also a chain map

f : (C•(M),DM)→ (C•(N),DN)

between the associated chain complexes. The assignment

ssModR→ ChR

mapping a semi-simplicial module (M•,d) to the chain complex (C•(M),D) and the semi-
simplicial map f : (M•,Md)→ (N•,Nd) to the chain map f : (C•(M),DM)→ (C•(N),DN) is a
functor. Like-wise for semi-cosimplicial maps.

Proof. For the first part of the statement, we have to show that 0 = D◦D : Cn(M)→Cn−2(M) for
all n. So compute

D◦D =
n−1

∑
i=0

(−)idi ◦
n

∑
j=0

(−) jd j =
n

∑
j=0

n−1

∑
i=0

(−)i+ jdi ◦d j, (4.3)

where we used that the composition of linear maps is a bilinear operation. We now split the double
sum in the rhs of (4.3) into two parts. In this way we will be able to exploit the semi-simplicial
identities:

D◦D =
n

∑
j=0

n−1

∑
i=0

(−)i+ jdi ◦d j

=
n

∑
j=1

j−1

∑
i=0

(−)i+ jdi ◦d j +
n−1

∑
j=0

n−1

∑
i= j

(−)i+ jdi ◦d j

=
n

∑
j=1

j−1

∑
i=0

(−)i+ jd j−1 ◦di +
n−1

∑
j=0

n−1

∑
i= j

(−)i+ jdi ◦d j (semi-simplicial identities).

Now, rename the indexes in the first sum as follows: j̄ = i and ī = j−1. Then we have ī≥ j̄ and
i+ j = ī+ j̄−1 so that

D◦D =
n−1

∑
ī=0

ī

∑
j̄=0

(−)ī+ j̄+1dī ◦d j̄ +∑
i≥ j

(−)i+ jdi ◦d j

=−
n−1

∑
j̄=0

n−1

∑
ī= j̄

(−)ī+ j̄dī ◦d j̄ +
n−1

∑
j=0

n−1

∑
i= j

(−)i+ jdi ◦d j = 0.

The second part of the statement is straightforward: for all n

f ◦DM = f ◦
n

∑
i=0

(−)i
Mdi =

n

∑
i=0

(−)i f ◦Mdi =
n

∑
i=0

(−)i
Ndi ◦ f =

(
n

∑
i=0

(−)i
Ndi

)
◦ f = DN ◦ f

where we used the bilinearity of composing linear maps. The final part of the statement is obvious
(do you see it?). ■

Fix a ring R. Actually there are functors

ssFree : ssSet→ ssModR and ssFun : ssSet→ sCosModR,
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defined as follows. First of all, every semi-simplicial set (together with the choice of a ring
R) gives rise to both a semi-simplicial and a semi-cosimplicial module. Let (X•,d) be a semi-
simplicial set. We define a semi-simplicial module (RX•,Rd) where RX• := (RXn)n∈N0 and
Rd := (Rdi : RXn → RXn−1)0≤i≤n∈N (as usual RXn denotes the free R-module generated by Xn

and Rdi : RXn→ RXn−1 the unique linear map such that Rdi(x) = di(x) ∈ Xn−1 ⊆ RXn−1 for all
x ∈ Xn ⊆ RXn). In other words (RX•,Rd) is defined by applying the functor Free : Set→ModR

to all the sets and all the structure maps of (X•,d). From the functorial properties of Free it easily
follows that the Rdi satisfy the semi-simplicial identities. Next, every semi-simplicial map f :
(X•,X d)→ (Y •,Y d) gives rise to a semi-simplicial homomorphism R f : (RX•,RX d)→ (RY •,RY d).
Namely for f = ( f n : Xn→ Y n)n∈N0 , we define R f := (R f n : RXn→ RY n)n∈N0 (in other words we
apply the functor Free : Set→ModR to all the maps in the family f ). Again from the functorial
properties of Free, the family R f is a semi-simplicial homomorphism. Finally, the assignment
ssFree : ssSet→ ssModR defined by putting ssFree(X•,d) := (RX•,Rd) for every semi-simplicial
set, and ssFree( f ) = R f for every semi-simplicial map f : (X•,X d)→ (Y •,Y d) is a functor. We
leave the details as

Exercise 4.4 Use the functorial properties of Free to show that the linear maps Rd = (Rdi :
RXn→ RXn−1)0≤i≤n∈N0 defined from a semi-simplicial set (X•,d) satisfy the semi-simplicial
identities. Prove also that the family R f = (R f n : RXn → RY n)n∈N0 defined from a semi-
simplicial map f : (X•,X d)→ (Y •,Y d) is a semi-simplicial homomorphism. Finally show that
the assignment ssFree : ssSet→ ssModR defined above is a functor. ■

Composing the functor ssFree : ssSet→ ssModR with the functor ssModR→ ChR we get a
functor ssSet→ ChR. In other words, every semi-simplicial set gives rise to a chain complex and
every semi-simplicial map gives rise to a chain map in a functorial way.

We conclude this section defining a functor ssFun : ssSet→ sCosModR. Let (X•,d) be a
semi-simplicial set. By applying the function module functor Fun : Set→ModR to all sets and
all structure maps in (X•,d) we get a semi-cosimplicial module (RX

• ,R
d), do you see it? Similarly,

let f : (X•,X d)→ (Y •,Y d) be a semi-simplicial map. Applying the functor Fun to all the maps
in the family f we get a semi-cosimplicial homomorphism R f : (RY

• ,RY d)→ (RX
• ,RX d). The

assignment ssFun : ssSet→ sCosModR defined by putting ssFun(X•,d) := (RX
• ,R

d) for every
semi-simplicial set (X•,d), and ssFun( f ) := R f for every semi-simplicial map f : (X•,X d)→
(Y •,Y d) is a contravariant functor.

Exercise 4.5 Use the functorial properties of Fun to show that the linear maps Rd := (Rdi :
RXn−1 → RXn

)0≤i≤n∈N0 defined from a semi-simplicial set (X•,d) satisfy the semi-cosimplicial
identities. Prove also that the family R f = (R f n

: RY n → RXn
)n∈N0 defined from a semi-simplicial

map f : (X•,X d)→ (Y •,Y d) is a semi-cosimplicial homomorphism. Finally show that the
assignment ssFun : ssSet→ sCosModR defined above is a contravariant functor. ■

Composing the functor ssFun : ssSet→ sCosModR with the functor sCosModR→CoChR we
get a contravariant functor ssSet→ CoChR. In other words, every semi-simplicial set gives rise to
a cochain complex and every semi-simplicial map gives rise to a cochain map in a functorial way.

R There is a duality functor ∗ : sCosModR→ sCosModR defined by applying the contravariant
functor ∗ : ModR→ModR to all modules and all maps. It should be clear that the functors
ssFun and ∗ ◦ ssFree are naturally isomorphic (i.e. there exists a natural isomorphism of
functors ι : ssFun→∗◦ ssFree). Do you see it?
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4.2 Group (Co)Homology
Let G be a (non-necessarily abelian) group. In this section we show that there is a (co)chain
complex naturally associated to G. Actually there is a (co)chain complex for any choice of a ring R
(of coefficients). Indeed, let (N•(G),d) be the nerve of G (Example 4.1). It is a semi-simplicial set.
Hence, for any ring R we can consider the semi-simplicial module (RN•(G),Rd):

· · ·
//////// RG×2 //

//
// RG //

// R{∗}

(in other words we act on the nerve with the functor ssFree : ssSet→ ssModR). In its turn
(RN•(G),Rd) determines a chain complex, denoted (C•(G,R),D), via Theorem 4.1.1. Let’s make
this complex explicit. According to the definition, C0(G,R) = RN0(G) is the free module spanned
by N0(G) = {∗}, hence it is the free module with 1 generator, i.e. C0(G) =R. In higher degree n> 0,
Cn(G,R) = RNn(G) = RG×n is the free module spanned by G×n. We now describe the differential.
Begin with D : RG→ R. As RG is a free module, D : RG→ R is completely determined by its
action on the basis elements, i.e. elements g ∈ G⊆ RG. According to Theorem 4.1.1 we have

Dg = d0g−d1g = ∗−∗= 0.

Using Theorem 4.1.1 again, we see that, in higher degree, the differential D : RG×n→ RG×(n−1)

acts as follows

D(g1, . . . ,gn)

=
(
d0−d1 + · · ·+(−)ndn

)
(g1, . . . ,gn)

= (g2, . . . ,gn)+
n−1

∑
i=1

(−)i(g1, . . . ,gigi+1, . . . ,gn)+(−)n(g1, . . . ,gn−1)

(4.4)

on basis elements (g1, . . . ,gn) ∈ G×n ⊆ RG×n (beware that the one on the rhs is just a formal linear
combination of (n−1)-tuples). Summarizing, the chain complex (C•(G,R),D) reads

0←− R 0←− RG D←− RG×2←− ·· · D←− RG×(n−1) D←− RG×n←− ·· · ,

where D is given by (4.4).
We will actually consider only the case R = Z (Except for Example 4.3). In this case we simply

write (C•(G),D) (instead of (C•(G,Z),D)).

Definition 4.2.1 — Group Chain Complex. The chain complex (C•(G),D) is called the group
chain complex of G (with integer coefficients) and the homology H•(G) := H•(C(G),D) is
called the group homology of G. Cycles in (C•(G),D) are denoted Z•(G) and boundaries are
denoted B•(G).

Our first aim is showing that isomorphic groups have isomorphic group homologies. We adopt
the following strategy: we show that the nerve construction is a functor

N : Gr→ ssSet

from the category of groups to the category of semi-simplicial sets. Then, for all n, from its very
definition, the n-th group homology becomes a functor itself: namely the composition

Gr N // ssSet ssFree // ssAb Thm. 4.1.1 // ChZ
Hn // Ab

(do you see it?). As the composition of functors is a functor and functors map isomorphisms to
isomorphisms the claim will follow.
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In order to show that the nerve construction is a functor we have to define how does it act on
morphisms. So let f : G→ H be a group homomorphism. We define N( f ) : N(G)→ N(H) to be
the family of maps N( f ) = ( f n : Nn(G)→ Nn(H))n∈N0 defined by

f n : Nn(G) = G×n→ Nn(H) = H×n, (g1, . . . ,gn) 7→ f n(g1, . . . ,gn) := ( f (g1), . . . , f (gn)).

It is easy to see that N( f ) is a semi-simplicial map. Additionally the assignment N : Gr→ ssSet
defined in this way is a functor. We leave the details as

Exercise 4.6 Prove that, for any group homomorphism f : G→ H, the family of maps N( f ) :
N(G)→N(H) defined above is a semi-simplicial map. Prove also that the assignment N : Gr→
ssSet defined in this way is a functor. ■

Next we define group cohomology. For any ring R we can consider the semi-cosimplicial
module (RN(G)

• ,Rd)

· · ·
oo oooooo RG×2 oo

oo
oo RG oo

oo R{∗} .

(in other words we act on the nerve with the functor ssFun : ssSet→ sCosModR). In its turn
(RN(G)
• ,Rd) determines a cochain complex, denoted (C•(G,R),D) via Theorem 4.1.1 again. We

have C0(G,R) = RN0(G) = R{∗} = R. In higher degree n > 0, Cn(G,R) = RNn(G) = RG×n
. As for the

differential, D : R→ RG is the zero map. Indeed, for all a ∈ R the differential Da is the function
Da : G→ R given by

Da(g) = a(d0g)−a(d1g) = a(∗)−a(∗) = a−a = 0,

for all g ∈ G, where we also interpreted a as the constant function on the one element set N0(G) =

{∗}. In higher degree, the differential D : RG×n → RG×(n+1)
acts as follows

Dc(g1, . . . ,gn+1)

=
(
c◦d0− c◦d1 + · · ·+(−)n+1c◦dn+1

)
(g1, . . . ,gn+1)

= c(g2, . . . ,gn+1)+
n

∑
i=1

(−)ic(g1, . . . ,gigi+1, . . . ,gn+1)+(−)n+1c(g1, . . . ,gn),

(4.5)

for all c ∈ RG×n
, and g1, . . . ,gn+1 ∈ G. Summarizing, the cochain complex (C•(G,R),D) reads

0−→ R 0−→ RG D−→ RG×2 D−→ ·· · −→ RG×n D−→ RG×(n+1) D−→ ·· · ,

where D is given by (4.5).
Now, go back to the case R = Z and consider the sequence of functors

Gr N // ssSet ssFun // sCosAb Thm. 4.1.1 // CoChZ . (4.6)

Their composition is a functor Gr→ CoChZ.

Definition 4.2.2 — Group Cochain Complex. The image (C•(G),D) of a group G under the
composition of functors (4.6) is called the group cochain complex of G (with integer coefficients)
and its cohomology H•(G) := H•(C(G),D) is called the group cohomology of G. Cocycles in
(C•(G),D) are denoted Z•(G) and coboundaries are denoted B•(G).
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The n-th group cohomology is a functor Hn : Gr→ Ab obtained composing the group cochain
complex functor Gr→CoChZ with the n-th cohomology functor Hn : CoChZ→Ab. We conclude
that isomorphic groups have isomorphic group cohomologies.

In the sequel we will try to convince the reader that the group (co)homology of G contains
relevant information about G by explicitly describing the group (co)homology in low degree.
Specifically, given a group G, we will provide descriptions for the first homology H1(G) of G, and
the first and the second cohomologies H1(G),H2(G) of G. We begin with the low degree part of
the group chain complex:

0←− Z 0←− ZG D←− ZG×2←− ·· · . (4.7)

As the differential D : ZG→ Z is the 0 map, H0(G) = Z. Moreover, ker(D : ZG→ Z) = ZG and

H1(G) = coker(D : ZG×2→ ZG) =
ZG

im(D : ZG×2→ ZG)
.

We will show below that H1(G) is canonically isomorphic to the abelianization of G. Recall
that, given two elements g1,g2 ∈ G, their commutator is the element

[g1,g2] := g−1
1 g−1

2 g1g2.

The commutators span a normal subgroup G′ ⊆ G called the commutator subgroup or derived sub-
group. The quotient Gab := G/G′ is an abelian group, hence a Z-module, called the abelianization
of G .

Theorem 4.2.1 There is a natural abelian group isomorphism

H1(G)∼= Gab

which identifies the homology class [g] of a basis element g ∈ G ⊆ ZG with the lateral gG′ ∈
Gab = G/G′.

Proof. Before starting, we fix our notation. The group G is not abelian in general, and we adopt
the multiplicative notation for the composition law in it. However, the group Gab is alway abelian
and we adopt the additive notation for the composition law in it. According to these conventions, as
the quotient map π : G→ Gab, g 7→ π(g) = gG′ is a group homomorphism we have

π(1G) = 0, π(g1g2) = π(g1)+π(g2), and π(g−1) =−π(g)

for all g,g1,g2 ∈ G.
We now come to the proof. We begin defining a linear map Φ : H1(G)→Gab. We do this in two

stages. First of all, from the universal property of the free module, the quotient map π : G→ Gab

uniquely extends to a linear map ϕ : ZG→ Gab. We want to show that

im(D : ZG×2→ ZG)⊆ ker(ϕ : ZG→ Gab).

i.e. ϕ ◦D = 0. As ϕ ◦D : ZG×2→ Gab is a linear map, it is completely determined by its action
on basis elements (g1,g2) ∈ G×2 ⊆ ZG×2. So let (g1,g2) ∈ G×2, and compute

ϕ ◦D(g1,g2) = ϕ (g2−g1g2 +g1) (Formula (4.4))

= ϕ(g2)−ϕ(g1g2)+ϕ(g1) (ϕ is a linear map)

= π(g2)−π(g1g2)+π(g2) (definition of ϕ)

= 0 (π is a group homomorphism)
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Now, from the universal property of the quotient module, the linear map ϕ : ZG→Gab descends to
a linear map

Φ : H1(G)→ Gab.

Next we define a linear map Ψ : Gab → H1(G). We do this in two stages again. Consider the
composition

G→ ZG→ H1(G),

where the first arrow is the inclusion and the second one is the projection. Denote it ψ : G→H1(G).
We want to show that ψ is a group homomorphism. So let g1,g2 ∈ G and compute

ψ(g1g2)−ψ(g1)−ψ(g2) = [g1g2]− [g1]− [g2], (4.8)

where, as usual, we used square brackets “[−]” to denote homology classes. But the rhs of (4.8) is

[g1g2]− [g1]− [g1] = [g1g2−g1−g2] =−[D(g1,g2)] = 0.

We conclude that

ψ(g1g2)−ψ(g1)−ψ(g2) = 0 ⇒ ψ(g1g2) = ψ(g1)+ψ(g2),

for all g1,g2 ∈ G, i.e. ψ is a group homomorphism as claimed. Next we show that G′ ⊆ kerψ . It
is enough to show that ψ annihilates all the commutators. But this immediately follows from the
fact that every group homomorphism maps commutators to commutators (do you see it?), and ψ

takes values in an abelian group (where all commutator vanish). From the universal property of the
quotient group, ψ descends to a group homomorphism, hence a linear map,

Ψ : Gab→ H1(G).

We leave it to the reader to check that Φ,Ψ are mutually inverse abelian group homomorphisms as
Exercise 4.7. ■

Exercise 4.7 Complete the proof of Theorem 4.2.1 showing that the linear maps Φ : H1(G)→
Gab and Ψ : Gab→ H1(G) are mutually inverse. ■

R The abelianization construction is actually functorial, namely every group homomorphism
g : G→ H preserves the commutator subgroups, i.e. f (G′)⊆ H ′, hence it induces a group
homomorphism f ab : Gab → Hab. The assignment ab : Gr→ ModZ defined by putting
ab(G) := Gab for every group, and ab( f ) := f ab for every group homomorphism f : G→ H,
is a functor. The isomorphism provided by Theorem 4.2.1 is actually a natural isomorphism
of functors.

We now turn to cohomology and we concentrate on the low degree part of the group cochain
complex:

0−→ Z 0−→ ZG D−→ ZG×2 D−→ ·· · . (4.9)

As D : Z→ ZG is the 0 map, we have H0(G) = Z, im(D : Z→ ZG) = 0 and

H1(G) = ker
(
D : ZG→ ZG×2)

.

We will show below that H1(G) coincides with the abelian group of group homomorphisms
Hom(G,Z) := HomGr(G,Z). The abelian group structure in Hom(G,Z) is given by the point-wise
addition.



4.2 Group (Co)Homology 93

Theorem 4.2.2 The first group cohomology H1(G) consists of group homomorphisms G→ Z:

H1(G) = Hom(G,Z).

Proof. Take a function f : G→ Z in ZG =C0(G). According to Formula (4.5), its differential is
the function D f : G×2→ Z in ZG×2

=C2(G) is given by

D f (g1,g2) = f (g2)− f (g1g2)+ f (g1).

So D f vanishes if and only if

f (g1g2) = f (g1)+ f (g2)

for all (g1,g2) ∈ G×2, i.e. f : G→ Z is a group homomorphism. ■

Group homomorphisms G→ Z are sometimes called multiplicative functions on G.

R There is a natural abelian group isomorphism Hom(G,Z)∼= Hom(Gab,Z) = (Gab)∗ defined
as follows. Let f : G→ Z be a group homomorphism. As Z is an abelian group f vanishes on
commutators (do you see it?). So f descends to a group homomorphism f ab : Gab→Z, hence
a Z-linear map, given by f ab(gG′) = f (g). Conversely, given a linear map f ab : Gab→ Z,
composing with the projection π : G→ Gab we get a group homomorphism f = f ab ◦π :
G→ Z. We conclude that the assignment Hom(G,Z)→Hom(Gab,Z), f 7→ f ab is an abelian
group isomorphism. Therefore we also have that the first cohomology H1(G) is canonically
isomorphic to the dual of the first homology: H1(G)∼= H1(G)∗.

Corollary 4.2.3 If G is an abelian group, then H1(G)∼= G and H1(G)∼= G∗.

Next we discuss the second group cohomology H2(G). To do this we first need to define group
extensions. Let G,K be groups. A group extension of the group G by the group K is (another group
H together with) a short exact sequence of groups

1−→ K α−→ H
β−→ G−→ 1. (4.10)

This means that α is a group monomorphism, β is a group epimorphism and, additionally, imα =
kerβ . Two group extensions 1→ K → H → G→ 1 and 1→ K → H ′→ G→ 1 of G by K are
equivalent if there exists a group isomorphism Φ : H→ H ′ such that the diagram

1 // K // H //

Φ

��

G // 1

1 // K // H ′ // G // 1

commutes. Here the vertical “=” denote the identity maps. It should be clear that “equivalence” is
indeed an equivalence relation on the collection of group extensions of G by K. The classification
problem of group extensions consists in describing the set of equivalence classes of group extensions
and, if possible, identifying a distinguished representative in each class. A group extension (4.10) is
called central if imα is in the center of H, i.e., for all k ∈ K and all h ∈ H we have α(k)h = hα(k).
Notice that every group extension equivalent to a central extension is also central. Group extensions
are standard tools in group theory. Here we relate them to group cohomology.
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Theorem 4.2.4 Let G be a group, then central extensions of G by Z are classified by the second
cohomology module H2(G), i.e. there exists a natural bijection between H2(G) and equivalence
classes of central extensions of G by Z.

Proof. We begin showing that every 2-cocycle c ∈ Z2(G) determines a central extension of G by Z.
Recall that a cochain c ∈C2(G) is a function c : G×2→ Z. According to (4.5), its differential is the
function Dc : G×3→ Z given by

Dc(g1,g2,g3) = c(g2,g3)− c(g1g2,g3)+ c(g1,g2g3)− c(g1,g2),

for all (g1,g2,g3) ∈ G×3. So Dc = 0 iff

c(g2,g3)− c(g1g2,g3)+ c(g1,g2g3)− c(g1,g2) = 0 (4.11)

for all g1,g2,g3 ∈ G. From the cocycle condition (4.11) it follows that

c(1G,g) = c(1G,1G) = c(g,1G) (4.12)

for all g∈G. To see this just use g1 = g2 = 1, g3 = g, and g1 = g, g2 = g3 = 1 in (4.11). Our strategy
is using c to define a group multiplication ⋆c in the set Z×G. For evey (m1,g1),(m2,g2) ∈ Z×G
put

(m1,g1)⋆c (m2,g2) :=
(
m1 +m2 + c(g1,g2),g1g2

)
.

If c is a cocycle, then (Z×G,⋆c) is a group. Indeed
✓ (associativity) left as Exercise 4.8.(1);
✓ (unit) the element (−c(1G,1G),1G) is a unit with respect to the multiplication ⋆c (Exercise

4.8);
✓ (inversion) the element (−m−c(g,g−1)−c(1G,1G),g−1) is an inverse of (m,g) with respect

to ⋆c (see Exercise 4.8 again).
So (Z×G,⋆c) is a group that we denote Hc. Consider the sequence

1 // Z αc // Hc
β

// G // 1
m � // (m− c(1G,1G),1G)

(m,g) � // g

. (4.13)

A straightforward computation shows that both αc,β are group homomorphisms. It is also clear
that αc is injective, β is surjective and imαc ⊆ kerβ (do you see it?). Finally, an element (m,g) ∈
Hc = Z×G is in the kernel of β if and only if g = 1G. In this case

(m,g) = (m,1G) = (m+ c(1G,1G)− c(1G,1G),1G) = αc (m+ c(1G,1G)) ∈ imαc.

We conclude that imαc = kerβ so that (4.13) is a group extension of G by Z. It is actually a central
extension, indeed, for all m ∈ Z and all (n,g) ∈ Hc = Z×G, we have

αc(m)⋆c (n,g) =
(
m− c(1G,1G),1G

)
⋆c (n,g) =

(
m− c(1G,1G)+n+ c(1G,g),g

)
= (m+n,g) = (n,g)⋆c αc(m),

where we used that, for all g ∈ G, c(1G,g) = c(1G,1G). So, we constructed a central extension of
G by Z for every 2-cocycle in the group cochain complex.
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Next we show that, if c,c′ ∈ Z2(G) are cohomologous 2-cocycles in (C•(G),D), then the
associated central extensions

1−→ Z αc−→ Hc
β−→ G−→ 1 and 1−→ Z

αc′−→ Hc′
β−→ G−→ 1

are equivalent. So let a ∈C1(G) = ZG be such that c− c′ = Da. This means that a : G→ Z is a
function such that

c(g1,g2)− c′(g1,g2) = a(g2)−a(g1g2)+a(g1) (4.14)

for all g1,g2 ∈ G. In particular

c(1G,1G)− c′(1G,1G) = a(1G). (4.15)

Consider the map

Φa : Hc→ Hc′ , (m,g) 7→Φa(m,g) := (m+a(g),g).

We claim that Φa is a group isomorphism and that the diagram

1 // Z // Hc //

Φa

��

G // 1

1 // Z // Hc′ // G // 1

(4.16)

commutes. First of all, for any two elements (m1,g1),(m2,g2) ∈ Hc we have

Φa
(
(m1,g1)⋆c (m2,g2)

)
= Φa

(
m1 +m2 + c(g1,g2),g1g2

)
=
(
m1 +m2 + c(g1,g2)+a(g1g2),g1g2

) (4.17)

and

Φa(m1,g1)⋆c′ Φa(m2,g2) =
(
m1 +a(g1),g1

)
⋆c′
(
m2 +a(g2),g2

)
=
(
m1 +m2 +a(g1)+a(g2)+ c′(g1,g2),g1g2

)
.

(4.18)

It immediately follows from (4.14) that

Φa
(
(m1,g1)⋆c (m2,g2)

)
= Φa(m1,g1)⋆c′ Φa(m2,g2),

i.e. Φa is a group homomorphism. It is also invertible, the inverse Φ−1
a : Hc′ → Hc being given by

Φ−1
a (n,h) = Φ−a(n,h) := (n−a(h),h) (do you see it?). So it is a group isomorphism as claimed.

We leave it to the reader to check that the diagram (4.16) commutes as part of Exercise 4.8.
In the following we denote by ∼ the equivalence of central extensions and by [H]∼ the

equivalence class of a central extension 0→ Z→ H → G→ 0. As cohomologous 2-cocycles
determine equivalent central extensions we have a well defined map

H2(G) → {central extensions of G by Z}
/
∼

[c] 7→ [Hc]∼
. (4.19)

It remains to prove that this map is bijective. We begin with some general remarks on the extension
1→ Z→ Hc→ G→ 1 determined by a cocycle c ∈ Z2(G). First of all, we denote by h−1

c ∈ Hc

the inverse of an element h ∈ Hc. Second, a straightforward computation shows that, for every
(m,g) ∈ Hc = Z×G, we have

(m,g) = αc(m)⋆c (0,g) (4.20)
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(check Identity (4.20) as an exercise). This remark will be useful in what follows. Now, in order
to prove the injectivity of (4.19), take two cohomology classes [c], [c′] ∈ H2(G) and assume that
[Hc]∼ = [Hc′ ]∼. This means that the extensions 0→ Z→Hc→G→ 0 and 0→ Z→Hc′ →G→ 0
are equivalent. Let Φ : Hc→ Hc′ be a group isomorphism such that the diagram

1 // Z // Hc //

Φ

��

G // 1

1 // Z // Hc′ // G // 1

commutes. Take g ∈ G and consider the element A(g) := Φ(0,g)⋆c′ (0,g)−1
c′ ∈ Hc′ . We have

β (A(g)) = β
(
Φ(0,g)⋆c′ (0,g)−1

c′
)
= β (Φ(0,g))β

(
(0,g)−1

c′
)
= β (0,g)β (0,g)−1 = 1G,

where we used that β is a group homomorphism, together with β ◦Φ = β . This computation shows
that A(g) ∈ kerβ = imαc′ , hence there exists a (unique) a(g) ∈ Z such that A(g) = αc′

(
a(g)

)
,

which in turn implies that

Φ(0,g) = A(g)⋆c′ (0,g) = αc′
(
a(g)

)
⋆c′ (0,g). (4.21)

We are now ready to better describe Φ. Namely, for every (m,g) ∈ Hc, we have

Φ(m,g) = Φ
(
αc(m)⋆c (0,g)

)
(Identity (4.20))

= Φ(αc(m))⋆c′ Φ(0,g) (Φ is a group homomorphism)

= αc′(m)⋆c′ αc′
(
a(g)

)
⋆c′ (0,g) (Φ◦αc = αc′ and (4.21))

= αc′ (m+a(g))⋆c′ (0,g) (αc′ is a group homomorphism)

= (m+a(g),g) (Identity (4.20) for c = c′).

Summarizing we have proved that there exists a function a : G→ Z such that

Φ(m,g) = Φa(m,g) = (m+a(g),g)

for all (m,g) ∈ Hc. Finally, the same computations as in (4.17) and (4.18), but in reverse order,
reveal that (4.14) holds for all g1,g2 ∈G, i.e. c−c′=Da. In other words, c and c′ are cohomologous
cocycles, i.e. [c] = [c′] and we conclude that the map (4.19) is injective as desired.

In order to prove the surjectivity of (4.19), let

0−→ Z α−→ H
β−→ G−→ 0

be a central extension of G by Z. We have to show that the latter is equivalent to an extension
of the type 0→ Z→ Hc→ G→ 0 for some c ∈ Z2(G). To do this choose any right inverse s of
β : H→ G, i.e. any map s : G→ H such that β ◦ s = idG (it exists by the Axiom of Choice). We
claim that, for every h ∈H, there exists a unique m ∈ Z and a unique g ∈G such that h = α(m)s(g).
For the existence, put g := β (h) ∈ G and consider hs(g)−1 ∈ H. Then we have

β
(
hs(g)−1)= β (h)β (s(g))−1 = gg−1 = 1G,

where we used that β is a group homomorphism. This shows that hs(g)−1 ∈ kerβ = imα . Hence,
there exists a unique m ∈ Z such that hs(g)−1 = α(m), i.e. h = α(m)s(g) as desired. For the
uniqueness, assume h = α(m′)s(g′) for some (other) (m′,g′) ∈ Z×G. We have

g = β (h) = β (α(m′)s(g′)) = β (α(m′))β (s(g′))) = 1Gg′ = g′,
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where we used that β ◦α = 1G (the trivial homomorphism), that β is a group homomorphism and
that β ◦ s = idG. As g = g′ we also have

α(m) = hs(g)−1 = hs(g′)−1 = α(m′)

and, from the injectivity of α , we conclude that m = m′ as well. We are now ready to define
a bijection Φ : H → Z×G. For any h ∈ H we put Φ(h) = (m,g) where (m,g) ∈ Z×G is the
pair uniquely defined by α(m)s(g) = h. The map Φ is clearly inverted by Φ−1 : Z×G→ H,
(m,g) 7→ α(m)s(g).

Now, we can use the bijection Φ to transport the group structure from H to Z×G. In other
words, we define a multiplication ⋆ in Z×G by putting

(m1,g1)⋆ (m2,g2) := Φ
(
Φ
−1(m1,g1)Φ

−1(m2,g2)
)
,

for all (m1,g1),(m2,g2) ∈ Z×G. It is clear that (Z×G,⋆) is a group and Φ : H → Z×G is
a group isomorphism. We can also define group homomorphisms ᾱ = Φ ◦α : Z→ Z×G and
β̄ = β ◦Φ−1 : Z×G. Then

0−→ Z ᾱ−→ Z×G
β̄−→ G−→ 0

is a central extension of G by Z, and the diagram

1 // Z α // H
β
//

Φ

��

G // 1

1 // Z ᾱ // Z×G
β̄
// G // 1

is an equivalence of central extensions. It immediately follows from the explicit expression of Φ−1

that β̄ is the projection onto the second factor (do you see it? If not, check the details). It remains to
prove that ⋆= ⋆c, and ᾱ = αc for some cocycle c ∈ Z2(G). The former two facts are a consequence
of the group and the central extension axioms as we now show.

Take g1,g2 ∈ G and consider the element C(g1,g2) := s(g1)s(g2)s(g1g2)
−1. We have

β
(
C(g1,g2)

)
= β

(
s(g1)s(g2)s(g1g2)

−1)= β
(
s(g1)

)
β
(
s(g2)

)
β
(
s(g1g2)

)−1

= g1g2(g1g2)
−1 = 1G,

where we used that β is a group homomorphism and that β ◦ s = idG. This computation shows
that C(g1,g2) ∈ kerβ = imα , hence there exists a (unique) c(g1,g2) ∈ Z such that C(g1,g2) =
α
(
c(g1,g2)

)
. This in turn implies

s(g1)s(g2) = α
(
c(g1,g2)

)
s(g1g2). (4.22)

We are now ready to better describe the multiplication ⋆. Namely, for every (m1,g1),(m2,g2) ∈
Z×G we have

(m1,g1)⋆ (m2,g2)

= Φ
(
Φ
−1(m1,g1)Φ

−1(m2,g2)
)

(definition of ⋆)

= Φ
(
α(m1)s(g1)α(m2)s(g2)

)
(explicit expression of Φ

−1)

= Φ
(
α(m1)α(m2)s(g1)s(g2)

)
(imα is in the center of H)

= Φ
(
α(m1)α(m2)α

(
c(g1,g2)

)
s(g1g2)

)
(Identity (4.22))

= Φ
(
α(m1 +m2 + c(g1,g2))s(g1g2)

)
(α is a group homomorphism)

=
(
m1 +m2 + c(g1,g2),g1g2

)
(definition of Φ).

(4.23)
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Summarizing we have proved that there exists a 2-cochain c : G×2→ Z in (C•(G),D) such that,
for all (m1,g1),(m2,g2) ∈ Z×G we have

(m1,g1)⋆ (m2,g2) = (m1,g1)⋆c (m2,g2) = (m1 +m2 + c(g1,g2),g1g2) .

As ⋆ is a group multiplication, it is associative, and Exercise 4.8.(1) reveals that c is a 2-cocycle.
Finally, a similar computation as that in (4.23) shows that ᾱ = αc, and this concludes the proof. ■

Exercise 4.8 Fill all the gaps in the proof of Theorem 4.2.4: first of all prove the following
(1) Let c ∈ Z2(G) be a 2-cochain in the group cochain complex of the group G, and let ⋆c

be the multiplication in Z×G defined in the proof of Theorem 4.2.4. Prove that ⋆c is
associative if and only if c is a cocycle. In this case, prove also that
✓ (−c(1G,1G),1G) is a unit with respect to ⋆c;
✓ (−m− c(g,g−1)− c(1G,1G),g−1) is an inverse of (m,g) with respect to ⋆c.

(2) Let c,c′ ∈ Z2(G) be cohomologous 2-cocycles, and let a∈C1(G) be such that c−c′ = Da.
Prove that the diagram 4.16 commutes.

Finally, prove that ᾱ = αc where ᾱ,c are those defined at the end of the proof. ■

■ Example 4.3 We conclude this section discussing the (co)homology of finite groups with
coefficients in rational numbers Q. So, let G = {1G = g1,g2, . . . ,gk} be a finite group of order k.
We want to prove that

Hn(G,Q) =

{
Q if n = 0
0 otherwise

.

The group chain complex is

0←−Q 0←−QG D←−QG×2 D←−QG×3 D←− ·· · ,

and we know already that H0(G,Q) =Q. As the first differential D : QG→Q vanishes it remains
to show that the “truncated chain complex”

0←−QG D←−QG×2 D←−QG×3 D←− ·· · , (4.24)

is acyclic. Actually the chain complex (4.24) possesses a canonical contracting homotopy h acting
as follows

h(gi1 , . . . ,gin) :=
1
k

k

∑
j=1

(g j,gi1 , . . . ,gin) (4.25)

on basis elements (gi1 , . . . ,gin) ∈ G×n ⊆QG×n. We stress that, in order to define h, we used both
that the ring of coefficients is Q (in the overall factor 1/k) and that G is finite (the sum in (4.25) is
finite). We leave it to the reader to check that D◦h+h◦D = id in Exercise 4.9.

One can show in a similar way that

Hn(G,Q) =

{
Q if n = 0
0 otherwise

.

As for the group chain complex, it is enough to look at the truncated cochain complex

0−→QG D−→QG×2 D−→QG×3 D−→ ·· · , (4.26)

which possesses a contracting homotopy h∗ defined by

h∗(c)(gi1 , . . . ,gin−1) =
1
k

k

∑
j=1

c(g j,gi1 , . . . ,gin−1)

for all c ∈QG×n
and all gi1 , . . . ,gin−1 ∈ G. ■
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Exercise 4.9 Prove that the maps h and h∗ in Example 4.3 are well defined contracting homo-
topies for the truncated complexes (4.24) and (4.26). ■

4.3 Hochschild (Co)Homology
In this section we introduce the notion of associative algebra and show that any such an algebraic
structure determines both a chain complex (in a functorial way) and a cochain complex. Such
complexes contain information on the associative algebra. Let K be a field.

Definition 4.3.1 — Associative Algebra. An associative K-algebra (or simply an algebra)
is a K-vector space (A,+, ·) equipped with an additional composition law ⋆ : A× A → A
(multiplication) such that

✓ ⋆ is K-bilinear;
✓ ⋆ is associative.

In particular, (A,+,⋆) is a ring. A commutative algebra is an algebra whose associative
multiplication is commutative. If A,B are K-algebras, an algebra homomorphism between them
is a K-linear map f : A→ B preserving the associative multiplications, i.e. for every α,β ∈ A

f (α ⋆β ) = f (α)⋆ f (β ).

An algebra isomorphism is an invertible algebra homomorphism. K-algebras and their homo-
morphisms form a category denoted AlgK (Exercise 4.10).

Exercise 4.10 Show that K-algebras and K-algebra homomorphisms form a category whose
isomorphisms are algebra isomorphisms. ■

As for rings and vector spaces, the symbols ⋆, · are usually omitted in products, and we write
aα , and αβ instead of a ·α and α ⋆β , for a ∈ K, and α,β algebra elements. As a first trivial
example, notice that K itself is a (commutative) algebra in the obvious way.

■ Example 4.4 — Real Algebra of Complex Numbers. Complex numbers (with their real vector
space and their ring structures) form a commutative R-algebra. ■

■ Example 4.5 — Endomorphism Algebra. The space Mn(K) of n×n matrices over K is both a
vector space and a ring (whose associative product is the matrix multiplication). The ring and the
vector space structures are compatible in the sense that, with all its operations, Mn(K) is a K-algebra.
More generally, given a K-vector space V , the space EndKV of K-linear endomorphisms f : V →V
is a (generically non-commutative) K-algebra. ■

■ Example 4.6 — Group Algebra. Let G be a (non-necessarily abelian) group. The vector space
KG spanned by G can be given the structure of an associative algebra as follows. By the Multilinear
Extension Theorem (Theorem 1.4.1) the group multiplication G×G→ G extends to a unique
bilinear map

⋆ : KG×KG→KG.

In other words, for any two formal linear combinations

α = ∑
i

aigi, β = ∑
j

b jh j, ai,b j ∈K, gi,h j ∈ G,

we put

α ⋆β = ∑
i, j

aib j (gih j) ∈KG.
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The pair (KG,⋆) is an associative algebra called the group algebra of G (with coefficients in K).
Notice that the group algebra is commutative if and only if G is an abelian group. ■

■ Example 4.7 — Algebra of Polynomials. The ring K[x1, . . . ,xn] of polynomials in n indetermi-
nates x1, . . . ,xn is also a K-vector space. The ring and the vector space structures are compatible in
the sense that K[x1, . . . ,xn] is actually a commutative algebra (the algebra of polynomials). ■

■ Example 4.8 — Function Algebra. Let X be a set, the K-vector space KX of functions X→K is
also a ring with the point-wise addition and multiplication (see Example 1.6). With all its operations
KX is a commutative algebra. ■

We now show that there is a functor

AlgK→ ssVectK

from algebras to semi-simplicial K-vector spaces. Let A be a K-algebra. Consider the family of
vector spaces A⊗ = (A⊗n+1)n∈N0 , where we put

A⊗k := A⊗K · · ·⊗K A︸ ︷︷ ︸
k times

.

The family A⊗ can be given the structure of a semi-simplicial K-vector space

· · ·
//////// A⊗3 //

//
// A⊗2 //

// A

with faces d = (di : A⊗n+1→ A⊗n)0≤i≤n∈N uniquely defined by

di (α0⊗·· ·⊗αn) :=
{

α0⊗·· ·⊗αiαi+1⊗·· ·⊗αn if 0≤ i < n
αnα0⊗α1⊗·· ·⊗αn−1 if i = n

, (4.27)

α0, . . . ,αn ∈ A. As the maps (α0, . . . ,αn) 7→ di(α0⊗·· ·⊗αn) are K-linear in all their arguments
α0, . . . ,αn, it follows from the universal property of the tensor product that the di are indeed well-
defined linear maps. We leave it to the reader to check the semi-simplicial identities as (part of)
Exercise 4.11.

Now let f : A→ B be an algebra homomorphism. We define f⊗ : A⊗→ B⊗ to be the family of
linear maps f⊗ = ( f⊗n+1 : A⊗n+1→ B⊗n+1)n∈N0 given by

f⊗n+1(α0⊗·· ·⊗αn) := f (α0)⊗·· ·⊗ f (αn), α0, . . . ,αn ∈ A.

As the expression f (α0)⊗·· ·⊗ f (αn) is K-linear in all its arguments α0, . . . ,αn, it follows that the
f⊗n+1 are well-defined linear maps. It is easy to see that f⊗ is a semi-simplicial map. Additionally
the assigment AlgK → ssVectK that maps an algebra A to the semi-simplicial vector space A⊗

and an algebra homomorphism f to the semi-simplicial module homomorphism f⊗ is a functor
(Exercise 4.11).

Exercise 4.11 Prove that the linear maps di defined in (4.27) satisfy the semi-simplicial iden-
tities. Prove also that, for any algebra homomorphism f : A→ B, the family f⊗ : A⊗→ B⊗

defined above is a semi-simplicial module homomorphism. Finally, prove that the assignment
AlgK→ ssVectK defined in this way is a functor. ■

Composing with the usual functor ssVectK→ChK from Theorem 4.1.1 we get a chain complex
(HC•(A),D). Explicitly

0←− A D←− A⊗2←− ·· · D←− A⊗n D←− A⊗(n+1)←− ·· ·
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where D acts as follows

D(α0⊗·· ·⊗αn)

=
(
d0−d1 + · · ·+(−)ndn

)
(α0⊗·· ·⊗αn)

=
n−1

∑
i=0

(−)i
α0⊗·· ·⊗αiαi+1⊗·· ·⊗αn +(−)n

αnα0⊗α1⊗·· ·⊗αn−1,

on decomposable elements α0⊗·· ·⊗αn+1 ∈ A⊗(n+1).

Definition 4.3.2 — Hochschild Homology. The image (HC•(A),D) of a K-algebra A under
the composition of functors AlgK→ ssVectK→ChK is called the Hochschild chain complex of
A (with coefficients in A) and its homology HH•(A) := H•(HC(A),D) is called the Hochschild
homology of A. The differential D is called the Hochschild differential. Cycles in (HC•(A),D)
are denoted HZ•(A) (Hochschild cycles) and boundaries are denoted HB•(A) (Hochschild
boundaries).

The n-th Hochschild homology is a functor HHn : AlgK → VectK obtained composing the
Hochschild chain complex functor AlgK→ChK with the n-th homology functor Hn : ChK→VectK.
As an immediate consequence we get that isomorphic algebras have isomorphic Hochschild
homologies.

As a simple example, consider the 0-th Hochschild homology HH0(A) of an associative algebra
A. The (Hochschild) differential on 1 chains

D : A⊗2→ A,

acts on decomposable elements α0⊗α1 ∈ A⊗K A, α0,α1 ∈ A as follows:

D(α0⊗α1) = α0α1−α1α0.

We conclude that

im
(
D : A⊗K A→ A

)
= [A,A] := Span

(
α0α1−α1α0 : α0,α1 ∈ A

)
,

and

HH0(A) =
A

im
(
D : A⊗K A→ A

) = A
/
[A,A] .

■ Example 4.9 Let A = K. In this case, it follows from Proposition 1.4.5.(2), that HCn(A) =
A⊗(n+1) ∼=K for all n. The latter isomorphism is simply given by

a0⊗·· ·⊗an = a0 · · ·an(1⊗·· ·⊗1) 7→ a0 · · ·an,

on decomposable elements (do you see it?) and, in what follows, we will use it to identify HCn(A)
with K for all n. If we do so all the face maps di : A⊗(n+1) → A⊗n boil down to the identity:
di = idK : K→K, for all i. It follows that

D =
n

∑
i=0

(−)idi =

{
idK if n is even
0 if n is odd

.

In other words the Hochschild chain complex of the 1-dimensional K-algebra K is

0←−K 0←−K id←−K 0←−K id←−K←− ·· ·

whose homology clearly is

HHn(K) =

{
K if n = 0
0 otherwise

(do you see it?). ■



102 Chapter 4. Applications in Algebra

From an algebra, one can also construct a cochain complex. For a K-algebra A, consider the
family of vector spaces Mult(A) := (MultnK(A,A))n∈N0 , where we put

MultkK(A,A) := MultkK(A, . . . ,A︸ ︷︷ ︸
k times

;A).

The family Mult(A) can be given the structure of a semi-cosimplicial K-vector space

· · ·
oo oooooo Mult2K(A,A)

oo
oo
oo HomK(A,A)

oo
oo A .

with faces d = (di : Multn−1
K (A)→MultnK(A))0≤i≤n∈N defined by

diµ(α1, . . . ,αn) :=


α1µ(α2, . . . ,αn) if i = 0

µ(α1, . . . ,αiαi+1, . . . ,αn) if 0 < i < n
µ(α1, . . . ,αn−1)αn if i = n

, (4.28)

µ ∈MultnK(A), α1, . . . ,αn ∈ A. It is easy to see that the di are indeed linear maps (do you see it?).
We leave it to the reader to check the semi-cosimplicial identities as (part of) Exercise 4.12.

We remark that, unfortunately, the construction A 7→MultK(A,A) is not a functor between the
categories AlgK and VectK (but it is a functor from the category whose objects are associative
K-algebras and whose morphisms are K-algebra isomorphisms). Nonetheless, isomorphic algebras
give rise to isomorphic semi-cosimplicial vector spaces (Exercise 4.12).

Exercise 4.12 Prove that the linear maps di defined in (4.28) satisfy the semi-cosimplicial
identities. Prove also that, any algebra isomorphism φ : A→ B induces in a natural way a
semi-cosimplicial vector space isomorphism Mult(φ) : Mult(B)→ Mult(A), in such a way
that the construction φ 7→Mult(φ) satisfies the usual functorial properties (why doesn’t this
construction work on plain algebra homomorphisms?). ■

Acting with the usual functor sCosVectK→CoChK from Theorem 4.1.1 on the semi-cosimplicial
vector space Mult(A) we get a cochain complex denoted (HC•(A),D). Explicitly

0−→ A D−→ HomK(A,A)
D−→ ·· · −→MultnK(A,A)

D−→Multn+1
K (A,A) D−→ ·· ·

where D acts as follows

Dµ(α1, . . . ,αn+1)

=
((

d0−d1 + · · ·+(−)n+1dn+1
)
µ

)
(α1, . . . ,αn+1)

= α1µ(α2, . . . ,αn+1)+
n

∑
i=1

(−)i
µ(α1, . . . ,αiαi+1, . . . ,αn+1)+(−)n+1

µ(α1, . . . ,αn)αn+1,

for all µ ∈MultnK(A,A) and all α1, . . . ,αn+1 ∈ A.

Definition 4.3.3 — Hochschild Cohomology. The cochain complex (HC•(A),D) is called
the Hochschild cochain complex of A (with coefficients in A) and its cohomology HH•(A) :=
H•(HC(A),D) is called the Hochschild cohomology of A. The differential D is also called the
Hochschild differential. Cocycles in (HC•(A),D) are denoted HZ•(A) (Hochschild cocycles)
and coboundaries are denoted HB•(A) (Hochschild coboundaries).

Despite the n-th Hochschild cohomology is not a functor from AlgK to VectK, in view of
Exercise 4.12, isomorphic algebras have isomorphic Hochschild cohomologies anyway (do you see
it?).
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Exercise 4.13 Prove that the Hochschild cohomology of the 1-dimensional K-algebra A =K is
K in degree 0 and it is 0 in other degrees. ■

In the rest of this section we concentrate on providing interpretations of the low degree
Hochschild cohomologies. The low degree part of the Hochschild cochain complex is

0−→ A D−→ HomK(A,A)
D−→ BilK(A,A;A) D−→ ·· · .

The differential D : A→ HomK(A,A) acts as follows. For all α ∈ A the differential Dα : A→ A is
given by

Dα(β ) = βα−αβ =: [β ,α],

for all β ∈ A. Hence

HH0(A) = ker
(
D : A→ HomK(A,A)

)
= Z(A) := {α ∈ A : [α,β ] = 0, for all β ∈ A} .

The subspace Z(A)⊆ A is called the center of A. Notice that if A is a commutative algebra, then
HH0(A) = Z(A) = A.

Next we describe Hochschild 1-cohomologies. The differential

D : HomK(A,A)→ BilK(A,A;A)

is given by

Dϕ(α1,α2) = α1ϕ(α2)−ϕ(α1α2)+ϕ(α1)α2 (4.29)

for all ϕ : A→ A ∈ HomK(A,A) and all α1,α2 ∈ A. We conclude the the kernel HZ1(A) = ker
(
D :

HomK(A,A)→ BilK(A,A;A)
)

consists of those K-linear maps ϕ : A→ A such that

ϕ(α1α2) = α1ϕ(α2)+ϕ(α1)α2, (4.30)

for all α1,α2 ∈ A. Any such linear map is called a derivation of A, and the identity (4.30) is called
the Leibniz rule.

R The terminology derivation stems from the fact that the usual partial derivatives ∂

∂xi
are

derivations of the commutative R-algebra C∞(Rn) of smooth real valued functions f =
f (x1, . . . ,xn) : Rn→ R (i.e. functions that can be differentiated infinitely many times). Ac-
tually it can be proved that an R-linear operator X : C∞(Rn)→ C∞(Rn) is a derivation of
C∞(Rn) if and only if it is of the form

X =
n

∑
i=1

Xi(x1, . . . ,xn)
∂

∂xi

for some smooth functions Xi = Xi(x1, . . . ,xn) ∈C∞(Rn).

The space of derivations of A is denoted DerA.
For any α ∈ A the image Dα ∈ HomK(A,A) is a 1-coboundary, hence a 1-cocycle, hence a

derivation. Specifically, according to the computation above, it is the derivation given by

Dα(β ) = [β ,α] =−[α,β ] =−(αβ −βα), β ∈ A.

The expression [α,β ] is called the commutator of α,β , and every derivation of the form Dα is
called an inner derivation. The space of inner derivations of A is denoted InnDerA. We conclude
that

HH1(A) =
ker
(
D : HomK(A,A)→ BilK(A,A;A)

)
im
(
D : A→ HomK(A,A)

) = DerA
/

InnDerA ,
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which is sometimes called the space of outer derivations of A (or the space of non-trivial infinitesi-
mal symmetries of A).

We conclude this section discussing Hochschild 2-cohomologies. We begin with an extremely
informal motivating discussion about (infinitesimal) deformations of an algebra A. So let A be an
associative K-algebra. The associative product A×A→ A is a K-bilinear map. In the following we
will denoted by µ : A×A→ A this bilinear map. Notice that it can be seen itself as a 2-cochain in
the Hochschild complex (HC•(A),D) of A. A deformation of A is then a family µt : A×A→ A of
K-bilinear maps depending on a parameter t ∈K such that

(1) µt is an associative product (giving to the K-vector space A a new structure of algebra) for all
t;

(2) µ0 = µ .
A deformation µt of A can be thought of as a curve starting from µ in the space of associative
algebra structures on the K-vector space A (notice that the vector space structure is fixed, which is
not a big loss of generality as two vector spaces are always isomorphic provided only they have the
same dimension). The associativity condition on µt clearly reads

µt
(
µt(α1,α2),α3

)
−µt

(
α1,µt(α2,α3)

)
= 0, α1,α2,α3 ∈ A. (4.31)

Two deformations µt ,µ
′
t of the same associative algebra A are equivalent if there is a family

Φt : A→ A of K-linear isomorphisms such that
(1) Φt : (A,µt)→ (A,µ ′t ) is an algebra isomorphism for all t;
(2) Φ0 = idA.

The idea behind the latter definition is that two isomorphic algebras should be counted as the same
algebra. Condition (1) explicitly reads

µ
′
t
(
Φt(α1),Φt(α2)

)
−Φt

(
µt(α1,α2)

)
= 0, α1,α2 ∈ A. (4.32)

Now, suppose that it makes sense to take the “Taylor expansion” in t of µt (this does actually
make sense in certain cases), and that we want to retain the linear term only. In other words we
write

µt = µ0 + t µ̇ +O(t2) = µ + t µ̇ +O(t2), (4.33)

for some K-bilinear map µ̇ : A×A→ A. In terms of the expansion (4.33), the lhs of the associativity
condition (4.31) reads

µt
(
µt(α1,α2),α3

)
−µt

(
α1,µt(α2,α3)

)
= t
(

µ̇
(
µ(α1,α2),α3)+µ

(
µ̇(α1,α2),α3)− µ̇

(
α1,µ(α2,α3)

)
−µ

(
α1, µ̇(α2,α3)

))
+O(t2)

(4.34)

for all α1,α2,α3 ∈ A, where the degree 0 term vanishes because (4.31) is satisfied when t = 0.
Next, assume that µt ,µ

′
t are equivalent deformations and that the equivalence is realized by the

family Φt : A→ A of K-linear isomorphisms. If it also makes sense to take the Taylor expansion of
Φt then

Φt = Φ0 + tΦ̇+O(t2) = idA+tΦ̇+O(t2),

and the lhs of (4.32) reads

µ
′
t
(
Φt(α1),Φt(α2)

)
−Φt

(
µt(α1,α2)

)
= t
(

µ̇
′(α1,α2)+µ

(
Φ̇(α1),α2

)
+µ

(
α1,Φ̇(α2)

)
− Φ̇

(
µ(α1,α2)

)
− µ̇(α1,α2)

)
+O(t2)

(4.35)

for all α1,α2 ∈ A, where the degree 0 term vanishes because (4.32) is satisfied when t = 0.
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Exercise 4.14 Prove Formulas (4.34) and (4.35). ■

Going back to the usual notation αβ for the product µ(α,β ), α,β ∈ A, the coefficient of the
linear term in (4.34) can be rewritten

µ̇(α1,α2)α3 + µ̇(α1α2,α3)−α1µ̇(α2,α3)− µ̇(α1,α2α3),

while the coefficient of the linear term in (4.35) can be rewritten

µ̇
′(α1,α2)+ Φ̇(α1)α2 +α1Φ̇(α2)− Φ̇(α1α2)− µ̇(α1,α2).

All this discussion suggests the following

Definition 4.3.4 — Infinitesimal Deformation of an Associative Algebra. An infinitesimal
deformation of an associative K-algebra A is a K-bilinear map ν : A×A→ A such that

ν(α1,α2)α3 +ν(α1α2,α3)−α1ν(α2,α3)−ν(α1,α2α3) = 0

for all α1,α2,α3 ∈ A. Two infinitesimal deformations ν ,ν ′ are equivalent if there exists a
K-linear map ψ : A→ A such that

ν(α1,α2)−ν
′(α1,α2) = ψ(α1)α2 +α1ψ(α2)−ψ(α1α2)

for all α1,α2 ∈ A.

We are now ready to describe Hochschild 2-cohomologies. The Hochschild differential

D : BilK(A,A;A)→ HC3(A) = Mult3K(A)

is given by

Dν(α1,α2,α3) = d0ν(α1,α2,α3)−d1ν(α1,α2,α3)+d2ν(α1,α2,α3)−d3ν(α1,α2,α3)

= α1ν(α2,α3)−ν(α1α2,α3)+ν(α1,α2α3)−ν(α1,α2)α3

for all ν : A×A→ A ∈ BilK(A,A;A) and all α1,α2,α3 ∈ A. We immediately see that the kernel
HZ2(A) = ker

(
D : BilK(A,A;A)→Mult3K(A)

)
consists exactly of infinitesimal deformations of A.

Two cocycles ν ,ν ′ ∈ HZ2(A) are cohomologous if they differ by a coboundary Dψ ∈ HB2(A) =
im
(
D : HomK(A,A)→ BilK(A,A;A)

)
, ψ ∈ HomK(A,A) and we see from (4.29) that this exactly

means that ν ,ν ′ are equivalent infinitesimal deformations. We conclude that “being equivalent” is
indeed an equivalence relation on the space of infinitesimal deformations of A and that

HH2(A) = {equivalence classes of infinitesimal deformations of A} .

The latter remark is the starting point of an important chapter of current Algebra and Geometry
called Deformation Theory.

4.4 Chevalley-Eilenberg (Co)Homology
In this section we introduce Lie algebras and show that any Lie algebra determines both a chain
and a cochain complex (in a functorial way). Similarly as for groups and associative algebras, the
(co)chain complex of a Lie algebra contains important information on it. Let K be a field.
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Definition 4.4.1 — Lie Algebra. A Lie algebra over K is a K-vector space g equipped with an
additional composition law [−,−] : g×g→ g (Lie bracket) such that

✓ [−,−] is K-bilinear;
✓ [−,−] is alternating;
✓ [−,−] satisfies the following Jacobi indentity:

[u, [v,w]]+ [v, [w,u]]+ [w, [u,v]] = 0, u,v,w ∈ g.

A Lie subalgebra in a Lie algebra g is a vector subspace k⊆ g which is preserved by the Lie
bracket, i.e. [v,w] ∈ k for all v,w ∈ k. If g,h are Lie algebras, a Lie algebra homomorphism
between them is a K-linear map f : g→ h preserving the Lie brackets, i.e. for every v,w ∈ g

f
(
[v,w]

)
= [ f (v), f (w)].

A Lie algebra isomorphism is an invertible Lie algebra homomorphism. Lie algebras over K
and their homomorphisms form a category denoted LieK (Exercise 4.15).

We remark that every Lie subalgebra is a Lie algebra itself with the restricted operations.

Exercise 4.15 Show that Lie algebras over K and Lie algebra homomorphisms form a category
whose isomorphisms are Lie algebra isomorphisms. ■

■ Example 4.10 — Abelian Lie Algebra. Let V be a K-vector space. The zero bracket 0 : V×V →
V , (v,w) 7→ 0 is a Lie bracket on V . Hence, with this trivial bracket, V is a Lie algebra: the abelian
Lie algebra. ■

■ Example 4.11 — Commutator. Let A be an associative K-algebra. We define on A the following
bracket (already encountered in the previous section) called the commutator:

[−,−] : A×A→ A, (α,β ) 7→ [α,β ] := αβ −βα.

A direct computation shows that the commutator is a Lie bracket, hence (A, [−,−]) is a Lie algebra
(Exercise 4.16). In other words, every associative algebra, equipped with the commutator, is a Lie
algebra. ■

Exercise 4.16 Show that the commutator in an associative algebra is a Lie bracket. Show
also that the assignment AlgK → LieK mapping an associative algebra A to the Lie algebra
(A, [−,−]) and an algebra homomorphism f : A→ B to itself is a well-defined functor. ■

■ Example 4.12 — General Linear Lie Algebra. Consider the associative algebra Mn(K) of
n×n matrices. According to Example 4.11, Mn(K) is also a Lie algebra when equipped with the
commutator [−,−]. The Lie algebra (Mn(K), [−,−]) is called the general linear Lie algebra of
order n over the field K and it is denoted by gln(K). More generally, given a K-vector space V ,
the Lie algebra (EndKV, [−,−]) of K-linear endomorphisms f : V →V (with the commutator) is
called the general linear Lie algebra of V and it is denoted gl(V ). ■

■ Example 4.13 — Special Linear Lie Algebra. Let sln(K)⊆Mn(K) be the vector subspace of
trace-free matrices:

sln(K) :=
{

A = (ai j) ∈Mn(K) : trA := ∑
n
i=1 aii = 0

}
.

It is easy to see that sln(K) is a Lie subalgebra (beware, not an associative subalgebra) in gln(K)
(Exercise 4.17). Accordingly, it is a Lie algebra itself called the special linear Lie algebra. ■
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■ Example 4.14 — Special Orthogonal Lie Algebra. Let son(K)⊆Mn(K) be the vector subspace
of skew-symmetric matrices:

son(K) :=
{

A ∈Mn(K) : AT =−A
}
.

It is easy to see that son(K) is a Lie subalgebra (beware, not an associative subalgebra) in gln(K)
(Exercise 4.17). Accordingly, it is a Lie algebra itself called the special orthogonal Lie algebra. ■

Exercise 4.17 Prove that the vector subspaces sln(K),son(K)⊆Mn(K) of trace-free and skew-
symmetric matrices respectively are Lie subalgebras of the general linear Lie algebra gln(K).
■

■ Example 4.15 — Lie Algebra of Derivations. Let A be an associative K-algebra. We know
that derivations of A form a vector subspace DerA in EndK(A) (indeed DerA = HZ1(A) the vector
space of Hochschild 1-cocycles). A direct computation shows that DerA is also a Lie subalgebra of
the general linear Lie algebra gl(A) of A (Exercise 4.18). Hence it is a Lie algebra itself. ■

Exercise 4.18 Prove that the space DerA of derivations of an associative K-algebra A is a Lie
subalgebra of the general linear Lie algebra gl(A). ■

■ Example 4.16 — 2-Dimensional Nonabelian Lie Algebra. Consider the associative (commu-
tative) R-algebra C∞(R) of smooth functions f = f (t) : R→ R. The operators

d
dt
, and t

d
dt

are linearly independent derivations of C∞(R). Hence, they span a 2-dimensional vector subspace
V in DerC∞(R). It is easy to see that V is actually a Lie subalgebra. For instance[

d
dt
, t

d
dt

]
=

d
dt
∈V.

■

Exercise 4.19 Prove all the unproved claims in Example 4.16. ■

We now define a functor

CE : LieK→ ChK

from Lie algebras over K to chain complexes of K-vector spaces. Let g be a Lie algebra over K.
For all n ∈ Z, put

Cn(g) :=
{
∧ng if n≥ 0

0 otherwise
.

We also define arrows

δ : Cn(g)→Cn−1(g),

declaring how do they act on decomposable vectors. Namely we put

δ (v1∧·· ·∧ vn) := ∑
i< j

(−)i+ j[vi,v j]∧ v1∧·· ·∧ v̂i∧·· ·∧ v̂ j ∧·· ·∧ vn, (4.36)

for all v1, . . . ,vn ∈ g, where, as usual, a hat “−̂” denotes omission. A direct check reveals that the rhs
of (4.36) is multilinear alternating in its arguments v1, . . . ,vn. Hence, from the universal property of
the exterior product, Definition (4.36) can be uniquely extended to a linear map δ : ∧ng→∧n−1g.
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Proposition 4.4.1 The sequence

0←−C0(g)
δ←−C1(g)

δ←−C2(g)
δ←− ·· · (4.37)

is a chain complex of vector spaces.

Proof. The proof is a long but straightforward computation exploiting that
(1) the exterior product is alternating;
(2) the Lie bracket [−,−] satisfies the Jacobi identity.

We omit the details but invite the brave reader to check everything themselves. ■

Now let f : g→ h be a Lie algebra homomorphism. We define ∧• f : C•(g)→C•(h) to be the
family of maps ∧• f := (∧n f : ∧ng→∧nh)n∈Z given by

∧n f (v1∧·· ·∧ vn) := f (v1)∧·· ·∧ f (vn), v1, . . . ,vn ∈ g. (4.38)

As the rhs of (4.38) is multilinear alternating in its arguments v1, . . . ,vn, this definition extends
uniquely to a linear map ∧n f : ∧ng→∧nh. It is easy to see that ∧• f : (C•(g),δ )→ (C•(h),δ ) is a
chain map. Additionally the assignment CE : LieK→ ChK that maps a Lie algebra g to the chain
complex (C•(g),δ ) and a Lie algebra homomorphism f to the chain map ∧• f is a functor (Exercise
4.20).

Exercise 4.20 Prove that, for a Lie algebra homomorphism f : g → h, the family ∧• f :
(C•(g),δ )→ (C•(h),δ ) defined above is a chain map. Prove also that the assignment CE :
LieK→ChK defined by putting CE(g) = (C•(g),δ ) and CE( f ) = ∧• f , for every Lie algebra g
and any Lie algebra homomorphism f , is a functor. ■

Definition 4.4.2 — Chevalley-Eilenberg Homology. The image (C•(g),δ ) of a Lie algebra g
over K under the functor CE : LieK→ ChK is called the Chevalley-Eilenberg chain complex
of g (with trivial coefficients) and its homology H•(g) := H•(C(g),δ ) is called the Chevalley-
Eilenberg homology of g. The differential δ is called the Chevalley-Eilenberg differential.
Cycles in (C•(g),δ ) are denoted Z•(g) (Chevalley-Eilenberg cycles) and boundaries are denoted
B•(g) (Chevalley-Eilenberg boundaries).

Notice that the Chevalley-Eilenberg differential δ vanishes when g is an abelian Lie algebra (so
what is the Chevalley-Eilenberg homology of an abelian Lie algebra?).

The n-th Chevalley-Eilenberg homology is a functor LieK→ VectK obtained composing the
Chevalley-Eilenberg chain complex functor LieK → ChK with the n-th homology functor Hn :
ChK→ VectK. Hence isomorphic Lie algebras have isomorphic Chevalley-Eilenberg homologies.

Let’s look at 0-th and 1-st Chevalley-Eilenberg homologies. In low degree the Chevalley-
Eilenberg chain complex reads

0←−K 0←− g
δ←−∧2g

δ←− ·· ·

(do you see it?). It immediately follows that H0(g) =K. As for the first homology, we have

im
(
δ : ∧2g→ g

)
= [g,g] := Span

(
[v1,v2] : v1,v2 ∈ g

)
(do you see it?). Hence

H1(g) = g
/
[g,g] .
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■ Example 4.17 — Chevalley-Eilenberg Homology of so3(K). In this example we compute by
hands the Chevalley-Eilenberg homology of the order 3 special orthogonal Lie algebra so3(K).
Specifically we prove that

Hn
(
so3(K)

)∼={ K if n = 0,3
0 otherwise

.

In the following we denote g= so3(K). We begin choosing an appropriate basis of g. Recall that g
consists of skew-symmetric 3×3 matrices, i.e. matrices of the form 0 a1 a3

−a1 0 a2
−a2 −a2 0

 , a1,a2,a3 ∈K.

So it is a 3-dimensional vector space spanned by the matrices

E1 :=

 0 1 0
−1 0 0
0 0 0

 , E2 :=

 0 0 0
0 0 1
0 −1 0

 , E3 :=

 0 0 1
0 0 0
−1 0 0

 .

A direct computation (that we invite the reader to perform in details) shows that

[E1,E2] = E3, [E2,E3] = E1, [E3,E1] = E2.

From Proposition 1.4.12 ∧2g is a 3-dimensional vector space spanned by

E12 := E1∧E2, E13 := E1∧E3, E23 := E2∧E3.

Similarly, ∧3g is a 1-dimensional vector space spanned by

E123 := E1∧E2∧E3,

while ∧ng= 0 for n > 3. It follows that the Chevalley-Eilenberg chain complex of g is concentrated
in degrees 0,1,2,3:

0←−K 0←− g
δ←−∧2g

δ←−∧3g←− 0.

Let’s compute δ : ∧2g→ g. On the basis elements we clearly have

δE12 = [E1,E2] = E3, δE13 = [E1,E3] =−E2, δE23 = E1.

This shows that δ : ∧2g→ g maps a basis to a basis. Hence it is a vector space isomorphism. It
follows that im

(
δ : ∧2g→ g

)
= g and

H1(g) =
g

im(δ : ∧2g→ g)
= g/g= 0.

It also follows that ker
(
δ : ∧2g→ g

)
= 0. Hence im

(
δ : ∧3g→∧2g

)
= 0 as well, i.e. δ : ∧3g→

∧2g is the zero map. We conclude that

H2(g) =
ker
(
δ : ∧2g→ g

)
im(δ : ∧3g→∧2g)

= 0/0 = 0,

and

H3(g) =
ker
(
δ : ∧3g→∧2g

)
0

= ∧3g/0∼=K,

as claimed. ■
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Exercise 4.21 Compute the Chevalley-Eilenberg homologies of the order 2 special linear Lie
algebra sl2(K) and of the 2-dimensional non abelian real Lie algebra of Example 4.16. ■

There is also a functor

LieK→ CoChK

from Lie algebras over K to cochain complexes of K-vector spaces. For a Lie algebra g, put

Cn(g) :=
{

AltnK(g,K) if n≥ 0
0 otherwise

.

We also define arrows

d : Cn(g)→Cn+1(g)

by putting

dω(v1, . . . ,vn+1) := ∑
i< j

(−)i+ j
ω ([vi,v j],v1, . . . , v̂i, . . . , v̂ j, . . . ,vn+1) ,

for all ω ∈ AltnK(g,K) and all v1, . . . ,vn+1 ∈ g. A direct check reveals that dω is a well-defined
multilinear alternating map. It is then obvious that d : AltnK(g,K)→ Altn+1

K (g,K) defined in this
way is a linear map (do you see it?).

Proposition 4.4.2 The sequence

0−→C0(g)
d−→C1(g)

d−→C2(g)
d−→ ·· · (4.39)

is a cochain complex of vector spaces.

Proof. It is easy to see that the sequence (4.39) can be obtained from the sequence (4.37) applying
the duality functor ∗ : VectK→ VectK (first, and then the natural isomorphisms HomK (∧ng,K)∼=
AltnK(g,K)). The statement now follows from Proposition 4.4.1. ■

Now let f : g→ h be a Lie algebra homomorphism. We define Alt( f ) : C•(h)→C•(g) to be
the family of maps Alt( f ) := (Altn( f ) : AltnK(h,K)→ AltnK(g,K))n∈Z defined by

Altn( f )(ω)(v1, . . . ,vn) := ω( f (v1), . . . , f (vn))

for all ω ∈ AltnK(h,K), v1, . . . ,vn ∈ g. It is easy to see that Alt( f ) is a cochain map. Additionally
the assignment LieK→ CoChK that maps a Lie algebra g to the cochain complex (C•(g),d) and a
Lie algebra homomorphism f to the cochain map Alt( f ) is a contravariant functor (Exercise 4.22).

Exercise 4.22 Prove that, for a Lie algebra homomorphism f : g→ h, the family Alt( f ) :
(C•(h),d)→ (C•(g),d) defined above is a cochain map. Prove also that the assignment LieK→
CoChK defined in this way is a contravariant functor. ■

Definition 4.4.3 — Chevalley-Eilenberg Cohomology. The image (C•(g),d) of a Lie algebra
g over K under the functor LieK→ CoChK is called the Chevalley-Eilenberg cochain complex
of g (with trivial coefficients) and its cohomology H•(g) :=H•(C•(g),d) is called the Chevalley-
Eilenberg cohomology of g. The differential d is also called the Chevalley-Eilenberg differential.
Cocycles in (C•(g),d) are denoted Z•(g) (Chevalley-Eilenberg cocycles) and coboundaries are
denoted B•(g) (Chevalley-Eilenberg coboundaries).
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The n-th Chevalley-Eilenberg cohomology is a contravariant functor LieK→ VectK obtained
composing the Chevalley-Eilenberg cochain complex functor LieK→ CoChK and the n-th coho-
mology functor Hn : CoChK→VectK. Hence isomorphic Lie algebras have isomorphic Chevalley-
Eilenberg cohomologies.

We conclude this chapter discussing the low degree Chevalley-Eilenberg cohomologies. In low
degree the Chevalley-Eilenberg cochain complex reads

0−→K 0−→ HomK(g,K)
d−→ Alt2K(g,K)

d−→ ·· · .

So H0(g) =K, and the first cohomology is

H1(g) = ker
(
d : HomK(g,K)→ Alt2K(g,K)

)
.

Now, a linear map f : g→K is in the kernel of d iff, for all v1,v2 ∈ g

0 = d f (v1,v2) = f
(
[v1,v2]

)
,

i.e. f ∈ Ann
(
[g,g]

)
(the annihilator subspace of the subspace [g,g]). We conclude that

H1(g) = Ann
(
[g,g]

)
.

R There is an equivalent description of H1(g) more similar to the first group cohomology.
Namely, we can rephrase the property of a linear map f : g→K of being in the annihilator of
[g,g] by saying that f is a Lie algebra homomorphism from g to the abelian Lie algebra K
(do you see it?). Hence we also have

H1(g) = HomLieK(g,K).

Finally we briefly describe Chevalley-Eilenberg 2-cohomologies. The reader is invited to notice
the similarity between this situation and the group 2-cohomology. Let g,k be Lie algebras over K.
A Lie algebra extension of the Lie algebra g by the Lie algebra k is (another Lie algebra h together
with) a short exact sequence of Lie algebras

0−→ k
α−→ h

β−→ g→ 0. (4.40)

This means that (4.40) is a short exact sequence of vector spaces and, additionally, α and β are Lie
algebra homomorphisms. Two Lie algebra extensions 0→ k→ h→ g→ 0 and 0→ k→ h′→ g→ 0
of g by k are equivalent if there exists a Lie algebra isomorphism Φ : h→ h′ such that the diagram

0 // k // h //

Φ

��

g // 0

0 // k // h′ // g // 0

commutes (the vertical “=” denote the identity maps). “Equivalence” is indeed an equivalence
relation on the collection of Lie algebra extensions of g by k. A Lie algebra extension (4.40) is
called central if imα is in the center of H, i.e., for all k ∈ k and all h ∈ h we have [k,h] = 0. Every
Lie algebra extension equivalent to a central extension is also central.
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Theorem 4.4.3 Let g be a Lie algebra over a field K. Then central extensions of g by the abelian
Lie algebra K are classified by the second Chevalley-Eilenberg cohomology H2(g), i.e. there
exists a natural bijection between H2(g) and equivalence classes of central extensions of g by K.

Proof. The proof is similar in spirit to that of Theorem 4.2.4 and we only sketch it leaving the
details as Exercise 4.23.

A 2-cocycle c ∈ Z2(g) determines a central extension of g by K as follows. First of all recall
that c : g×g→K is a bilinear alternating map. Its differential is the 3-multilinear alternating map
dc : g×g×g→K given by

dc(v1,v2,v3) =−c
(
[v1,v2],v3

)
+ c
(
[v1,v3],v2

)
− c
(
[v2,v3],v1

)
,

which vanishes iff

−c
(
[v1,v2],v3

)
+ c
(
[v1,v3],v2

)
− c
(
[v2,v3],v1

)
= 0

for all v1,v2,v3 ∈ g. Now, consider the vector space K⊕g and define a bracket

[−,−]c : K⊕g×K⊕g→K⊕g,

by putting[
(a1,v1),(a2,v2)

]
c := (c(v1,v2), [v1,v2]) .

It is easy to see that [−,−]c is a Lie bracket precisely because c is a cocycle. So (K⊕g, [−,−]c) is
a Lie algebra that we denote hc. The sequence

0 // K α // hc
β
// g // 1

a � // (a,0)

(a,v) � // v

(4.41)

is a central extension of g by K as desired.
If c,c′ ∈ Z2(g) are cohomologous, the associated central extensions 0→ k→ hc→ g→ 0 and

0→ k→ hc′ → g→ 0 are equivalent. An explicit equivalence is provided by the isomorphism

Φϕ : hc→ hc′ , (a,v) 7→Φϕ(a,v) :=
(
a+ϕ(v),v

)
,

where ϕ ∈C1(g) = HomK(g,K) is a 1-cochain such that c′− c = dϕ (which in turn means that
c′(v1,v2) = c(v1,v2)+ϕ([v1,v2]) for all v1,v2 ∈ g, do you see it?). So we have a well defined map

H2(g) → {equivalence classes of central extensions of g by K}
[c] 7→ equivalence class of 0→K→ hc→ g→ 0.

It remains to prove that this map is bijective. For the injectivity, take two cocycles c,c′ ∈ Z2(g) and
assume that the associated central extensions 0→ k→ hc→ g→ 0 and 0→ k→ hc′ → g→ 0 are
equivalent. Let Φ : hc→ hc′ be an isomorphism realizing the equivalence. Then it is easy to see
that Φ is necessarily of the form Φϕ for some 1-cochain ϕ ∈C1(g) such that c′− c = dϕ and we
conclude that [c] = [c′] as desired.

For the surjectivity, let 0→K→ h→ g→ 0 be any central extension of g by K. In particular it
is a short exact sequence of vector spaces. Hence, it splits. Choose any splitting s : g→ h (beware
that s is a linear map but it needs not be a Lie algebra homomorphism). We know from Example
1.21 that the splitting s induces a vector space isomorphism Φ : h→ K⊕ g that we can use to
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transport the Lie algebra structure from the domain to the codomain. We can also transport the
maps K→ h, and h→ g getting an equivalent central extension 0→ K→ K⊕ g→ g→ 0. A
closer inspection (implementing all the properties of a central extension) reveals that the latter is
necessarily of the form 0→K→ hc→ g→ 0 for some 2-cocycle c ∈ Z2(g). This concludes the
proof. ■

Exercise 4.23 Fill all the gaps in the proof of Theorem 4.4.3. ■

■ Example 4.18 The central extensions corresponding to the zero cohomology class are called
trivial. Suppose that H2(g) = 0. One can then use Theorem 4.4.3 to conclude that there are
no non-trivial central extensions of g by K. This is the case, e.g., for g = so3(K),sl2(K) if the
characteristic of the field K is different from 2 (Exercise 4.24). ■

Exercise 4.24 Prove that there are no non-trivial central extensions of the Lie algebras sl2(K)
(when the characteristic of the field K is not 2), so3(K) by K (Hint: prove that the 2-nd
Chevalley-Eilenberg cohomology vanishes in these two cases and then apply Theorem 4.4.3). ■





5. Singular Homology

In this chapter we show that (co)chain complexes pop up naturally in Topology as well. In particular,
every topological space X gives rise to a chain complex (actually one for each ring) in a functorial
way. The associated homology contains relevant information on X . We analyze this case more
thoroughly than those in Chapter 4 and the reader will see homotopies and short exact sequences of
chain complexes in action.

5.1 Singular (Co)Chains and Singular (Co)Homology

In this section we show that every topological space X functorially defines both a chain complex and
a cochain complex (actually one for each ring) called the complex of singular (co)chains in X . The
(co)homology of such complex is the singular (co)homology of X and contains information on the
topology of X . More precisely, due to its functorial properties, singular homology is a topological
invariant, i.e. it doesn’t change when replacing X by a homeomorphic space and one can use it
to separate homeomorphism classes of topological spaces. We will actually show that singular
homology is a homotopical invariant, i.e. it doesn’t change when replacing X by a space which is
only homotopy equivalent to it (see Definition 5.2.2 below). So it can be used to separate homotopy
equivalence classes of topological spaces. Singular homology (together with the fundamental group
and the other homotopy groups) is one of the starting points of a whole branch of Geometry that
applies algebraic methods to study topological spaces and, for this reason, is called Algebraic
Topology.

Let X be a topological space. The complex of singular (co)chains of X arises as the (co)chain
complex associated to an appropriate semi-simplicial set (Section 4.1).

Definition 5.1.1 — Singular Simplex. A singular n-simplex in X is a continuous map

σ : ∆n→ X

where ∆n is the standad n-simplex (with the subspace topology induced from the standard
topology on Rn+1, see Figure 5.1). The set of singular n-simplexes in X is denoted Sn(X).
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Δ! 

Figure 5.1: A singular 2-simplex σ in the topological space X .

Let n be a non-negative integer and let σ : ∆n → X be a singular n-simplex in X . For any
i = 0, . . . ,n the composition σ ◦ di : ∆n−1→ X of the i-th coface of the standard simplex (∆•,d)
(see Example 4.2) followed by σ is a singular (n−1)-simplex in X (see Figure 5.2). This follows
from the fact that both di and σ are continuous maps and that the composition of continuous maps
is continuous. In this way we get maps

d♯
i : Sn(X)→ Sn−1(X), σ 7→ d♯

i σ := σ ◦di.

Lemma 5.1.1 The pair (S•(X),d♯) with S•(X) := (Sn(X))n∈N0 and

d♯ = (d♯
i : Sn(X)→ Sn−1(X))0≤i≤n∈N

is a semi-simplicial set.

Proof. The semi-simplicial identities for the d♯
i easily follow from the semi-cosimplicial identities

for the di. We leave the details to the reader as Exercise 5.1. ■

Exercise 5.1 Prove Lemma 5.1.1. ■

Next we fix a ring R and apply the constructions described in Section 4.1 to produce, out of the
semi-simplicial set (S•(X),d♯), a semi-simplicial R-module

(RS•(X),Rd♯)

and a semi-cosimplicial R-module

(RS(X)
• ,Rd♯

).

In other words, as usual, we are applying to (S•(X),d♯) the functors ssFree : ssSet→ ssModR and
ssFun : ssSet→ sCosModR. Remember that RSn(X) is the free module spanned by Sn(X), so its
elements are formal finite linear combinations of singular n-simplexes with coefficients in R:

∑
i∈I

aiσi, ai ∈ R, σi ∈ Sn(X),

where I is a set of indexes in bijection with Sn(X) so that we can understand Sn(X) as a family
(σi)i∈I , and the ai are all zero but finitely many. While RS(X)

n = RSn(X) is the function module
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Figure 5.2: A face map in (S•(X),d♯).

consisting of maps a : Sn(X)→ R. In their turn (RS•(X),Rd♯) and (RS(X)
• ,Rd♯

) determine a chain
and a cochain complex that we denote(

C•(X ,R),∂
)

and
(
C•(X ,R),δ

)
,

respectively. From the definition (C•(X ,R),∂ ) is concentrated in non-negative degrees. For all
n≥ 0 we have Cn(X ,R) = RSn(X) and the differential ∂ : Cn(X ,R)→Cn−1(X ,R) is given by

∂ =
n

∑
i=0

(−)iRd♯
i .

Hence it acts on a basis element σ ∈ Sn(X)⊆ RSn(X) as follows:

∂σ =
n

∑
i=0

(−)iRd♯
i σ =

n

∑
i=0

(−)id♯
i σ = d♯

0σ −d♯
1σ +d♯

2σ + · · ·+(−)nd♯
nσ .

In the following we will often abuse the notation and denote simply by d♯
i the maps Rd♯

i :
Cn(X ,R)→Cn−1(X ,R). Then the differential ∂ simply reads ∂ = ∑

n
i=0(−)id♯

i .

Definition 5.1.2 — Singular Homology. Elements of Cn(X ,R) are called singular n-chains in
X with coefficients in R, and the differential ∂ is called the boundary operator (because it is
essentially the alternating sum of face maps). The n-cycles in the chain complex (C•(X ,R),∂ )
are denoted Zn(X ,R) and the n-boundaries Bn(X ,R). The homology of (C•(X ,R),∂ ) is called
the singular homology of X with coefficients in R, and it is denoted

H•(X ,R) := H•
(
C(X ,R),∂

)
.

When R = Z we simply write C•(X), Z•(X), B•(X) and H•(X) (instead of C•(X ,Z), Z•(X ,Z),
B•(X ,Z) and H•(X ,Z)), and call H•(X) simply the singular homology of X .

As for (C•(X ,R),δ ), from the definition, it is concentrated in non-negative degrees as well.
For all n ≥ 0 we have Cn(X ,R) = RSn(X) and the differential δ : Cn(X ,R)→ Cn−1(X ,R) is the
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alternating sum

δ =
n

∑
i=1

(−)iRd♯
i

of the pull-backs along the face maps d♯
i , hence it acts on a fuction a : Sn(X)→ R as follows

δa =
n

∑
i=1

(−)iRd♯
i a =

n

∑
i=1

(−)ia◦d♯
i = a◦d♯

0−a◦d♯
1 +a◦d♯

2 + · · ·+(−)na◦d♯
n.

In other words δa ∈ RSn+1(X) is the function δa : Sn+1(X)→ R given by

δa(σ) =
n

∑
i=1

(−)ia(d♯
i σ).

Definition 5.1.3 — Singular Cohomology. Elements in Cn(X ,R) are called singular n-cochains
in X with coefficients in R, and the differential δ is called the coboundary operator. The n-
cocycles in the cochain complex (C•(X ,R),δ ) are denoted Zn(X ,R) and the n-coboundaries
Bn(X ,R). The cohomology of (C•(X ,R),δ ) is called the singular cohomology of X with
coefficients in R, and it is denoted

H•(X ,R) := H•
(
C(X ,R),δ

)
.

When R = Z we simply write C•(X), Z•(X), B•(X) and H•(X) (instead of C•(X ,Z), Z•(X ,Z),
B•(X ,Z) and H•(X ,Z)), and call H•(X) simply the singular cohomology of X .

R Using that RSn(X) is naturally isomorphic to the dual module of RSn(X) we can identify
Cn(X ,R) with the dual module of Cn(X ,R) for all n. It turns out that, if we do this, then the
coboundary operator δ identifies with the transpose of the boundary operator ∂ . In other
words, the cochain complex (C•(X ,R),δ ) is obtained form the chain complex (C•(X ,R),∂ )
applying the duality functor ∗ (to the chains and to the differential). See also the remark at
p. 88.

In this chapter we mainly (if not only) concentrate on singular homology with coefficients in
Z. In this section we discuss the singular n-homology Hn(X) of a topological space X in two easy
cases: X = {∗}, the one point space, but n arbitrary, and X any topological space but n = 0. Before
proving anything we discuss singular chains in degrees 0 and 1, with a special emphasis on cycles
and boundaries. This will help us gaining some intuition on what singular homologies really are.
The discussion will also motivate the terms “cycle” and “boundary” that we have been using since
our presentation of chain complexes.

Let us begin with singular 0-simplexes. Having a singular 0-simplex in a topological space
X is actually equivalent to having a point in X . Indeed, a singular 0-simplex is a continuous map
σ : ∆0→ X . But ∆0 = {1} is a one point space. So σ is completely determined by its value σ(1).
Conversely, given a point x ∈ X , we can consider the map σx : ∆0→ X defined by σx(1) = x. As
∆0 is a one point topological space, σx is automatically continuous (see Figure 5.3).
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Figure 5.3: A sigular 0-simplex is just a point.

In the following we will often use the notation σx for the singular 0-simplex mapping 1 to x ∈ X .
If we interpret singular 0-simplexes as points, a singular 0-chain c = ∑

k
i=1 miσxi becomes a finite

set of points x1, . . . ,xk weighted by integer numbers m1, . . . ,mk, see Figure 5.4 (remember that the
linear combination is purely formal).
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Figure 5.4: A sigular 0-chain.

Clearly, every singular 0-chain is also a 0-cycle. Before discussing 0-boundaries, we discuss
1-chains. To do this we need a brief digressions on paths that we make in the next remark (where
we also collect some facts about path connectedness that will be useful in the sequel).

R Let X be a topological space. A path in X is a continuous map γ : [0,1]→ X (where the closed
interval [0,1]⊆R is equipped with the subspace topology induced from the standard topology
of R). Two points x0,x1 ∈ X are connected by a path if there exists a path γ : [0,1]→ X such
that γ(0) = x0 and γ(1) = x1 (Figure 5.5).
Being connected by a path is an equivalence relation on X . Indeed any point x0 is connected
to itself by the constant path γ : [0,1]→ X , t 7→ x0, showing that being connected by a path is
a reflexive relation. If x0,x1 are two points connected by a path γ : [0,1]→ X , then x1,x0 are
connected by the path γ : [0,1]→ X befined by

γ(t) := γ(1− t),

showing that being connected by a path is a symmetric relation. Notice that γ is a well-defined
path. Indeed it is the composition of the continuous map [0,1]→ [0,1], t 7→ 1− t, followed
by γ which is continuous, hence γ is a continuous map as well. Finally, suppose that x0,x1,x2
are three points in X such that x0,x1 are connected by the path γ and x1,x2 are connected by
the path γ ′. Then x0,x2 are connected by the path (Figure 5.6)

γ ∗ γ
′ : [0,1]→ X
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𝛾 
𝑋 

[0,1] 

1 0 
𝑥! = 𝛾(0) 

𝑥" = 𝛾(1) 

Figure 5.5: Two points connected by a path in the topological space X .

defined by

γ ∗ γ
′(t) :=

{
γ(2t) if t ≤ 1/2

γ ′(2t−1) if t > 1/2 .

This shows that being connected by a path is also a transitive relation. In order to see that
γ ∗ γ ′ is indeed a well-defined path first consider the maps

Γ : [0,1/2]→ X , t 7→ γ(2t)

and

Γ
′ : [1/2,1]→ X , t 7→ γ

′(2t−1).

They are both continuous. For instance, the first one is the continuous composition of the
continuous map [0,1/2]→ [0,1], t 7→ 2t followed by γ . Additionally, Γ and Γ′ agree on the
intersection of their domains: Γ(1/2) = γ(1) = x1 = γ ′(0) = Γ′(1/2). Notice that the domains
[0,1/2], [1/2,1] of Γ,Γ′ are closed subsets in [0,1] such that [0,1/2]∪ [1/2,1] = [0,1]. By
the Gluing Lemma, Γ,Γ′ glue to a well-defined continuous map Γ∗ : [0,1]→ X (uniquely
defined by the conditions Γ∗|[0,1/2] = Γ and Γ∗|[1/2,1] = Γ′). But it is clear that Γ∗ = γ ∗γ ′. We
conclude that γ ∗γ ′ is continuous as well. The path γ ∗γ ′ is sometimes called the concatenation
of γ and γ ′.

 

Γ 

𝑋 

 1 0 1/2 

Γ′ 
′ 

𝑥! 
𝑥" 

𝑥# 

Figure 5.6: Concatenation of paths.
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Each equivalence class with respect to the equivalence relation “being connected by a path” is
called a path connected component of X . The path connected component of a point x ∈ X is
the equivalence class of x. In other words it consists of all points in X that can be connected to
x by a path and will be denote by Xx. The set of path connected components of X is sometimes
denoted π0(X) (or simply π0 if it is clear what topological space we are talking about). The
topological space X is called path connected if there is just one element in π0(X). In other
words every two points in X are connected by a path.

We are ready to provide a new intepretation for singular 1-simplexes. Namely singular 1-
simplexes in a topological space X are essentially the same as paths in X . To see this first notice
that there is a canonical homeomorphism

h : [0,1]→ ∆1, t 7→ h(t) := (t,1− t).

Indeed, h is continuous because it is the restriction to the subspace [0,1] in the domain and to the
subspace ∆1 in the codomain of a continuous map R→ R2, t 7→ (t,1− t) (Figure 5.7).

 

0 

𝐸! 

𝐸" 

Δ! 

ℝ" 

0 1 

ℎ 

Figure 5.7: The homeomorphism h : [0,1]→ ∆1.

Additionally h is invertible with inverse

h−1 : ∆1→ [0,1], (x0,x1) 7→ x0.

The inverse h−1 is also continuous: it is the restriction to subspaces in both the domain and the
codomain of the continuous map R2→ R, (x,y) 7→ x. Now, given a singular 1-simplex σ : ∆1→ X
in the topological space X we can build a path γ by right composition with h, γ = σ ◦h, and vice-
versa, given a path γ : [0,1]→ X in X we can build a singular 1-simplex σ by right composition
with h−1: σ = γ ◦h−1 (Figure 5.8).
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𝜎 

𝑋 
0 

[0,1] 

ℎ 

Δ! 

𝜎 ∘ ℎ 

Figure 5.8: A singular 1-simplex is just a path.

It is clear that these two constructions invert each other, giving a canonical bijection between
S1(X) and the set of paths in X . If we use this bijection to interpret singular 1-simplexes as paths,
then a singular 1-chain becomes a finite set of paths weighted by integer numbers, see Figure 5.9.

 

𝑋 

Δ! 

𝑚! 

𝜎! 
𝜎" 

𝜎# 

⋯ 

𝑚" 

𝑚# 

Figure 5.9: A sigular 1-chain.

Next we describe 0-boundaries. To do that we provide an explicit formula for the boundary
operator ∂ : C1(X)→C0(X). By Z-linearity it is enough to describe it on singular 1-simplexes.
Take a singular 1-simplex σ : ∆1→ X , and denote x0 = σ(0,1) and x1 = σ(1,0) its extremal points.
We claim that ∂σ = σx0−σx1 . To see this compute

∂σ = d♯
0σ −d♯

1σ = σ ◦d0−σ ◦d1.

But the maps σ ◦d0,σ ◦d1 : ∆0→ X are given by

(σ ◦d0)(1) = σ(0,1) = x0 = σx0(1) and (σ ◦d1)(1) = σ(1,0) = x1 = σx1(1).

This shows that σ ◦d0 = σx0 and σ ◦d1 = σx1 , hence

∂σ = σx0−σx1 (5.1)
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as claimed (see Figure 5.10). This is already a good motivation for the term “boundary” attributed
to ∂ and its image.

 

𝜎 

𝑋 
Δ1 

Δ0 

𝐸0 𝐸1 

𝑑1 
𝑑0 

𝑥0 

𝑥1 

𝜎𝑥0  

𝜎𝑥1  

−1 

+1 

Figure 5.10: The boundary ∂σ of a singular 1-simplex.

With a description of ∂ : C1(X)→C0(X) at hand, we can also discuss 1-cycles. For simplicity
we check first what does it mean for a singular 1-simplex to be in the kernel of ∂ . So let σ : ∆1→ X
be a singular 1-simplex in the topological space X , and let x0 = σ(0,1) and x1 = σ(1,0) be its
extremal points. We know that ∂σ = σx0−σx1 and this linear combination vanishes if and only if
σx1 = σx0 , i.e. x1 = x0. In other words σ identifies with a closed path in X , and this should motivate
the term “cycle” attributed to a chain in the kernel of ∂ (Figure 5.11.

 

𝜎 

𝑋 
Δ! 

𝐸! 𝐸" 
𝜎(𝐸!) = 𝜎(𝐸") 

Figure 5.11: A 1-cycle.

Similar remarks hold for a generic singular 1-chain. In Figure 5.12 we illustrate an example of
a singular 1-cycle c: we have a specific linear combination

c = m1ρ1 +m(ρ2 +ρ3 +ρ4)

of four singular 1-simplexes ρ1,ρ2,ρ3,ρ4 : ∆1→ X whose extremal points (x0,i,x1,i), i = 1, . . . ,4
satisfy x0,1 = x1,1, x1,2 = x0,3, x1,3 = x0,4 and x1,4 = x0,2, m1,m ∈ Z so that

∂c = m1∂ρ1 +m(∂ρ2 +∂ρ3 +∂ρ4)

= m1(σx0,1−σx1,1)+m
(
σx0,2−σx1,2 +σx0,3−σx1,3 +σx0,4−σx1,4

)
= 0.

Finally, in Figure 5.13 we represent the boundary operator acting on a singular 2-simplex. This
should reinforce our motivation for the term “boundary”.
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 𝜌! 

𝑋 Δ! 
𝐸! 𝐸" 

𝜌" 

𝜌# 

𝜌$ 

𝑚 

𝑚 

𝑚 

𝑥!,# = 𝑥#,# 

𝑥!,$ = 𝑥#,% 

𝑥#,$ = 𝑥!,& 

𝑥#,& = 𝑥!,% 

𝑚! 

Figure 5.12: A more complicated 1-cycle c (actually c is the sum of two 1-cycles, do you see it?).

Proposition 5.1.2 — Singular Homology of a Point. The singular homology (with coefficient
in Z) of the 1-point space {∗} is given by

Hn({∗}) =
{

Z if n = 0
0 otherwise

.

Proof. Notice that, for every n≥ 0, there is only one singular n-simplex in {∗}, namely the constant
map

σn : ∆n→{∗}, x 7→ ∗.

So, for each n, the abelian group Cn({∗}) of singular n-chains possesses a one element basis,
hence it is canonically isomorphic to Z, where the isomorphism Cn({∗})∼= Z is the only linear map
Sn({∗})→Z mapping σn to 1. If we understand this isomorphisms, the chain complex (C•({∗}),∂ )
looks like

0 Zoo Z∂oo Z∂oo Z∂oo · · ·oo

0 1 2 3

.

We now describe the boundary operator on n-chains. We begin remarking that, for all n > 0,

d♯
i σn = σn ◦di = σn−1.

As the generic n-chain is mσn with m ∈ Z, we get

∂ (mσn) = m∂σn = m
n

∑
i=0

(−)id♯
i σn = m

n

∑
i=0

(−)i
σn−1 =

{
0 if n is odd

mσn−1 if n is even
.

If we understand the isomorphisms Sn({∗})∼= Z again then (C•({∗}),∂ ) now reads

0 Zoo Z0oo Zidoo Z0oo · · ·oo

0 1 2 3

and the claim immediately follows. Indeed

H0({∗}) =
ker(0 : Z→ 0)
im(0 : 0→ Z)

=
Z
0
= Z.
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When n is positive odd

Hn({∗}) =
ker(0 : Z→ Z)
im(id : Z→ Z)

=
Z
Z
= 0.

Finally, when n is positive even

Hn({∗}) =
ker(id : Z→ Z)
im(0 : Z→ Z)

=
0
0
= 0.

■
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Figure 5.13: The boundary of a singular 2-simplex).

We conclude this section showing that the 0-th singular homology H0(X) of a topological space
counts the number of path connected components of X .

Proposition 5.1.3 Let X be a topological space. Denote by π0 the set of path connected
components of X . The 0-th singular homology H0(X) of X is canonically isomorphic to the free
module Zπ0 spanned by π0. In particular, X is path connected if and only if H0(X)∼= Z.

Proof. We can define a map

ϕ0 : π0→ H0(X)

as follows. We map the path connected component Xx of a point x ∈ X to the homology class of
the singular 0-chain σx. We have to show that this map is well defined, namely that if x′ ∈ X is
another point in the same path connected component Xx then σx′ is homologous to σx so that they
have the same homology class. But x′ ∈ Xx if and only if x,x′ are connected by a path γ : [0,1]→ X .
Consider the singular 1-simplex σ = γ ◦h−1 : ∆1→ X (in particular it is a singular 1-chain). Then
σ(1,0) = γ(h−1(1,0)) = γ(1) = x′. Similarly σ(0,1) = x so that

∂σ = σx−σx′ ,

i.e. σx,σx′ are homologous as claimed. We conclude that the map ϕ0 : π0→ H0(X) is well-defined.
From the universal property of free modules, there is a unique Z-linear map

ϕ : Zπ0→ H0(X)
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such that ϕ|π0 = ϕ0. The map ϕ is the isomorphism we are looking for. In order to show that it is
bijective, we construct its inverse

ψ : H0(X)→ Zπ0

explicitly. We begin defining a linear map

Ψ : Z0(X) =C0(X)→ Zπ0.

To do this it is enough to define a map

Ψ0 : S0(X)→ Zπ0

and then use the universal property of free modules. So, let σx be the singular 0-simplex correspond-
ing to the point x ∈ X . It is natural to put Ψ0(σx) = Xx ∈ π0 ⊆ Zπ0 the path connected component
of x. Next we prove that Ψ annihilates the 0-boundaries, i.e. Ψ(∂b) = 0 for all b ∈C1(X). Actually,
by linearity, it is enough to show that Ψ(∂σ) = 0 for all singular 1-simplexes σ (do you agree?).
So, let σ ∈ S1(X), and denote y0 = σ(0,1), y1 = σ(1,0). Notice that y0,y1 are connected by the
path σ ◦h (do you see it? If not check it explicitely) and we find

Ψ(∂σ) = Ψ(σy0−σy1) = Ψ(σy0)−Ψ(σy1) = Ψ0(σy0)−Ψ0(σy1) = Xy0−Xy1 = 0

where, in the last step, we used that y0,y1 belong to the same path connected component. Summa-
rizing B0(X) belong to the kernel of Ψ, hence Ψ descends to a well-defined linear map

ψ :
Z0(X)

B0(X)
= H0(X)→ Zπ0, [c] 7→ ψ(c).

We leave it to the reader to check that ψ inverts ϕ as Exercise 5.2. This concludes the proof. ■

Exercise 5.2 Complete the proof of Proposition 5.1.3 showing that the linear maps ϕ : Zπ0→
H0(X) and ψ : H0(X)→ Zπ0 described in the proof invert each other (Hint: it is enough to work
on generators). ■

5.2 Geometric Homotopies
Homotopies were first defined in Topology and only later they were defined for (co)chain complexes.
In this section we show how a homotopy between continuous maps gives rise to an algebraic
homotopy between singular chains with integer coefficients (the cases of singular cochains and
of arbitrary coefficients are similar and we leave them to the reader). We begin showing that a
continuous map F : X→Y between topological spaces determines a chain map F♯ : C•(X)→C•(Y )
between the associated singular chains in a functorial way. First of all, from F and a singular
n-simplex σ : ∆n→ X in X we can construct a singular n-simplex in Y by left composition with F :

F♯σ := F ◦σ : ∆n→ Y.

As both σ and F are continuous, F ◦σ is continuous as well, hence it is a singular symplex. In this
way we get a map

F♯ : Sn(X)→ Sn(Y ), σ 7→ F♯σ .

We claim that the family (F♯ : Sn(X)→ Sn(Y ))n∈N0 is a semi-simplicial map. To see this we have to
prove that F♯ ◦d♯

i = d♯
i ◦F♯ for all i. So, take a singular n-simplex σ ∈ Sn(X) and compute

F♯ ◦d♯
i (σ) = F♯(d

♯
i σ) = F ◦ (σ ◦di) = (F ◦σ)◦di = F♯(σ)◦di = d♯

i F♯(σ) = d♯
i ◦F♯(σ).
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The assignment S• : Top → ssSet mapping a topological space X to the semi-simplicial set
(S•(X),d♯) and a continuous map of topological spaces F : X → Y to the semi-simplicial map
F♯ : (S•(X),d♯)→ (S•(Y ),d♯) is actually a functor. This easily follows from the semi-cosimplicial
identities for the di. We leave the details to the reader as

Exercise 5.3 Prove that the assignment S• : Top→ ssSet defined above is a functor. ■

Now consider the sequence of functors

Top S• // ssSet ssFree // ssAb Thm. 4.1.1 // ChZ .

Their composition

C• : Top→ ChZ

is again a functor mapping a topological space X to its complex (C•(X),∂ ) of singular chains and a
continuous map between topological spaces F : X → Y to the chain map

F♯ : (C•(X),∂ )→ (C•(Y ),∂ ),

defined as follows. Take c ∈Cn(X) = ZSn(X). Then c is a formal linear combination of singular
n-simplexes with integer coefficients:

c =
k

∑
j=1

m jσ j,

m j ∈ Z, σ j ∈ Sn(X), for all j = 1, . . . ,k, and

F♯(c) =
k

∑
j=1

m jF♯(σ j) =
k

∑
j=1

m j
(
F ◦σ j

)
.

Composing further the functor C• : Top→ ChZ with the n-th homology functor

Hn : ChZ→ Ab

we get a new functor also denoted

Hn : Top→ Ab

and called the n-th singular homology functor. Given a continuous map F : X → Y , the linear
map Hn(F) : Hn(X)→ Hn(Y ) , [c] 7→ [F♯c] associated to it via the functor Hn is also called the map
induced by F in the n-th singular homology. It immediately follows from the functorial properties
of the singular n-th homology that homeomorphic topological spaces have isomorphic singular
homologies.

■ Example 5.1 — Map Induced in Singular Homology by a Constant Map. Let X ,Y be
topological spaces (with Y ̸=∅). Take a point y0 ∈ Y and consider the constant map cy0 : X → Y
mapping every point x ∈ X to y0. We want to compute the induced map in singular homology
Hn(cy0) : Hn(X)→ Hn(Y ) for all n ∈ Z. We use a trick. We consider the one point topological
space {y0} and interpret cy0 as the composition

X c−→ {y0}
in−→ Y
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of the only (necessarily constant) map c : X →{y0} and the inclusion in : {y0}→ Y . Both c and in
are continuous hence, from the functorial properties of the n-th singular homology,

Hn(cy0) = Hn(c)◦Hn(in).

But, from Proposition 5.1.2, Hn({y0}) = 0 for all n ̸= 0. It follows that Hn(c) : Hn(X)→ Hn({y0})
and Hn(in) : Hn({y0})→ Hn(Y ) are both the zero maps for all n ̸= 0 so that Hn(cy0) = 0 for all
n ̸= 0. It remains to compute

H0(cy0) : H0(X)→ H0(Y ).

Denote π0(X),π0(Y ) the sets of path connected components of X ,Y respectively, denote also by
Y0 the path connected component of y0 in Y . From Proposition 5.1.3, we have H0(X)∼= Zπ0(X)
and H0(Y )∼= Zπ0(Y ). We claim that the map H0(cy0) is the unique abelian group homomorphism
mapping any path connected component of X to Y0. In other words,

H0(cy0)

(
k

∑
j=1

m jXx j

)
=

k

∑
j=1

m j H0(cy0)(Xx j) =

(
k

∑
j=1

m j

)
Y0,

for any k points x1, . . . ,xk ∈ X , and any k integers m1, . . . ,mk ∈ Z. To see this, remember that the
isomorphism H0(X)∼= Zπ0(X) identifies the homology class of the constant 0-cycle σx with the
path connected component Xx of x, for all x ∈ X . Now,

H0(cy0)([σx]) = [cy0 ◦σx] = [σy0 ] ,

which identifies with Y0 (under the isomorphism H0(Y )∼= Zπ0(Y )). This concludes the proof. ■

Exercise 5.4 Repeat, with the appropriate modifications, the discussion following Exercise 5.3
for singular cochains and arbitrary coefficients. ■

We now come to (geometric) homotopies. Let X ,Y be topological spaces and let F,G : X → Y
be continuous maps.

Definition 5.2.1 — Geometric Homotopy. A homotopy (more precisely a geometric homotopy)
between the continuous maps F,G : X → Y is a continuous map H : [0,1]×X → Y such that

H (0,x) = F(x) and H (1,x) = G(x)

for all x ∈ X . Two continuous maps F,G are said to be homotopic if there exists a homotopy H
between them. In this case we write F ∼H G. A continuous map F is null-homotopic if it is
homotopic to a constant map.

Given a homotopy H : [0,1]×X → Y and a point t ∈ [0,1], we usually denote by Ht : X → Y
the map given by Ht(x) :=H (t,x) for all x∈X . It is a continuous map, indeed it is the composition
of the map int : X → [0,1]×X , x 7→ int(x) := (t,x) (which is continuous because it has continuous
components, do you see it?) followed by H . Notice that the homotopy H can be reconstructed
from the family (Ht)t∈[0,1] reading the definition Ht(x) = H (t,x) from the right to the left. In
terms of (Ht)t∈[0,1] the condition F ∼H G reads F = H0 and G = H1. In other words a homotopy
between continuous maps F,G : X →Y can be seen as a continuous deformation of F into G (along
the family (Ht)t∈[0,1], see Figure 5.14).

R A homotopy between two continuous maps F,G : X → Y of topological spaces can also be
seen as a path connecting F and G in the space of continuous maps X → Y .
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𝑋 𝑌 

ℋ! = 𝐹 

ℋ" = 𝐺 

ℋ# 

𝑡 

Figure 5.14: A homotopy H between the continuous maps F,G : X → Y .

Proposition 5.2.1 “Being homotopic” is an equivalence relation on the set of continuous maps
(between given topological spaces). More precisely, if F,G,L : X → Y are continuous maps
such that F ∼H G and G ∼K L for some homotopies H ,K , then there are homotopies
O,H ,H ∗K such that

✓ F ∼O F (reflexivity),
✓ G∼H F (symmetry),
✓ F ∼H ∗K L (transitivity).

Proof. For the reflexivity, denote by O : [0,1]× X → X the “constant homotopy” defined by
O(t,x) = F(x) for all (t,x) ∈ [0,1]×X . It is clear that O is a continuous map, hence a homotopy,
and that F ∼O F (do you see it?).

For the symmetry, given a homotopy H : [0,1]×X → Y between F and G, we define a new
homotopy H : [0,1]×X → Y between G and F by putting H (t,x) := H (1− t,x). We leave it to
the reader to check that H is a continuous map, hence a homotopy (see Exercise 5.5). The rest is
obvious.

For the transitivity, define a homotopy H ∗K : [0,1]×X → Y between F and L by putting

H ∗K (t,x) :=
{

H (2t,x) if t ≤ 1/2
K (2t−1,x) if t > 1/2

.

Show that H ∗K is a continuous map, hence a homotopy, as part of Exercise 5.5. The rest is clear.
This concludes the proof. ■

Exercise 5.5 Fill the gaps in the proof of Proposition 5.2.1 proving that H and H ∗K are
continuous maps, hence homotopies (Hint: get inspired by the Remark at the end of pag. 119,
and subsequent pages). ■

We now present some examples, including a trivial but somewhat universal example. More
examples will come towards the end of the section, after showing how does geometric homotopies
help computing singular (co)homologies of topological spaces.

■ Example 5.2 — The Tautological Homotopy. Let X be a topological space. Consider the maps
in0 : X → [0,1]×X , x 7→ (0,x) and in1 : X → [0,1]×X , x 7→ (1,x). As already remarked they are
continuous injections. There is an obvious homotopy between in0, in1, namely

Hcan := id[0,1]×X : [0,1]×X → [0,1]×X , (t,x) 7→ (t,x).
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It is also clear that (Hcan)t = int for all t ∈ [0,1]. The homotopy Hcan might well be called the
tautological homotopy and it is universal in the sense that every homotopy F : [0,1]×X → Y can
be seen as the composition of Hcan followed by a continuous map, namely F itself. This might
seem tricky and trivial but it has interesting consequences (see, e.g., the proof of Theorem 5.2.3). ■

■ Example 5.3 Let F,G : X → Rd be continuous maps from an arbitrary topological space X to
the standard d-dimensional Euclidean space. Then F,G are automatically homotopic. Indeed we
can easily define a homotopy H : [0,1]×X → Rd between them by putting

H (t,x) = tG(x)+(1− t)F(x)

(do you see that H is a continuous map? If not, prove it in details). In particular any Rd-valued
continuous map is null-homotopic. More generally, recall that a subset Y ⊆ Rd is said to be convex
if, for every x0,x1 ∈ Y , the segment

x0x1 :=
{

tx1 +(1− t)x0 : t ∈ [0,1]
}
⊆ Rd

is entirely contained into Y : x0x1 ⊆ Y . It is clear that any two continuous maps F,G : X → Y ⊆ Rd

with values in a convex subspace Y of Rd are homotopic (just define a homotopy as above). So
every continuous map with values in a convex subspace of Rd is null-homotopic. ■

Proposition 5.2.2 Homotopies respect the composition of continuous maps. More precisely if

X
F //

G
// Y

F ′ //

G′
// Z

are continuous maps such that F ∼H G and F ′ ∼H ′ G′ for some homotopies H ,H ′, then
there exists a homotopy H (to be specified in the proof) such that F ′ ◦F ∼H G′ ◦G.

Proof. We define a homotopy H : [0,1]×X → Z between F ′ ◦F and G′ ◦G by putting

H(t,x) := H ′ (t,H (t,x)) .

Clearly

H(0,x) := H ′ (0,H (0,x)) = H ′ (0,F(x)) = F ′(F(x)),

and similarly

H(1,x) := H ′ (1,H (1,x)) = H ′ (1,G(x)) = G′(G(x)),

for all (t,x)∈ [0,1]×X . It remains to check that H is a continuous map. But H is the composition of
the map [0,1]×X→ [0,1]×Y , (t,x) 7→ (t,H (t,x)), which is continuous because it has continuous
components, followed by H ′, which is continuous by hypothesis. Hence H is continuous as
well. ■

Theorem 5.2.3 Let F,G : X → Y be homotopic continuous maps between topological spaces.
Then F,G induce the same map in singular homology:

Hn(F) = Hn(G), for all n ∈ Z.
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Proof. The tautological homotopy Hcan : [0,1]×X → [0,1]×X allows us to consider the case
Y = [0,1]×X , F = in0 and G = in1 only. Indeed, suppose preliminarily that in0 and in1 induce the
same map in singular homology:

Hn(in0) = Hn(in1), for all n ∈ Z.

Then, if H is a homotopy between F and G, we have Ht = H ◦ int for all t ∈ [0,1]. Hence

Hn(F) = Hn(H0) = Hn(H ◦ in0) = Hn(H )◦Hn(in0)

= Hn(H )◦Hn(in1) = Hn(H ◦ in1) = Hn(H1) = Hn(G).

It remains to check that Hn(in0) = Hn(in1) for all n. To do this we explicitly construct an algebraic
homotopy

h =
(

hn : Cn(X)→Cn+1([0,1]×X)
)

n∈Z

between the chain maps (in0)♯,(in1)♯ : (C•(X),∂ )→ (C•([0,1]×X),∂ ).
For every n ∈ N0 and every i = 0, . . . ,n consider the map

Pn
i : ∆n+1→ [0,1]×∆n,

defined by

Pn
i (x0, . . . ,xn+1) :=

(
1−

i

∑
j=0

x j,(x0, . . . ,xi−1,xi + xi+1,xi+2, . . . ,xn+1)

)
.

The family of maps P = (Pn
i )0≤i≤n∈N is sometimes called the prism map. The reason is illustrated

in Figure 5.15. We often denote Pn
i simply by Pi if it is clear which simplex it acts on.

Inspired by the prism map, we define maps

P♯
i : Sn(X)→ Sn+1([0,1]×X)

by putting

P♯
i (σ)(x0, . . . ,xn+1) :=

(
1−

i

∑
j=0

x j,σ (x0, . . . ,xi−1,xi + xi+1,xi+2, . . . ,xn+1)

)

for all singular n-simplexes σ : ∆n→ X . The map P♯
i (σ) : ∆n+1→ [0,1]×X defined in this way

is continuous (do you see it?). Hence it is a singular (n+1)-simplex in [0,1]×X as desired. The
maps P♯

i interact with the face maps d♯
j on S•(X) and S•([0,1]×X) as follows

d♯
j ◦P♯

i =


P♯

i ◦d♯
j−1 if 0≤ i < j−1≤ n

d♯
j ◦P♯

j if 0≤ i = j−1 < n
P♯

i−1 ◦d♯
j if 0≤ j < i≤ n

. (5.2)

We leave it to the reader to check the Prism Identities (5.2) as Exercise 5.6. Now, for each i, the
map P♯

i can be uniquely extended to a linear map, also denoted

P♯
i : Cn(X) = ZSn(X)→Cn+1([0,1]×X) = ZSn+1([0,1]×X).

Define

h :=
n

∑
i=0

(−)iP♯
i : Cn(X)→Cn+1([0,1]×X), n ∈ Z.
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Figure 5.15: The prism maps Pn
i : ∆n+1→ [0,1]×∆n embed the (n+1)-simplex into the (n+1)-dimensional

prism [0,1]×∆n in n+1 different ways. Here we depict the case n = 2. In this case P0 is the only affine map
such that P0(E0) = (0,E0), P0(E1) = (1,E0), P0(E2) = (1,E1), and P0(E3) = (1,E2). Similarly for higher i.

Finally, we use the Prism Identities (5.2) to check that h is the desired algebraic homotopy:

∂ ◦h

=
n+1

∑
j=0

(−) jd♯
j ◦

n

∑
i=0

(−)iP♯
i

=
n+1

∑
j=0

n

∑
i=0

(−)i+ jd♯
j ◦P♯

i

=
n+1

∑
j=2

j−2

∑
i=0

(−)i+ jd♯
j ◦P♯

i −
n+1

∑
j=1

d♯
j ◦P♯

j−1 +
n

∑
j=0

d♯
j ◦P♯

j +
n−1

∑
j=0

n

∑
i= j+1

(−)i+ jd♯
j ◦P♯

i

=
n+1

∑
j=2

j−2

∑
i=0

(−)i+ jP♯
i ◦d♯

j−1−d♯
n+1 ◦P♯

n−
n

∑
j=1

d♯
j ◦P♯

j−1 +
n

∑
j=0

d♯
j ◦P♯

j +
n−1

∑
j=0

n

∑
i= j+1

(−)i+ jP♯
i−1 ◦d♯

j

=−
n

∑
j=1

j−1

∑
i=0

(−)i+ jP♯
i ◦d♯

j−d♯
n+1 ◦P♯

n−
n

∑
j=1

d♯
j ◦P♯

j +
n

∑
j=0

d♯
j ◦P♯

j −
n−1

∑
j=0

n−1

∑
i= j

(−)i+ jP♯
i ◦d♯

j

= d♯
0 ◦P♯

0−d♯
n+1 ◦P♯

n−
n

∑
j=0

n−1

∑
i=0

(−)i+ jP♯
i ◦d♯

j

= d♯
0 ◦P♯

0−d♯
n+1 ◦P♯

n−
n−1

∑
i=0

(−)iP♯
i ◦

n

∑
j=0

(−) j ◦d♯
j

= d♯
0 ◦P♯

0−d♯
n+1 ◦P♯

n−h◦∂ .
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But, for any σ ∈ Sn(X) and any (x0, . . . ,xn) ∈ ∆n(
(d♯

0 ◦P♯
0)σ
)
(x0, . . . ,xn)

= P♯
0σ (d0(x0, . . . ,xn)) = P♯

0σ(0,x0, . . . ,xn)

= (1,σ(x0, . . . ,xn)) = in1 ◦σ(x0, . . . ,xn) = (in1)♯σ(x0, . . . ,xn)

and (
(d♯

n+1 ◦P♯
n)σ
)
(x0, . . . ,xn)

= P♯
nσ (dn+1(x0, . . . ,xn)) = P♯

nσ(x0, . . . ,xn,0)

= (1− x0−·· ·− xn,σ(x0, . . . ,xn)) = (0,σ(x0, . . . ,xn))

= in0 ◦σ(x0, . . . ,xn) = (in0)♯σ(x0, . . . ,xn),

so that

d♯
0 ◦P♯

0−d♯
n+1 ◦P♯

n = (in1)♯− (in0)♯.

We conclude that

∂ ◦h = (in1)♯− (in0)♯−h◦∂ ,

as desired. ■

Exercise 5.6 Prove the Prism Identities (5.2). ■

Exercise 5.7 State and prove the analog of Theorem 5.2.3 for singular cochains and arbitrary
coefficients. ■

Exercise 5.8 Let F,G : X →Y be continuous maps between topological spaces, let H : [0,1]×
X → Y be a homotopy such that F ∼H G, and let

h =
(

h : Cn(X)→Cn+1([0,1]×X)
)

n∈Z

be the algebraic homotopy constructed in the proof of Theorem 5.2.3. Show that

hH :=
(
H♯ ◦h : Cn(X)→Cn+1(Y )

)
n∈Z

is an algebraic homotopy between the chain maps F♯,G♯ : (C•(X),∂ )→ (C•(Y ),∂ ). ■

Corollary 5.2.4 If F : X→Y is a null-homotopic continuous map, then Hn(F) = 0 for all n ̸= 0,
and

H0(F) : H0(X)∼= Zπ0(X)→ H0(Y )∼= Zπ0(Y )

maps every path connected component of X to a single path connected component of Y .

■ Example 5.4 It immediately follows from Corollary 5.2.4 and Example 5.3 that, for any contin-
uous map F : X → Y ⊆ Rd with values in a convex subspace Y of Rd we have Hn(F) = 0 for all
n ̸= 0. ■
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We now discuss a new notion that formalizes the idea of continuously deforming a topological
space X into another topological space X ′.

Definition 5.2.2 — Homotopy Equivalence of Topological Spaces. A continuous map
F : X → X ′ between topological spaces is a homotopy equivalence if there exists a continuous
map in the other direction G : X ′→ X such that G ◦F is homotopic to the identity of X and
F ◦G is homotopic to the identity of X ′:

G◦F ∼H idX and F ◦G∼H ′ idX ′ ,

for some homotopies H ,H ′. In this situation G is clearly a homotopy equivalence as well. We
also say that G is a homotopy inverse of F (and viceversa) or that G inverts F up to homotopy.
If X ,X ′ are topological spaces connected by a homotopy equivalence, we say that they are
homotopy equivalent.

Proposition 5.2.5 Let F : X → X ′ be a homotopy equivalence between the topological spaces
X ,X ′, and let G : X ′ → X be a homotopy inverse of F . Then F,G induce mutually inverse
abelian group isomorphisms in singular homology, i.e. Hn(F) : Hn(X)→ Hn(X ′) and Hn(G) :
Hn(X ′)→ Hn(X) are abelian group isomorphisms and

Hn(F)−1 = Hn(G) for all n ∈ Z.

In particular, homotopy equivalent topological spaces have isomorphic singular homologies.

Proof. We have

Hn(F)◦Hn(G) = Hn(F ◦G) = Hn(idX ′) = idHn(X ′)

for all n, where, in the first and the last step, we used the functorial properties of singular homology
and, in the second step, we used Theorem 5.2.3. Swapping the roles of F and G we get Hn(G)◦
Hn(F) = idHn(X). This concludes the proof. ■

Sometimes a topological space X is homotopy equivalent to a subspace Y ⊆ X .

Definition 5.2.3 — Deformation Retract. A subspace Y ⊆ X in a topological space X is
a deformation retract of X if there exists a continuous map r : X → Y , called a deformation
retraction, inverting the inclusion iY : Y → X on the left and such that iY ◦r : X→ X is homotopic
to the identity of X (Figure 5.16). A topological space X is contractible if there exists a point
x0 ∈ X such that the one point subspace {x0} ⊆ X is a deformation retract of X .

Proposition 5.2.6 Let X be a topological space and let Y ⊆X be a deformation retract of X . Then
the inclusion iY : Y →X induces an isomorphism in singular homology: Hn(iY ) : Hn(Y )→Hn(X)
is an isomorphism for all n ∈ Z. Hence, if X is a contractible space, then

Hn(X)∼=
{

Z if n = 0
0 otherwise

.

Proof. Let r be a deformation retraction for Y ⊆ X . Then r ◦ iY = idY is clearly homotopic to
the identity of Y itself. At the same time iY ◦ r is homotopic to the identity of X by definition
of deformation retraction. This shows that iY and r are mutually homotopy inverse homotopy
equivalences between X and Y . So they both induce an isomorphism in singular homology by
Proposition 5.2.5. The last part of the statement now follows from Proposition 5.1.2. ■
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 𝑋 
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𝑡 

Figure 5.16: A deformation retract with a deformation retraction.

We finally come to concrete examples.

■ Example 5.5 — Rd is Contractible. The standard Euclidean space Rd is contractible for every
d. More precisely the constant map

r : Rd →{0}, x 7→ 0

is a deformation retraction. Indeed, the continuous map

H : [0,1]×Rd → Rd , (t,x) 7→H (t,x) := tx

is clearly a homotopy between i{0} ◦ r and idRd (do you see it? See also Figure 5.17). Restricting
H to the standard n-dimensional disk

Dd :=
{

x ∈ Rd : ∥x∥ ≤ 1
}
⊆ Rd ,

we see that Dd is contractible as well. We conclude that

Hn(Rd) = Hn(Dd) =

{
Z if n = 0
0 otherwise

. (5.3)

■

Exercise 5.9 Recall that a subset X ⊆ Rd is said to be star-shaped if there exists a point x0 ∈ X
such that, for every other point x ∈ X , the segment

x0x :=
{

tx0 +(1− t)x ∈ Rd : t ∈ [0,1]
}
⊆ Rd

is entirely contained into X . Show that any star-shaped subspace of Rd , in particular any convex
subspace, is contractible. ■

■ Example 5.6 — The Sphere is a Deformation Retract of the Punctured Space. For all d ≥ 0,
consider the punctured space

Rd+1
× := Rd+1 ∖{0},

(with the subspace topology induced from the standard topology of Rd+1).
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Figure 5.17: The standard Euclidean space Rd is contractible.

The d-dimensional sphere

Sd :=
{

x ∈ Rd+1 : ∥x∥= 1
}
⊆ Rd+1

×

is a deformation retract of Rd+1
× , with deformation retraction r : Rd+1

× → Sd given by

r(x) :=
x
∥x∥

.

Indeed the continuous map

H : [0,1]×Rd+1
× → Rd+1

× , (t,x) 7→H (t,x) := tx+(1− t)
x
∥x∥

is clearly a homotopy between iSd ◦ r and the identity of Rd+1
× (do you see it?). Hence the punctured

space Rd+1
× and the d-dimensional sphere have isomorphic singular homology. We will compute

the singular homology of spheres in next section. Notice also that Rd+1
× is homeomorphic to the

cylinder R×Sd . An explicit homeomorphism is given by

Φ : Rd+1
× → R×Sd , x 7→ (log∥x∥,x/∥x∥)

whose inverse is

Φ
−1 : R×Sd → Rd+1

× , (s,y) 7→ esy.

We conclude that the cylinder R×Sd has the same singular homology as Rd+1
× and Sd (see also

Exercise 5.10). ■

Exercise 5.10 Find an explicit homotopy equivalence between the cylinder R× Sd and the
sphere Sd (thus confirming that they have isomorphic singular homology). ■

■ Example 5.7 — The Eight Figure is a Deformation Retract of the 2-Punctured Plane. In the
standard Euclidean plane R2 consider the two point x± := (±1,0). The 2-punctured plane is the
subspace

X := R2 ∖{x−,x+} ⊆ R2.
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Figure 5.18: The sphere Sd is a deformation retract of the punctured space Rd+1
× .

Consider the eight figure, i.e. the subspace

Y =C−∪C+ ⊆ X ,

where

C± =
{

x ∈ R2 : ∥x− x±∥= 1
}

is the unit circle centered in x±. So Y consists of two circles with a common point. The eight figure
Y is a deformation retract of the 2-punctured plane X , with deformation retraction r : X → Y given
by (see Figure 5.19)

r(x) :=


x++ x−x+

∥x−x+∥ if ∥x− x+∥ ≤ 1
x−+

x−x−
∥x−x−∥ if ∥x− x−∥ ≤ 1

2x1x
∥x∥2 if ∥x− x+∥ ≥ 1, x ̸= 0, x1 ≥ 0
− 2x1x
∥x∥2 if ∥x− x−∥ ≥ 1, x ̸= 0, x1 ≤ 0

, for all x = (x1,x2) ∈ X .

We leave it to the reader to check that r is indeed a well-defined continuous map. To see that it is a
deformation retraction it is enough to notice that the continuous map

H : [0,1]×X → X , (t,x) 7→H (t,x) := tx+(1− t)r(x)

is a well-defined homotopy between iY ◦ r and idX . We conclude that the eight figure and the
2-punctured plane have isomorphic singular homologies. In the next section we will compute the
singular homologies of the eight figure, hence of the 2-punctured plane. ■

Exercise 5.11 Prove all unproved claims in Example 5.7. ■

Exercise 5.12 State and prove the analogs of Corollary 5.2.4, Proposition 2.3.5 and Proposition
5.2.6 for singular cochains and arbitrary coefficients. ■
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Figure 5.19: The eight figure Y is a deformation retract of the 2-punctured plane X ⊆ R2.

Proposition 5.2.7 Homotopy equivalence of topological spaces is an equivalence relation.

Proof. The identity map idX : X → X of a topological space is a homotopy equivalence, with
homotopy inverse itself. The involved homotopies are both given by the map H : [0,1]×X → X ,
(t,x) 7→ x (do you see it?). Hence homotopy equivalence is a reflexive relation. It is also clear that
it is a symmetric relation and it remains to prove that it is transitive. So let

X
F //
oo

G
X ′

F ′ //
oo

G′
X ′′

be homotopy equivalences between topological spaces with their homotopy inverses. We want to
show that F ′ ◦F is a homotopy equivalence with homotopy inverse given by G◦G′. So let H ,H ′

be homotopies such that G◦F ∼H idX and G′ ◦F ′ ∼H ′ idX ′ . Then we have

G◦G′ ◦F ′ ∼G◦H ′ G

(check it explicitly). Hence

G◦G′ ◦F ′ ◦F ∼H′ G◦F ∼H idX

where H′ : [0,1]×X → X is the homotopy given by

H′(t,x) := G◦H ′(t,F(x)), for all (t,x) ∈ [0,1]×X ,

and, from Proposition 5.2.1,

G◦G′ ◦F ′ ◦F ∼H′∗H idX .

Similarly there is a homotopy K such that F ′ ◦F ◦G◦G′ ∼K idX ′′ . This concludes the proof. ■

R Consider the category Top of topological spaces. Define a new category hTop as follows. The
objects in hTop are topological spaces themselves, i.e. ObhTop = ObTop. In order to define
morphisms, recall that “being homotopic” is an equivalence relation on the set HomTop(X ,Y )
of continuous maps between the topological spaces X ,Y (Proposition 5.2.1). Denote by ∼
this equivalence relation and, for any two topological spaces X ,Y , put

HomhTop(X ,Y ) := HomTop(X ,Y )
/
∼ ,
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the set of homotopy classes of continuous maps. Given a continuous map F : X → Y we will
denote by [F ]∼ ∈ HomhTop(X ,Y ) its homotopy class. The composition law of morphisms in
hTop is defined as follows. Let

X F−→ Y G−→ Z

be continuous maps between topological spaces. We put

[G]∼ ◦ [F ]∼ := [G◦F ]∼.

As homotopies respect the composition of continuous maps (Proposition 5.2.2), this is
well defined (do you see it?). The composition law in hTop defined in this way is clearly
associative. The units are the homotopy classes of the identity maps. The isomorphisms in
hTop are the (homotopy classes of) homotopy equivalences of topological spaces (do you see
it?). The category hTop is called the homotopy category of topological spaces.
Exercise 5.8 now shows that the singular chain complex construction can also be seen as a
functor

C• : hTop→ hChZ

from the homotopy category of topological spaces to the homotopy category of chain com-
plexes (of abelian groups). Similarly, for all n ∈ Z, the n-th singular homology functor can be
seen as a functor

Hn : hTop→ Ab.

5.3 Mayer-Vietoris Sequence
Let X be a topological space. Sometimes the singular (co)homology of X can be computed from
the singular (co)homology of appropriate pieces of X . Namely let {U,V} be an open cover of X ,
i.e. U,V ⊆ X are open subspaces such that X =U ∪V . Then U ∩V ⊆ X is also an open subspace
and we have a commuting diagram of continuous maps:

X

U

iU
??

V

iV
__

U ∩V
jU

__

jV

??
, (5.4)

where the arrows are the inclusions. Applying the singular chain complex functor to diagram (5.4)
we get a commuting diagram of chain maps:(

C•(X),∂
)

(
C•(U),∂

)
iU♯

??

(
C•(V ),∂

)
iV ♯

__

(
C•(U ∩V ),∂

)jU♯

__

jV ♯

??
. (5.5)

We can combine the top chain maps iU♯, iV ♯ in the latter diagram in one single chain map. In
order to explain this at a conceptual level, we have to explain how to take direct sums of (co)chain
complexes. We take this opportunity to present this construction in full generality (although we
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will only need the case of the direct sum of only two chain complexes). So, let
(
(iC•, id)

)
i∈I be a

family of chain complexes parameterized by some index set I. Out of such family we construct a
new chain complex (C⊕• ,d

⊕) as follows. For any n ∈ Z put

C⊕n =
⊕
i∈I

iCn.

and define maps d⊕ : C⊕n →C⊕n−1 by putting

d⊕(ic)i∈I := (idic)i∈I

for all (ic)i∈I ∈C⊕n . It is clear that d⊕ is a linear map such that d⊕ ◦d⊕ = 0 (do you see it? If not,
check all the details), hence (C⊕• ,d

⊕) is a chain complex also denoted(⊕
i∈I

iC•,d⊕
)

and called the direct sum of the family of chain complexes
(
(iC•, id)

)
i∈I . Notice that, by definition

of d⊕, the usual inclusion

ι j :
( jC, jd

)
→
(⊕

i∈I
iC⊕• ,d

⊕
)

is a chain map for all j ∈ I.

Lemma 5.3.1 The homology of
(⊕

i∈I
iC•,d⊕

)
is the direct sum of the homologies of the chain

complexes (iC•, id). More precisely, for each n ∈ Z,

Hn
(⊕

i∈I
iC•,d⊕

)
together with the linear maps

Hn(ι j) : Hn
( jC, jd

)
→ Hn

(⊕
i∈I

iC,d⊕
)
, j ∈ I,

is a direct sum of
(
Hn(

iC, id)
)

i∈I:

Hn
(⊕

i∈I
iC•,d⊕

)∼=⊕
i∈I

Hn
(iC•, id

)
.

Proof. We construct the isomorphism

Φ : Hn
(⊕

i∈I
iC•,d⊕

)
→
⊕
i∈I

Hn
(iC•, id

)
as follows. A cycle c ∈ Zn(

⊕
i∈I

iC•,d⊕) is a family (ic)i∈I with ic ∈ iCn for all i ∈ I. The cycle
condition reads

0 = d⊕c = (idic)i∈I.

As the 0 element in
⊕

i∈I
iCn−1 is the constant zero family, we get idic = 0 for all i ∈ I, i.e. ic ∈

Zn(
iC, id), and we can consider the cohomology class [ic] ∈ Hn(

iC, id). We put

Φ[c] :=
(
[ic]
)

i∈I ∈
⊕
i∈I

Hn(
iC, id).

We leave it to the reader to check that, defined in this way, Φ is indeed an isomorphism as Exercise
5.13. ■
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Exercise 5.13 Complete the proof of Lemma 5.3.1 proving that, for all n, the map Φ is an
isomorphism identifying the maps Hn(ι j) with the inclusions Hn(

jC, jd)→
⊕

i∈I Hn(
iC, id). ■

Now, Diagram (5.5) gives linear maps −iU♯ : Cn(U)→ Cn(X) (beware the sign!) and iV ♯ :
Cn(V )→Cn(X), for all n, that (from the universal property of the direct sum) we can combine into
one single linear map

i♯ : Cn(U)⊕Cn(V )→Cn(X), (cU ,cV ) 7→ iV ♯(cV )− iU♯(cU).

The family(
i♯ : Cn(U)⊕Cn(V )→Cn(X)

)
n∈Z

is a chain map between (C•(U)⊕C•(V ),∂⊕) and (C•(X),∂ ). Indeed, for all n∈Z and all (cU ,cV )∈
Cn(U)⊕Cn(V ),

i♯(∂⊕(cU ,cV )) = i♯(∂cU ,∂cV ) = iV ♯(∂cV )− iU♯(∂cU) = ∂ iV ♯(cV )−∂ iU♯(cU)

= ∂
(
iV ♯(cV )− iU♯(cU)

)
= ∂ i♯(cU ,cV ),

where we used that iU♯, iV ♯ are both chain maps.
The maps jU♯, jV ♯ in (5.5) can also be combined in one chain map. To explain this conceptually

we need to explain direct products of (co)chain complexes. So, let
(
(iC•, id)

)
i∈I be again a family of

chain complexes. For any n ∈ Z put

CΠ
n = ∏

i∈I

iCn.

and define a map dΠ : CΠ
n →CΠ

n−1 by putting

dΠ(ic)i∈I := (idic)i∈I

for all (ic)i∈I ∈CΠ
n . It is clear that dΠ is a linear map such that dΠ ◦dΠ = 0 (do you see it? If not,

check all the details), hence (CΠ
• ,d

Π) is a chain complex also denoted(
∏i∈I

iC•,dΠ

)
and called the direct product of the family of chain complexes

(
(iC•, id)

)
i∈I . By definition of d, the

usual projection

π j :
(

∏i∈I
iC•,dΠ

)
→
(

jC, jd
)

is a chain map for all j ∈ I.

Lemma 5.3.2 The homology of
(

∏i∈I
iC•,dΠ

)
is the direct product of the homologies of the

chain complexes (iC•, id). More precisely, for each n ∈ Z,

Hn
(
Πi∈I

iC•,dΠ
)

together with the linear maps

Hn(π j) : Hn
(
∏i∈I

iC,d∏
)
→ Hn

( jC, jd
)
, j ∈ I,



142 Chapter 5. Singular Homology

is a direct product of
(
Hn(

iC, id)
)

i∈I:

Hn
(
∏i∈I

iC•,d∏
)∼= ∏

i∈I
Hn
(iC•, id

)
.

Proof. Left as Exercise 5.14. ■

Exercise 5.14 Prove Lemma 5.3.2. ■

■ Example 5.8 Remember from Example 1.23 that the direct product of finitely many modules
agrees, as a module, with their direct sum. It immediately follows that, when

(
(iC•, id)

)
i∈I is a

family of chain complexes parameterized by a finite index set, then the direct product and the direct
sum of

(
(iC•, id)

)
i∈I do actually agree:(

∏i∈I
iC•,dΠ

)
=
(⊕

i∈I
iC•,d⊕

)
.

In the following we will freely use this simple fact without further comments. ■

Now, from the universal property of direct products, the maps jU♯, jV ♯ give linear maps

j♯ : Cn(U ∩V )→Cn(U)⊕Cn(V ), c 7→ j♯(c) = ( jU♯(c), jV ♯(c)),

n ∈ Z. The family(
j♯ : Cn(U ∩V )→Cn(U)⊕Cn(V )

)
n∈Z

is a chain map between (C•(U ∩V ),∂ ) and (C•(U)⊕C•(V ),∂⊕). Indeed, for all n ∈ Z and all
c ∈Cn(U ∩V ),

j♯(∂c) =
(

jU♯(∂c), jV ♯(∂c)
)
=
(
∂ jU♯(c),∂ jV ♯(c)

)
= ∂

⊕( jU♯(c), jV ♯(c)
)
= ∂

⊕ j♯(c),

where we used that jU♯, jV ♯ are both chain maps.
Summarizing, from diagram (5.5) we get a sequence of chain maps

0−→
(
C•(U ∩V ),∂

) j♯−→
(
C•(U)⊕C•(V ),∂⊕

) i♯−→
(
C•(X),∂

)
. (5.6)

Lemma 5.3.3 The sequence (5.6) is exact, in the sense that
(1) j♯ is injective, and
(2) ker i♯ = im j♯,

for all n ∈ Z.

Proof. We begin explaining what do the linear maps jU♯, jV ♯, iU♯, iV ♯ really do. Let σ ∈ Sn(U) be a
singular n-simplex in U . Then jU♯(σ) = jU ◦σ . Recall that jU : U ∩V →U is just the inclusion. So
jU♯(σ) agrees with σ but seen as an n-simplex in U rather that in U ∩V . Similarly, for an n-chain
c ∈Cn(U ∩V ), the chain jU♯(c) is just the same singular chain but seen as a singular chain in U .
So, the image of jU♯ consists of singular chains in U that do actually take values in U ∩V (more
precisely, they are linear combinations of singular simplexes taking values in U ∩V ). Likewise, for
jV ♯, iU♯, iV ♯.

Now, for item (1) let c ∈Cn(U ∩V ) be in the kernel of j♯. This means that

j♯(c) = ( jU♯(c), jV ♯(c)) = (0,0).
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As both jU♯(c), jV ♯(c) agree with c (but seen as a singular n-chain in U,V respectively) we conclude
that c = 0. From the kernel criterion j♯ is injective.

For item (2), let (cU ,cV ) ∈Cn(U)⊕Cn(V ) be in the kernel of i♯. Then

i♯(cU ,cV ) = iV ♯(cV )− iU♯(cU) = 0,

i.e. iV ♯(cV ) = iU♯(cU). Denote c = iV ♯(cV ) = iU♯(cU) ∈Cn(X). In other words, c takes values both
in U and in V (more precisely, it is a linear combination of singular n-simplexes taking values both
in U and in V ). The only possibility is that c takes values in U∩V , i.e. there exists cU∩V ∈Cn(U∩V )
such that c = jU♯(cU∩V ) = jV ♯(cU∩V ). We conclude that

(cU ,cV ) = (c,c) = ( jU♯(cU∩V ), jV ♯(cU∩V )) = j♯(cU∩V ).

This shows that ker i♯ ⊆ im j♯. For the converse inclusion, let cU∩V ∈Cn(U ∩V ), and compute

i♯ ◦ j♯(cU∩V ) = i♯
(

jU♯(cU∩V ), jV ♯(cU∩V )
)
= iV ♯ ◦ jV ♯(cU∩V )− iU♯ ◦ jU♯(cU∩V ) = 0,

where, in the last step, we used that the compositions iV ◦ jV and iU ◦ jU agree (they are both just
the inclusion U ∩V → X) hence iV ♯ ◦ jV ♯ and iU♯ ◦ jU♯ agree as well. ■

Notice however that the chain map i♯ : C•(U)⊕C•(V )→C•(X) is not surjective in general.
The image of i♯ consists of linear combinations of singular simplexes taking values either in U or
in V (do you see this?), and it is a subcomplex in (C•(X),∂ ) (see Example 2.13), that we denote
(C•(X ;U,V ),∂ ). The homology of (C•(X ;U,V ),∂ ) will be denoted H•(X ;U,V ). Clearly, we have
a short exact sequence of chain complexes

0−→
(
C•(U ∩V ),∂

) j♯−→
(
C•(U)⊕C•(V ),∂⊕

) i♯−→
(
C•(X ;U,V ),∂

)
−→ 0

and an associated long exact sequence in homology

· · ·
∆

00 Hn+1(U ∩V )
H( j♯)

// Hn+1(U)⊕Hn+1(V )
H(i♯)

// Hn+1(X ;U,V )
∆

// Hn(U ∩V )
H( j♯)

// Hn(U)⊕Hn(V )
H(i♯)

// Hn(X ;U,V )
∆

// Hn−1(U ∩V )
H( j♯)

// Hn−1(U)⊕Hn−1(V )
H(i♯)

// Hn−1(X ;U,V )
∆

00 · · ·

(5.7)

Proposition 5.3.4 The inclusion I : (C•(X ;U,V ),∂ )→ (C•(X),∂ ) is a quasi-isomorphism.

Proof (a sketch). The proof is technical and it is based on a construction called barycentric subdi-
vision which is also useful for different purposes but we will not explain. We only discuss the basic
ideas. There exists a chain map

S : (C•(X),∂ )→ (C•(X),∂ )

with the following properties:
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(1) S preserves the subcomplex C•(X ;U,V )⊆C•(X), i.e. S
(
C•(X ;U,V )

)
⊆C•(X ;U,V );

(2) for every n and every singular n-chain c ∈Cn(X) there exists a k ∈ N0 such that

Sk(c) := S◦ · · · ◦S︸ ︷︷ ︸
k times

(c) ∈Cn(X ;U,V );

(3) for every n and every n-cycle c ∈ Zn(X) (S(c) is also an n-cycle and)

c−S(c) = ∂b

for some b ∈Cn+1(X), i.e. c− S(c) is a boundary, hence, for all k ∈ N, c− Sk(c) is also a
boundary, indeed

c−Sk(c) = c−S(c)+S(c)−S2(c)+ · · ·+Sk−1(c)−Sk(c);

(4) if the n-cycle c in item (2) is in Cn(X ;U,V ), then the chain b can be chosen in Cn+1(X ;U,V ),
hence, in this case, for all k ∈ N, c− Sk(c) is also a boundary of the type ∂b′ with b′ ∈
Cn+1(X ;U,V ) (do you see it?).

The chain map S basically consists in dividing every singular simplex σ in “smaller” simplexes
with vertices in the barycenter of σ , the barycenters of its faces, the barycenters of their faces, and
so on, besides the vertices of σ themselves (Figure 5.20). The simplexes obtained in this way are
then taken with appropriate coefficients. The fact that Sk(c) belongs to Cn(X ;U,V ) for a sufficiently
large k is guaranteed by continuity and the fact that {U,V} is an open cover of X .

Now, suppose that we have S satisfying the properties (1)–(4), and let

H(I) : H•(X ;U,V )→ H•(X)

be the map induced in homology by the inclusion I : C•(X ;U,V )→ C•(X). We want to show
that H(I) : Hn(X ;U,V )→ Hn(X) is both injective and surjective for all n ∈ Z. In order not to
make confusion, we will denote by [c] ∈ Hn(X) the homology class of a cycle c ∈ Cn(X) and
by [c′]U,V ∈ Hn(X ;U,V ) the homology class of a cycle c′ ∈Cn(X ;U,V ). For the surjectivity, let
c ∈ Zn(X) be an n-cycle in Cn(X) and let [c] ∈ Hn(X) be its singular homology class. Choose
k ∈ N0 so that Sk(c) ∈Cn(X ;U,V ). We stress that, as S is a chain map, Sk(c) is an n-cycle as well,
i.e. Sk(c) ∈ Zn(X). Additionally, from item (3), Sk(c) is homologous to c, hence

[c] = [Sk(c)] = [I(Sk(c))] = H(I)[Sk(c)]U,V ,

i.e. [c] is in the image of H(I) as desired. For the injectivity, let c ∈Cn(X ;U,V ) be a cycle such
that

0 = H(I)[c]U,V = [I(c)] = [c].

So c is an n-boundary in C•(X), i.e. c = ∂b for some b ∈ Cn+1(X). Let k ∈ N0 be such that
Sk(b) ∈Cn+1(X ;U,V ). Then, from item (4), c−Sk(c) = ∂b′ for some b′ ∈Cn+1(X ;U,V ). Hence

c = ∂b′+Sk(c) = ∂b′+Sk(∂b) = ∂b′+∂Sk(b) = ∂

(
b′+Sk(b)

)
.

As both b′,Sk(b) belong to Cn+1(X ;U,V ), we conclude that c is a boundary in C•(X ;U,V ),
i.e. [c]U,V = 0. From the kernel criterion H(I) is injective as desired. ■

We are now ready to state the main result of this section.
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𝜎 

𝑋 

𝑈 𝑉 

Figure 5.20: Barycentric subdivision of a singular simplex.

Theorem 5.3.5 — Mayer-Vietoris Theorem. Let X be a topological space and let U,V ⊆ X be
open subspaces such that X =U ∪V . Then, for every n ∈ Z there exists a canonical linear map
∆ : Hn(X)→ Hn−1(U ∩V ) such that the following sequence of linear maps:

· · · Hn−1(U ∩V )
H( j♯)
oo Hn(X)

∆oo Hn(U)⊕Hn(V )
H(i♯)
oo Hn(U ∩V )

H( j♯)
oo · · ·oo (5.8)

is exact. The maps ∆ are natural in the sense that if X ′ is another topological space, U ′,V ′ ⊆ X ′

are open subspaces such that X ′ = U ′ ∪V ′ and F : X → X ′ is a continuous map such that
F(U)⊆U ′ and F(V )⊆V ′, then the following diagram:

· · · Hn−1(U ∩V )

��

H( j♯)
oo Hn(X)

��

∆oo Hn(U)⊕Hn(V )

��

H(i♯)
oo Hn(U ∩V )

��

H( j♯)
oo · · ·oo

· · · Hn−1(U ′∩V ′)
H( j♯)
oo Hn(X ′)

∆oo Hn(U ′)⊕Hn(V ′)
H(i♯)
oo Hn(U ′∩V ′)

H( j♯)
oo · · ·oo

(5.9)

commutes, where the vertical arrows are the maps induced by F in the obvious way (explained
in the proof). In particular ∆◦H(F) = H(F |U∩V )◦∆.

Proof. As in Proposition 5.3.4 denote by I : (C•(X ;U,V ),∂ )→ (C•(X),∂ ) the inclusion. As I is
a quasi-isomorphism, we can use H(I) to identify H•(X ;U,V ) with H•(X), and we get sequence
(5.8) from (5.7). We only stress, for future reference, that, after this identification, the connecting
homomorphism ∆ : Hn(X)→ Hn−1(U ∩V ) acts as follows: take an n-cycle c ∈ Zn(X) and, by
barycentric subdivision or any other method, find an homologous cycle c′ ∈ Zn(X)∩Cn(X ;U,V ) =
Zn(X ;U,V ). Now, by surjectivity of i♯ : Cn(U)⊕Cn(V )→ Cn(X ;U,V ), c′ can be written in the
form c′ = i♯(cU ,cV ) with (cU ,cV ) ∈Cn(U)⊕Cn(V ). Consider (∂cU ,∂cV ) ∈Cn−1(U)⊕Cn−1(V ).
Actually, there is a (unique) (n−1)-cycle cU∩V ∈ Zn−1(U ∩V ) such that j♯(cU∩V ) = (∂cU ,∂cV ),
and we put ∆[c] = [cU∩V ] ∈ Hn(U ∩V ).

The second part of the statement requires a little explanation. Namely, as F restricts to U ,
resp. V , in the domain, and to U ′, resp. V ′, in the codomain, it also restrict to U ∩V in the domain
and to U ′∩V ′ in the codomain. These restrictions are again continuous maps, hence they induce
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chain maps C•(U)→C•(U ′), C•(V )→C•(V ′), C•(U∩V )→C•(U ′∩V ′) that, abusing the notation,
we denote F♯ again. We also get chain maps

F♯ : C•(X ;U,V )→C•(X ′;U ′,V ′), c 7→ F♯(c),

and

F♯⊕F♯ : C•(U)⊕C•(V )→C•(U ′)⊕C•(V ′), (cU ,cV ) 7→ (F♯(cU),F♯(cV ))

(do you see it?). All these chain maps induce linear maps in homology. The latter will be all
denoted H(F) except for the very last one that will be denoted H(F)⊕H(F) : H•(U)⊕H•(V )→
H•(U ′)⊕H•(V ′). It is now easy to see that the diagram

0 //
(
C•(U ∩V ),∂

)
F♯
��

j♯
//
(
C•(U)⊕C•(V ),∂⊕

)
F♯⊕F♯
��

i♯
//
(
C•(X ;U,V ),∂

)
F♯
��

// 0

0 //
(
C•(U ′∩V ′),∂

) j♯
//
(
C•(U ′)⊕C•(V ′),∂⊕

) i♯
//
(
C•(X ′;U ′,V ′),∂

)
// 0

is a morphism of short exact sequences of chain complexes (Definition 2.4.4, do you see it?). It
then follows from Proposition 2.4.5 that Diagram (5.9)

· · · Hn−1(U ∩V )

H(F)
��

H( j♯)
oo Hn(X ;U,V )

H(F)
��

∆oo Hn(U)⊕Hn(V )

H(F)⊕H(F)
��

H(i♯)
oo Hn(U ∩V )

H(F)
��

H( j♯)
oo · · ·oo

· · · Hn−1(U ′∩V ′)
H( j♯)
oo Hn(X ′;U ′,V ′)

∆oo Hn(U ′)⊕Hn(V ′)
H(i♯)
oo Hn(U ′∩V ′)

H( j♯)
oo · · ·oo

commutes. But the isomorphism H(I) identifies the linear maps

H(F) : Hn(X ;U,V )→ Hn(X ;U ′,V ′) and H(F) : Hn(X)→ Hn(X).

Indeed, for every n-cycle c in C•(X ;U,V )

H(I)◦H(F)[c]U,V = H(I)[F♯(c)]U ′,V ′ = [I(F♯(c))] = [F♯(c)] = H(F)[c]

= H(F)◦H(I)[c]U,V .

We conclude that diagram (5.9) commutes as well. ■

Definition 5.3.1 — Mayer-Vietoris Sequence. The sequence (5.8) is called the Mayer-Vietoris
sequence (associated to the open cover {U,V} of the topological space X).

The Mayer-Vietoris sequence is often useful to compute the singular homology of X from that
of U,V,U ∩V . The typical example is that of spheres.

■ Example 5.9 — Singular Homology of Spheres. In this example we compute the singular
homology of the sphere

Sn =
{

x ∈ Rn+1 : ∥x∥2 = 1
}
⊆ Rn+1.

We will prove that, for every n≥ 1,

Hi(Sn) =

{
Z if i = 0,n
0 otherwise

. (5.10)
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Notice that Sn is path connected for all n (do you see it?). Hence H0(Sn) = Z from Proposition
5.1.3. We should actually write H0(Sn) ∼= Z, but being the isomorphism canonical, it is safe to
abuse the notation and write H0(Sn) = Z, meaning that we identify the two abelian groups using
our distinguished isomorphism. We will adopt similar abuses also in the sequel. If necessary we
will make explicit the canonical isomorphism that we are understanding.

The rest of the proof is by induction on n, and exploits both deformation retraction and Mayer-
Vietoris arguments. Consider preliminarily the case n = 0 (which is not in the statement but will be
useful anyway): the 0-dimensional sphere S0 is the 2-point space {−1,1} with the discrete topology,
so that S0 has exactly 2-path connected components {−1} and {1} (do you see it?). Hence the
0-homology of S0 is canonically isomorphic to Z{−1,1} ∼= Z2. In a very similar way as for the
one point space one can also show that Hi(S0) = 0 for i ̸= 0 (and we invite the reader to prove it in
details). Before discussing the base of induction we further need some general facts about spheres:
so let n≥ 1, consider the n-sphere Sn ⊆ Rn+1, the two points P± = (0, . . . ,0,±1) ∈ Sn (north and
south pole) and the following two open subsets:

U± := Sn ∖{P±} ⊆ Sn,

(why are U± open in Sn?). We have U+∪U− = Sn, and U+∩U− = Sn ∖{P+,P−}. We claim that
U+,U− are homeomorphic to Rn, while U+∩U− is homeomorphic to the punctured space Rn∖{0}.
To see this consider the stereographic projection from the north:

ϕ+ : U+→ Rn, (x1, . . . ,xn+1) 7→ ϕ+(x1, . . . ,xn+1) :=
(

x1

1− xn+1
, . . . ,

xn

1− xn+1

)
.

The map ϕ+ is a well-defined homeomorphism with inverse given by

ϕ
−1
+ : Rn→U+, (y1, . . . ,yn) 7→ ϕ

−1
+ (y1, . . . ,yn) =

(
2y1

∥y∥2 +1
, . . . ,

2yn

∥y∥2 +1
,
∥y∥2−1
∥y∥2 +1

)
.

The open subset U− is homeomorphic to Rn as well (via a similar stereographic projection from the
south). Finally, as ϕ+ maps the south pole P− to 0∈Rn, we also have that U+∩U− is homeomorphic
to the punctured space Rn ∖{0}. We conclude that the singular homologies of U± are the same as
those of Rn:

Hi(U±) =
{

Z if i = 0
0 otherwise

,

and the singular homologies of U+∩U− are the same as those of the punctured space, hence, from
Example 5.6, the same as those of the (n−1)-sphere Sn−1:

Hi(U+∩U−) = Hi(Sn−1).

More precisely, let r : Rn
×→ Sn−1 be the deformation retraction described in Example 5.6. Then

the composition

U+∩U−
ϕ+−→ Rn

×
r−→ Sn−1

induces an isomorphism in homology:

H(r ◦ϕ+) : Hi(U+∩U−)
∼=−→ Hi(Sn−1). (5.11)

We are now ready to discuss the base of induction: n = 1. We already discussed the homologies of
the 0-dimensional sphere S0. We conclude that, when n = 1

Hi(U+∩U−) = Hi(S0) =

{
Z2 if i = 0
0 otherwise

.
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We need to drop one more word on the isomorphisms H0(U±)∼= Z, H0(U+∩U−)∼= Z2. For
the first one, the generator of the free Z-module H0(U±)∼= Z is the only path connected component
of U±, and any singular 0-simplex σx, x ∈ U±, is a cycle representing it. We are identifying
this generator with 1 ∈ Z. For the second isomorphism H0(U+ ∩U−) ∼= Z2 recall that we are
using the stereographic projection to identify U+∩U− with the punctured line R× = R∖{0} and
then the homotopy equivalence R× → S0 = {−1,1}, t 7→ t/|t|. The two generators of the free
Z-module H0(U+∩U−) = H0({−1,+1}) are the two path connected components {+1} and {−1}
of {−1,+1} or, in terms of U+∩U−, the corresponding path connected components

{(x1,x2) ∈U+∩U− : x1 > 0} and {(x1,x2) ∈U+∩U− : x1 < 0}.

Any singular 0-simplex σ(x1,x2) in U+∩U− with x1 > 0 is a cycle representing the first one, and any
singular 0-simplex σ(x1,x2) with x1 < 0 is a cycle representing the second one. We are identifying
this two generators with (1,0) ∈ Z2 and (0,1) ∈ Z2 respectively (beware that swapping these
identifications might change some formulas). Similar considerations hold for the general case n > 1
(but beware that, when n > 1, U+∩U− has only one path connected component).

Now, the Mayer-Vietoris sequence associated to the open cover {U+,U−} of S1 is

0 H0(S1)oo H0(U+)⊕H0(U−)
H(i♯)
oo H0(U+∩U−)

H( j♯)
oo H1(S1)

∆oo 0oo · · ·oo

0 Zoo Z2oo Z2oo H1(S1)oo 0oo

(5.12)

in low degree, and

· · · 0oo Hi(S1)oo 0oo · · ·oo (5.13)

in higher degree i > 1.
We leave it to the reader to check that the map H( j♯) : H0(U+∩U−)→ H0(U+)⊕H0(U−) in

(5.12) is given by

H0(U+∩U−)
H( j♯)

// H0(U+)⊕H0(U−)

Z2 // Z2

(m1,m2)
� // (m1 +m2,m1 +m2)

(Exercise 5.15). Therefore the kernel K of H( j♯) is

K := kerH( j♯) =
{
(m,−m) ∈ Z2 : m ∈ Z

}
⊆ Z2,

which is clearly canonically isomorphic to Z via Z→ K, m 7→ (m,−m). From exactness (of the
Mayer-Vietoris sequence), ∆ : H1(S1)→ H0(U+∩U−) is an injective linear map whose image is K.
We conclude that H1(S1) is also (canonically) isomorphic to Z. More precisely, there is a unique
isomorphism H1(S1)∼= Z identifying ∆ : H1(S1)→ H0(U+∩U−) = Z2 with the homomorphism
Z→ Z2, m 7→ (m,−m) (do you see it? See Example 5.10 for a more explicit description of this
isomorphism). Finally, from (5.13), Hi(S1) = 0 for higher i. This proves the base of induction.

Next assume that the claim (5.10) is correct for 1 ≤ n ≤ k and prove it for n = k+1. In the
latter case U+ ∩U− has only one path connected component so that H0(U+ ∩U−) = Z and the
Mayer-Vietoris sequence associated to the open cover {U+,U−} is

0 H0(Sk+1)oo H0(U+)⊕H0(U−)
H(i♯)
oo H0(U+∩U−)

H( j♯)
oo H1(Sk+1)

∆oo 0oo · · ·oo

0 Zoo Z2oo Zoo H1(Sk+1)oo 0oo

(5.14)
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in low degree, and

· · · 0oo Hi−1(U+∩U−)oo Hi(Sk+1)
∆oo Hi(U+)⊕Hi(U−)oo · · ·oo

0 Hi−1(Sk)oo Hi(Sk+1)oo 0oo

(5.15)

in higher degree i > 1. The map H( j♯) : H0(U+∩U−)→ H0(U+)⊕H0(U−) in (5.14) is given by

H0(U+∩U−)
H( j♯)

// H0(U+)⊕H0(U−)

Z // Z2

m � // (m,m)

,

while H(i♯) : H0(U+)⊕H0(U−)→ H0(Sk+1) is given by

H0(U+)⊕H0(U−)
H(i♯)

// H0(Sk+1)

Z2 // Z

(m1,m2)
� // m2−m1

(see Exercise 5.15). In particular, H( j♯) is injective and kerH( j♯) = 0. It follows from the exactness
of the Mayer-Vietoris sequence that

im
(

∆ : H1(Sk+1)→ H0(U+∩U−)
)
= 0

as well, i.e. ∆ : H1(Sk+1)→ H0(U+∩U−) is the 0 map and ker∆ = H1(Sk+1). But, from exactness
again, ∆ is injective, so the only possibility is that H1(Sk+1) = 0 (do you see it?). Finally, it follows
from (5.15) that ∆ : Hi(Sk+1)→ Hi−1(U+∩U−) = Hi−1(Sk) is both injective and surjective. We
conclude that Hi(Sk+1)∼= Hi−1(Sk) for all i > 1 and from the induction hypothesis we get

Hi(Sk+1)∼= Hi−1(Sk) =

{
Z if i = k+1
0 if i ̸= 0,k+1

,

as claimed. Notice that, from Example 5.6, the punctured space Rn+1
× is homotopy equivalent to

the sphere Sn. Hence we also get that

Hi(Rn+1
× ) = Hi(Sn) =

{
Z if i = 0,n
0 otherwise

, (5.16)

for all n > 0.
The following remark is sometimes useful in applications: for all n > 0 the continuous map

(reflection with respect to the coordinate hyperplane x1 = 0)

T1 : Sn→ Sn, x = (x1,x2 . . . ,xn+1) 7→ T1(x) := (−x1,x2, . . . ,xn+1)

induces the multiplication by −1 map in n-homology:

Hn(Sn)
H(T1)

// Hn(Sn)

Z // Z

m � // −m

.
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To see this first notice that T1(U+)⊆U+ and T1(U−)⊆U−. So, according to the Mayer-Vietoris
Theorem, T1 induces a commuting diagram

Hn−1(U+∩U−)

H(T1)

��

Hn(Sn)

H(T1)

��

∆oo

Hn−1(U+∩U−) Hn(Sn)
∆oo

.

Composing the horizontal arrows with the isomorphism (5.11), and using the simple fact that
T1 ◦ r ◦ϕ+ = r ◦ϕ+ ◦T1 we see that the diagram

Hn−1(Sn−1)

H(T1)

��

Hn(Sn)

H(T1)

��

∆oo

Hn−1(Sn−1) Hn(Sn)
∆oo

(5.17)

commutes as well (do you see it?). For n = 1, this diagram boils down to

(m1,m2)_

��

Z2

H(T1)

��

Z

H(T1)

��

∆oo

(m2,m1) Z2 Z∆oo

(m,−m) m�oo

(5.18)

(Exercise 5.15). It follows that the right vertical arrow is multiplication by −1 (check the details
as an exercise). For higher n the claim follows by induction from the commutativity of diagram
(5.17) again. One can show in a similar way that actually the reflection Ti : Sn→ Sn with respect
to the i-th hyperplane xi = 0 induces the multiplication by −1 in the n-th homology of Sn for all
i = 1, . . . ,n+1. ■

Exercise 5.15 Prove all unproved claims in Example 5.9. Namely, show that
(1) the map H( j♯) : H0(U+∩U−)→ H0(U+)⊕H0(U−) in the case n = 1 of Example 5.9 is

given by

H( j♯) : Z2→ Z2, (m1,m2) 7→ (m1 +m2,m1 +m2),

if n = 1,
(2) and by

H( j♯) : Z→ Z2, m 7→ (m,m).

if n = k+1 > 1;
(3) the map H(i♯) : H0(U+)⊕H0(U−)→ H0(Sk+1) is given by

H(i♯) : Z2→ Z, (m1,m2) 7→ m2−m1,

if k ≥ 0;
(4) the diagram (5.17) boils down to (5.18) when n = 1;
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(Hint: when n = 1 use the explicit description of the isomorphism H0(U+∩U−) ∼= Z2 in the
detailed discussion preceding (5.12)). ■

Exercise 5.16 Let n,m be non-negative integers. Prove that the spheres Sn,Sm are not homotopy
equivalent, unless n = m. ■

■ Example 5.10 — The Canonical Generator of H1(S1). In Example 5.9 we proved, among
other things, that H1(S1) = Z. More precisely, we proved that there is a unique abelian group
isomorphism H1(S1)∼=Z identifying the monomorphism ∆ : H1(S1)→H0(U+∩U−) =Z2 with the
linear map Z→ Z2, m 7→ (m,−m). Here ∆ is the connecting homomorphism in the Mayer-Vietoris
sequence (5.12) associated to the open cover {U+,U−} of S1 (see Example 5.9 for more details). In
this example we want to provide a more explicit description of the isomorphism H1(S1)∼= Z. We
do this finding the generator in H1(S1) that corresponds to the canonical generator 1 in Z. In other
words, we find a distinguished 1-cycle c ∈ Z1(S1) such that ∆[c] = (1,−1) ∈ Z2 = H0(U+∩U−).

When studying S1 ⊆ R2, it is often convenient to interpret a pair (x1,x2) ∈ R2 as a complex
number x1 + ix2 using that C= R2 as real vector spaces. From now on, in this example, we adopt
this approach. So S1 consists of complex numbers of the form eiθ , with θ ∈ R. Let c : ∆1→ S1 be
the singular 1-simplex given by

c(x0,x1) := e2πix0 .

In other words c wraps the standard 1-simplex ∆1 once around the circle S1 counterclockwise,
starting from (and ending in) 1 (see Figure 5.21). Clearly c is a 1-cycle. We want to compute ∆[c].
According to the very definition of the connecting homomorphism in the Mayer-Vietoris sequence
we can do this in four steps:

(1) we find a 1-cycle c′ ∈C1(S1;U+,U−) such that c′− c = ∂b for some 2-chain b ∈C2(S1);
(2) we write c′ in the form c′ = iU−♯(c−)− iU+♯(c+) for some c± ∈C1(U±);
(3) we compute ∂c± and notice that ∂c± = jU±♯(c) for some c ∈C0(U+∩U−);
(4) we (observe that c ∈ Z0(U+∩U−) and) put ∆[c] = [c] ∈ H0(U+∩U−).

 

𝑐 Δ# 

𝑆# 

𝐸& 

𝐸# 

1 

Figure 5.21: The singular 1-simplex c wrapping once around the circle.

Step (1). This is the only non-trivial step. Consider the singular 1-simplexes σ± : ∆1→ S1,
(x0,x1) 7→ ∓eπix0 and the 1-chain c′ := σ++σ− (beware that this is a formal linear combination
in the free module spanned by 1-simplexes, it is not the sum of the two maps σ±, so don’t be
tempted to conclude that c′ = 0!!). It is clear that σ± takes values in U±, so that c′ ∈C1(S1;U+,U−).
Additionally, c′ is a cycle, indeed

∂c′ = ∂σ++∂σ− = σσ+(E1)−σσ+(E0)+σσ−(E1)−σσ−(E0) = σx−−σx+ +σx+−σx− = 0,
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where, in order to avoid confusion, we denoted x± = (±1,0) ∈ S1. Finally c differs from c′ by a
boundary. Indeed consider the singular 2-simplex b : ∆2→ S1, (x0,x1,x2) 7→ eπi(2x0+x1) (b is the
composition of the orthogonal projection s : ∆2→ ∆1, (x0,x1,x2) 7→ (x0 +x1/2,x1/2+x2) onto the
first face of ∆2 followed by c, in other words it first squashes the standard 2-simplex onto its first
face, and then wrap it around the circle, see Figure 5.22). Now compute

∂b = b◦d0−b◦d1 +b◦d2.

But

b◦d0(x0,x1) = b(0,x0,x1) = eπix0 = σ−(x0,x1),

b◦d1(x0,x1) = b(x0,0,x1) = e2πix0 = c(x0,x1),

b◦d2(x0,x1) = b(x0,x1,0) = eπi(2x0+x1) = eπi(x0+1) =−eπix0 = σ+(x0,x1),

for all (x0,x1) ∈ ∆1 (where we used that x0 + x1 = 1). We conclude that

∂b = σ++σ−− c = c′− c.

This concludes Step (1).

 𝑏 

Δ! 

𝐸! 

𝐸" 

𝐸# Δ" 

𝑆" 

𝑠 𝑐 

𝜎! 

𝜎" 

Figure 5.22: The singular 2-simplex b = c◦ s. The boundary of b is σ++σ−− c.

Step (2). Put c± =∓σ±. Then c± ∈C1(U±) and c′ = iU−♯(c−)− iU+♯(c+) as desired.

Step (3). Compute

∂c+ =−∂σ+ =−σx−+σx+ = ∂σ− = ∂c−.

As x± ∈U+∩U−, the 0-chain c := −σx− +σx+ is in C0(U+∩U−). The above computation now
shows that ∂c± = jU±♯(c) as desired.

Step (4). Finally ∆[c] = [c]. But the homology class [c] is

[c] = “path connected component of x+” − “path connected component of x−”

which identifies with (1,−1) under the isomorphism H0(U+∩U−)∼= Z2.
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So the homology class [c] ∈ H1(S1) is exactly the generator that we were looking for. We
conclude this example with a remark that will be useful below. Besides c, for each m ∈ Z, consider
the singular 1 simplex cm : ∆1→ S1, defined by

cm(x0,x1) := e2mπix0 . (5.19)

In other words cm wraps ∆1 around the circle m-times counterclockwise (see Figure 5.23 for the
case m = 3). Clearly cm is a 1-cycle for all m. In a very similar way as we did for c′− c, it is not
difficult to see that mc− cm is actually a boundary (Exercise 5.17). So cm is homologous to mc and
its homology class is

[cm] = m[c]

which identifies simply with m ∈ Z under the isomorphism H1(S1)∼= Z. In this way we have found
a canonical representative for every homology class in H1(S1). ■

 

𝑐3 Δ1 

𝑆1 

𝐸0 

𝐸1 

1 

Figure 5.23: The singular 1-simplex c3 wraps 3 times around the circle.

Exercise 5.17 Show that the 1-cycle cm in C1(S1) defined by (5.19) is homologous to the
1-cycle mc, where c = c1 (Hint: consider the singular 2-simplex

b : ∆2→ S1, (x0,x1,x2) 7→ e2πi(mx0+(m−1)x1)

and show that ∂b = cm−1 + c− cm, then use induction). ■

■ Example 5.11 — Singular Homology of the 2-Punctured Plane. In this example we use
the Mayer-Vietoris sequence together with Example 5.9 to compute the singular homology of
the 2-punctured plane X = R2 ∖{x+,x−}, where we set x± = (±1,0) or, which is the same, the
homology of the eight figure Y =C−∪C+ (see Example 5.7 for the notation). We begin remarking
that Y is path connected, hence H0(Y ) = Z. Now, consider the following two open subsets in Y :

U± = Y ∖{(0,∓2)}

(why are U± open in Y ?). We have U+∪U− = Y and U+∩U− = Y ∖{(0,2),(0,−2)}. Moreover
C− is a deformation retract in U−. An explicit deformation retraction r : U−→C− is given by

r(x,y) =
{

(x,y) if x≤ 0
(0,0) if x > 0

.
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(We give up on presenting a precise homotopy between iC− ◦ r and idU− , but we hope that the reader
has at least an intuition of the fact that such a homotopy exists). Similarly C+ is a deformation
retract of U+ and {(0,0)} is a deformation retract of U+∩U−. In low degree, the Mayer-Vietoris
sequence associated to the open cover {U+,U−} is

· · · H0(U+)⊕H0(U−)oo H0(U+∩U−)oo H1(Y )oo H1(U+)⊕H1(U−)oo H1(U+∩U−)oo · · ·oo

· · · Z2oo Zoo H1(Y )oo Z2oo 0oo

(m,m) m�oo

.

As the map H0(U+ ∩U−)→ H0(U+)⊕H0(U−) is injective, from exactness, the map H1(Y )→
H0(U+ ∩U−) must be 0. So the map H1(U+)⊕H1(U−)→ H1(Y ) is surjective. But it is also
injective, and we conclude that H1(Y ) = Z2. In higher degree i > 1 the Mayer-Vietoris sequence is

· · · Hi−1(U+∩U−)oo Hi(Y )oo Hi(U+)⊕Hi(U−)oo · · ·oo

0 Hi(Y )oo 0oo

.

So, Hi(Y ) = 0 for i > 1. We conclude that

Hi(X) = Hi(Y ) =


Z if i = 0
Z2 if i = 1
0 otherwise

.

■

Exercise 5.18 Use appropriate deformation retraction + Mayer-Vietoris sequence arguments to
compute the singular homology of the 2-punctured 3D space X := R3 ∖{(0,0,1),(0,0,−1)}
(you can be sloppy on homotopy arguments!). ■

Exercise 5.19 Use appropriate deformation retraction + Mayer-Vietoris sequence arguments to
compute the singular homology of the 3-punctured plane

X := R2 ∖{(1,0),(−1,0),(0,1)}

(you can be sloppy on homotopy arguments!). ■

■ Example 5.12 — Singular Homology of the Klein Bottle. The singular homologies that we
have computed so far are all free abelian groups (when non-trivial). We now provide an example of
a topological space with a non-free singular homology: the Klein Bottle (one further example is
provided by Exercise 5.20 below). Recall that the Klein Bottle is the topological space obtained
from a square by identifying the opposite sides as illustrated in Figure 5.24.

To be more precise, take the unit square [0,1]× [0,1]⊆R2 with its subspaces topology and, for
every x,y ∈ [0,1], identify the point (x,0) with the point (x,1) and the point (0,y) with the point
(1,1− y). The Klein Bottle K is the quotient topological space under this identification (see Figure
5.25).

We want to compute the singular homology of K. To do this we use the Mayer-Vietoris Theorem.
We begin remarking that K is path connected so that H0(K) = Z (do you see it?). Next, denote by
P ∈ K the point corresponding to the center of the square, and consider the following two open
subsets in K:
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Figure 5.24: The Klein Bottle.

(0,0)

ℝ!
(1,1)(0,1)

(1,0)

(0, 𝑦)

(1,1 − 𝑦)

(𝑥, 1)

(𝑥, 0)

Figure 5.25: The unit square.

✓ U = K ∖{P} (do you see that it is indeed open?);
✓ the open subspace V corresponding to an open disk around P not touching the boundary of

the square.
We have U ∪V = K and U ∩V = V ∖{P}. Moreover the subspace Y ⊆U corresponding to the
boundary of the square is a deformation retract of U . Notice that Y is homeomorphic to the eight
figure from Example 5.7 (do you see it?) and consists of two circles C1,C2 with a common point
Q (see Figure 5.26). Moreover U ∩V = V ∖ {P} is homeomorphic to the punctured plane and,
therefore, it is homotopy equivalent to the circle S1. Hence, from Example 5.11, in low degree, the
Mayer-Vietoris sequence associated to the open cover {U,V} of K is

· · · H0(U)⊕H0(V )oo H0(U ∩V )oo H1(K)oo H1(U)⊕H1(V )oo H1(U ∩V )oo · · ·oo

· · · Z⊕Zoo Zoo H1(K)oo 0⊕Z2oo Zoo · · ·oo

(m,m) m�oo

.

As the map H0(U ∩V )→ H0(U)⊕H0(V ) is injective, from exactness, the connecting homo-
morphism H1(K)→ H0(U ∩V ) is zero, hence H1(K) is isomorphic the cokernel of the map
H1(U ∩V )→ H1(U)⊕H1(V )∼= H1(Y ), which is the map induced in homology by the inclusion
jV : U ∩V →V followed by the map induced in homology by the retraction r : V → Y . Now, the
1-homology of U ∩V =U ∖{P} is generated by the homology class [c] of a singular 1-simplex
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𝑄 𝑄

𝑄𝑄

𝐶!

𝐶"𝐶"

𝐶!

Figure 5.26: An open cover of the Klein Bottle.

c : ∆1→U ∖{P} wrapping ∆1 once around P. The image of c under r ◦ jV is a singular 1-simplex
(and a 1-cycle) c′ : ∆1→ Y wrapping first around C1, then around C2, then around C1 again but
in the opposite direction, and finally around C2 in the same direction as before. Overall, c′ is
homologous to a singular 1-simplex (and a 1-cycle) c′′ : ∆1→ Y wrapping twice around C2, so that
the map H1(U ∩V )→ H1(U)⊕H1(V ) identifies with the linear map Z→ Z2, p 7→ (0,2p) (see
Equation 5.19) whose cokernel is isomorphic to Z2/(0⊕2Z) = Z⊕Z2.

The next segment of the Mayer-Vietoris sequence is

· · · H1(U)⊕H1(V )oo H1(U ∩V )oo H2(K)oo H2(U)⊕H2(V )oo · · ·oo

· · · 0⊕Z2oo Zoo H2(K)oo 0oo · · ·oo

(0,2p) p�oo

.

As the map H1(U ∩V )→ H1(U)⊕H1(V ) is injective, it follows from exactness that H2(K) = 0.
Similarly Hi(K) = 0 for all i > 2. We conclude that

Hi(K) =


Z if i = 0

Z⊕Z2 if i = 1
0 otherwise

.

Clearly, H1(K) is not a free abelian group. ■

Exercise 5.20 Compute the singular homology of the real projective plane RP2. (Hint: remem-
ber that the real projective plane can be obtained from a square by identifying the opposite sides
as in Figure 5.27. Now use the same strategy as in Example 5.12). ■

We now provide various interesting applications of Example 5.9, including a topological proof
of the Fundamental Theorem of Algebra.

Theorem 5.3.6 — Topological Invariance of Dimension. Let m,n be non-negative integers.
Then the standard Euclidean spaces Rm,Rn are not homeomorphic, unless m = n. In other words
the topology of Rn “knows its dimension”.

Proof. The proof is by contradiction. Clearly, we can assume m,n ̸= 0 (do you see it?). So,
let 0 < m < n and suppose that there is a homeomorphism Φ : Rn → Rm. Then there is also a
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Figure 5.27: The real projective plane.

homeomorphism Φ0 : Rn → Rm such that Φ0(0) = 0. Indeed, let τ : Rm → Rm, x 7→ x−Φ(0)
be the translation by the vector −Φ(0). It is clear that τ is a homeomorphism (do you see it?).
Then Φ0 := τ ◦Φ0 is a homeomorphism as well, and Φ0(0) = τ(Φ(0)) = Φ(0)−Φ(0) = 0. By
restriction Φ0 : Rn

×→ Rm
× is a homeomorphism of the puctured spaces. In particular it induces an

isomorphism in homology. Hence, from (5.16),

Z= Hn−1(Sn−1)∼= Hn−1(Rn
×)
∼= Hn−1(Rm

×)
∼= Hn−1(Sm−1) = 0,

which is a contradiction. ■

Theorem 5.3.7 — Brouwer Fixed Point Theorem. Let n be a positive integer and let

Dn =
{

x ∈ Rn : ∥x∥ ≤ 1
}

be the closed n-dimensional disk. Every continuous map F : Dn→ Dn has a fixed point, i.e. a
point x0 ∈ Dn such that F(x0) = x0.

Proof. The proof is by contradiction. The case n = 1 follows from the Bolzano’s Theorem and
does not require homological methods. So let n > 1 and let F : Dn→ Dn be a continuous map.
Suppose that F(x) ̸= x for all x ∈ Dn. Then we can construct a map G : Dn→ Sn−1 defining G(x)
as the intersection point with Sn−1 of the half line starting at F(x) and passing through x ∈ Dn−1

(see Figure 5.28). The map G is continuous (the point G(x) can be computed explicitly and
shown to have continuous coordinates in the variable x. Do this as an exercise!). Additionally, if
x ∈ Sn−1 ⊆ Dn, then G(x) = x (do you see it?). In other words, if we denote by i : Sn−1→ Dn the
inclusion, then the diagram

Dn G // Sn−1

Sn−1

i

OO

id

<<

commutes. It follows that the diagram

Hn−1(Dn)
H(G)

// Hn−1(Sn−1)

Hn−1(Sn−1)

H(i)

OO

id

77
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commutes as well. But, for n > 1, from (5.3) we have Hn−1(Dn) = 0, and from (5.10) we have
Hn−1(Sn−1) = Z. So we have a commuting diagram

0 // Z

Z

OO

id

??

which is a contradiction. ■

 ℝ! 
𝑆!"# 

𝐷! 

𝐹(𝑥) 

𝐺(𝑥) 
𝑥 

Figure 5.28: The map G in the proof of Brouwer Theorem.

Let n be a positive integer. A (continuous) vector field on the n-dimensional sphere Sn is a
continuous map Z : Sn→ Rn+1 such that Z(x) is orthogonal to x for all x ∈ Sn (i.e. for all x ∈ Sn,
the image Z(x) is in the tangent space to Sn at x, see Figure 5.29).

Theorem 5.3.8 — Hairy Ball Theorem. Let n = 2k > 0 be an even positive integer. Then
every continuous vector field Z : Sn→ Rn+1 on the n-dimensional sphere vanishes at some point,
i.e. there exists x0 ∈ Sn such that Z(x0) = 0.

The proof of the Hairy Ball Theorem is based on the following Lemma that might have an
independent interest.

Lemma 5.3.9 Let n be an even non-negative integer. Then the antipodal map A : Sn → Sn,
x 7→ −x is not homotopic to the identity.

Proof. The map A is continuous. Actually, it is the composition of the reflections with respect to
all coordinate hyperplanes: A = T1 ◦ · · · ◦Tn+1. Every Ti induces the multiplication by −1 in the
n-th homology of Sn (see the discussion at the end of Example 5.9). Hence

Hn(A) = Hn(T1 ◦ · · · ◦Tn+1) = Hn(T1)◦ · · · ◦Hn(Tn+1) = (−1)n+1.

So, if n is even, then n+1 is odd and Hn(A) =−1. In particular A does not induce the identity in
homology, and cannot be homotopic to id. ■
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R As a corollary of Lemma 5.3.9, we can also prove the following new fixed point theorem:
If n is an even non-negative integer, then any continuous map F : Sn→ Sn homotopic to the
identity has a fixed point. Indeed, suppose by contradiction that F has no fixed point. In this
case tA(x)+ (1− t)F(x) = −tx+(1− t)F(x) ̸= 0 for all (t,x) ∈ [0,1]× Sn. Indeed, for all
t ∈ [0,1], −tx+(1− t)F(x) is a point of the segment s joining F(x) and −x. If 0 belonged to
s then s would be a diameter and its extremal points would be antipodal, i.e. F(x) = x. Now
consider the map

H : [0,1]×Sn→ Sn, (t,x) 7→H (t,x) :=
−tx+(1− t)F(x)
∥−tx+(1− t)F(x)∥

.

It is a well-defined homotopy between F and A (do you see it?). But “being homotopic” is a
transitive relation on continuous maps and A is not homotopic to the identity (from Step 1),
while F is by hypothesis. This is a contradiction.

Proof (of Theorem 5.3.8). Let Z : Sn → Rn+1 be a continuous vector field on Sn. Suppose by
contradiction that Z has no zeros, i.e. Z(x) ̸= 0 for all x ∈ Sn. Then we can define a continuous
map V : Sn→ Sn by putting V (x) = Z(x)/∥Z(x)∥. In its turn V can be used to define a homotopy
H : [0,1]×Sn→ Sn between id and A as follows. For all (t,x) ∈ [0,1]×Sn put

H (t,x) = (cosπt)x+(sinπt)V (x).

The map H takes indeed values in Sn:

∥H (t,x)∥2 = ∥(cosπt)x+(sinπt)V (x)∥2

= (cos2
πt)∥x∥2 +(sin2

πt)∥V (x)∥2 +2(cosπt sinπt) x ·V (x)

= cos2
πt + sin2

πt = 1,

where we used that x and Z(x) (hence x and V (x)) are orthogonal: x ·Z(x) = x ·V (x) = 0. Finally,
for all x ∈ Sn,

H (0,x) = x = id(x) and H (1,x) =−x = A(x),

which is a contradiction. This concludes the proof. ■
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Figure 5.29: A vector field Z on the sphere Sn.
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In the case n = 2, the Hairy Ball Theorem says, in practice, that it is impossible to comb
continuously a hairy (3-dimensional) ball without living out some singular point. This should
explain the funny name.

We conclude this chapter showing that singular homology does even allow to prove the Funda-
mental Theorem of Algebra.

Theorem 5.3.10 — Fundamental Theorem of Algebra. Let P(z) ∈ C[z] be a complex poly-
nomial of positive degree in the indeterminate z. Then P(z) possesses a rooth, i.e. there exists
z0 ∈ C such that P(z0) = 0.

Proof. Let m > 0 be the degree of P(z). We can assume, without loss of generality, that P(z) is a
monic polynomial:

P(z) = zm +am−1zm−1 + · · ·+a1z+a0,

ai ∈C for all i = 0, . . . ,m−1. Suppose by contradiction that P(z) ̸= 0 for all z ∈C. In this case we
can define the continuous map

G : R×S1→ S1, (r,x) 7→ G (r,x) :=
P(rx)
|P(rx)|

|P(r)|
P(r)

.

Consider also the map

H : [0,1]×S1→ S1, (t,x) 7→H (t,x) :=
{

G
( t

1−t ,x
)

if 0≤ t < 1
xm if t = 1

.

The latter map is also continuous. Indeed, it is clearly continuous on [0,1)×S1 and, additionally,
for all x ∈ S1,

lim
t→1−

H (t,x) = lim
t→1−

G

(
t

1− t
,x
)
= lim

r→+∞
G (r,x) = lim

r→+∞

(rx)m

|rx|m
rm

rm = xm,

where we used that |x|= 1 (and that the top power term of P(rx) is dominant in the limit r→+∞).
Hence it is a homotopy between H0 and H1. Now,

H0(x) = H (0,x) = 1 and H1(x) = H (1,x) = xm,

for all x ∈ S1. So H1 is null-homotopic, and must induce the zero map in the first homology H1(S1)
(Corollary 5.2.4). However, using the final part of Example 5.10

H(H1)[c] = [H1♯(c)] = [cm] = m[c] ̸= 0

when m > 0. This is a contradiction. ■



6. de Rham Cohomology

Numerous (co)chain complexes appear in Differential Geometry as well. In this chapter we briefly
discuss the de Rham Complex of an open subset in Rn. Our analysis will mostly parallel that for
Singular Homology in Chapter 5. de Rham cohomology is a diffeomorphism invariant, i.e. two
diffeomorphic open subsets have isomorphic de Rham cohomology, but it is also a homotopy
invariant, i.e. homotopy equivalent open subsets have isomorphic de Rham cohomology. The
advantage of open subsets in the standard Euclidean space over generic topological spaces is that
they can be studied via tools from Calculus. Actually, open subsets are a special instance of more
interesting spaces, namely smooth manifolds. de Rham cohomology extends to smooth manifolds
and it is usually presented in such generality. As the scopes of this chapter is mainly illustrative, we
will not define smooth manifolds (which will take too much space) and we will limit the discussion
to open subsets in standard Euclidean spaces. Notice however that every smooth manifold is
homotopy equivalent to an open subset in some standard Euclidean space, so limiting to the latter
case is not tremendously restrictive. We conclude the chapter sketching the proof of the de Rham
Theorem stating that de Rham cohomology agrees with singular cohomology. This important result
in Differential Geometry paves the way to a Calculus based Algebraic Topology.

6.1 Differential Forms and de Rham Cohomology
Open subsets in standard Euclidean spaces can be organized in a category Op as follows. An
object in Op is a non-empty open subset U ⊆ Rn for some n ∈ N0. The dimension n of the ambient
Euclidean space is also called the dimension of U , and we write dimU = n. If U ⊆Rn and V ⊆Rm

are non-empty open subsets, a morphism in Op between U and V is a smooth map F : U→V , i.e. a
map that can be differentiated infinitely many times at every point. As the identity idU : U →U is a
smooth map and the composition of smooth maps is a smooth map, we immediately see that Op is
a category. Isomorphisms in Op are diffeomorphisms, i.e. smooth maps F : U →U ′ between open
subsets U,U ′ ⊆ Rn such that F is an invertible map and F−1 is a smooth map as well. Notice that
there are no diffeomorphisms between two open subsets U ⊆ Rn, V ⊆ Rm if n ̸= m.

Let us fix our notation about smooth maps. Given open subsets U ⊆ Rn, V ⊆ Rm, the set
of smooth maps F : U → V will be also denoted C∞(U,V ). If m = 1 and V = R, then we also
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simply write C∞(U) (instead of C∞(U,R)). Elements of C∞(U) will be also called smooth functions
on U (reserving the term smooth maps to the more general case C∞(U,V )). With the point-wise
operations smooth functions on U form a real, associative, commutative algebra with unit (do you
see it?), i.e. the sum of smooth functions is a smooth function, the product of smooth functions is a
smooth function and the product by a real number of a smooth function is a smooth function as
well.

In this chapter, following a rather common convention in Differential Geometry, we will usually
denote (x1, . . . ,xn) (with upper indexes) the standard coordinates on an open subset U ⊆ Rn, but
we will also use (y1, . . . ,ym), (z1, . . . ,zp), etc. if we deal with more than one open subset in more
than one Euclidean space. In this case, for a smooth function f ∈ C∞(U) we will also write
f = f (x1, . . . ,xn) to stress that the coordinates can be promoted to indepterminates. Let U ⊆ Rn

and V ⊆ Rm be open subsets, let (x1, . . . ,xn) be standard coordinates on U , and let (y1, . . . ,ym)
be standard coordinates on V . A smooth map F : U →V can be seen as a vector valued map on
U : F = (F1, . . . ,Fm) where Fa = Fa(x1, . . . ,xn) is the smooth function defined by Fa = ya ◦F ,
a = 1, . . . ,m. We will also write F = F(x1, . . . ,xn).

We now come to vector fields and differential forms. Let U ⊆ Rn be a non-empty open subset.

Definition 6.1.1 — Vector Field. A vector field on U is a smooth vector valued map X : U→Rn,
i.e. X ∈C∞(U,Rn) (we stress that here n = dimU).

Let X = (X1, . . . ,Xn) be a vector field on U . We interpret X as the assignment of a vector
X(x) = (X1(x), . . . ,Xn(x)) applied at the point x ∈U for every such x (Figure 6.1). This should
explain the terminology “vector field”.

 ℝ! 

𝑈 

𝑋 

Figure 6.1: A vector field X on an open subset U ⊆ Rn.

A vector field X =(X1, . . . ,Xn) is completely determined by its components X i =X i(x1, . . . ,xn)∈
C∞(U), i = 1, . . . ,n. Accordingly it can be identified with the first order linear differential operator

n

∑
i=1

X i ∂

∂xi : C∞(U)→C∞(U)
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that, abusing the notation, we denote again by X , in other words, we often write

X =
n

∑
i=1

X i ∂

∂xi (6.1)

instead of X = (X1, . . . ,Xn). For instance, for a smooth function f ∈C∞(U) we denote

X( f ) :=
n

∑
i=1

X i ∂ f
∂xi .

In order not to make confusion between the interpretation of a vector field X as a map X : U → Rn

and as a differential operator X : C∞(U)→C∞(U), from now on the value of a vector field at a
point x ∈U will be denoted Xx (instead of X(x)). Notice that the constant vector field

Ei :=
(

0, . . . , 1︸︷︷︸
i-th place

, . . . ,0
)

identifies with the i-th partial derivative ∂

∂xi .

Exercise 6.1 Prove that, for every vector field X on U ⊆ R, the map

X : C∞(U)→C∞(U)

is a derivation of the associative algebra C∞(U). ■

In the following we denote by X(U) (instead of C∞(U,Rn)) the space of vector fields on the
open subset U ⊆ Rn. There are various interesting algebraic structures on X(U). First of all, if
we interpret C∞(U) as a ring (forgetting about the vector space structure) then X(U) is a C∞(U)-
module: both the addition and the scalar multiplication are defined point wise, i.e. for all vector
fields X ,Y ∈ X(U) and all smooth functions g ∈C∞(U), the sum X +Y is defined by

(X +Y )x := Xx +Yx, x ∈U,

and the product gX is defined by

(gX)x := g(x)Xx, x ∈U.

If we interpret X ,Y as differential operators X ,Y : C∞(U)→C∞(U), then

(X +Y )( f ) = X( f )+Y ( f ), f ∈C∞(U),

and

(gX)( f ) = gX( f ), f ∈C∞(U)

(do you see it?).

Exercise 6.2 Prove that the addition and the scalar multiplication defined above give to X(U)
the structure of a module over the ring C∞(U). ■

In particular, the rhs of (6.1) is a linear combination in the module X(U).



164 Chapter 6. de Rham Cohomology

Proposition 6.1.1 The C∞(U)-module X(U) is free and finitely generated. Specifically, partial
derivatives form a basis in it.

Proof. We already know that partial derivatives generate X(U). It remains to check that they are
linearly independent. So let f 1, . . . , f n ∈C∞(U) be such that

n

∑
i=1

f i ∂

∂xi = 0.

This means that the lhs is the 0 differential operator C∞(U)→C∞(U). So it maps every function to
the zero function. In particular, for every j = 1, . . . ,n,

0 =
n

∑
i=1

f i ∂

∂xi (x
j) =

n

∑
i=1

f i ∂x j

∂xi =
n

∑
i=1

f i
δ

j
i = f j.

This concludes the proof. ■

Notice that constant functions const : U →R identify with real numbers (they form a subring in
the ring C∞(U) isomorphic to the ring R). Restricting the scalar multiplication to constant functions,
we see that X(U) is also a vector space. This vector space is also equipped with a Lie bracket [−,−]
which is easily described in the differential operator language. Namely, let X ,Y : C∞(U)→C∞(U)
be vector fields (seen as differential operators). In particular they are R-linear endomorphisms of the
vector space C∞(U). An easy computation that we leave to the reader show that their commutator
is given by

[X ,Y ] = X ◦Y −Y ◦X =
n

∑
i=1

(
X(Y i)−Y (X i)

) ∂

∂xi , (6.2)

hence it is a vector field again. It follows that vector fields form a Lie subalgebra in the Lie algebra
EndRC∞(U).

Exercise 6.3 Prove Formula (6.2). Prove also that the Lie algebra and the module structures in
X(U) interact as follows: for any X ,Y ∈ X(U) and any f ∈C∞(U) we have

[X , fY ] = X( f )Y + f [X ,Y ]

(in particular the commutator of vector fields is R-bilinear, but not C∞(U)-bilinear). ■

Definition 6.1.2 — Differential Form. A degree k differential form (or simply a k-form) on a
non-empty open subset U ⊆ Rn is an alternating C∞(U)-multilinear map:

ω : X(U)×·· ·×X(U)︸ ︷︷ ︸
k times

→C∞(U),

i.e. ω ∈ AltkC∞(U)(X(U),C∞(U)).

Degree k differential forms form a C∞(U)-module that we denote Ωk(U). In particular Ω1(U)
is the dual module of X(U): Ω1(U) = X(U)∗ = HomC∞(U)(X(U),C∞(U)). As X(U) is free and
finitely generated, from Proposition 1.4.12, Ω1(U) is free and finitely generated as well with basis
given by the dual basis(

dx1, . . . ,dxn) .
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In other words, dxi ∈Ω1(U) is the differential 1-form uniquely defined by

dxi
(

∂

∂x j

)
= δ

i
j.

The differential 1-forms (dx1, . . . ,dxn) are linearly independent and generate Ω1(U), i.e. every
1-form θ ∈Ω1(U) can be uniquely written in the form

θ =
n

∑
i=1

θidxi,

for some smooth functions θi ∈C∞(U). From Proposition 1.4.12 again, for every k ∈ Z, we also
have natural C∞(U)-module isomorphisms

Ω
k(U)∼= ∧k

Ω
1(U),

that we will always understand in what follows. Additionally, Ωk(U) is free and finitely generated
as well with basis given by(

dxi1 ∧·· ·∧dxik
)

i1<···<ik
.

In particular there are no nontrivial differential forms of degree k for k > n. In the following it will
be often convenient to expand a differential k-form as follows:

ω = ∑
i1,...,ik

ωi1···ik dxi1 ∧·· ·∧dxik ,

for some smooth functions ωi1···ik ∈C∞(U). Notice that the latter is not a basis expansion, as we are
not imposing the ordering i1 < · · ·< ik on the sum indexes (hence there might be repetitions among
the generators). However it is clear that every k-form can be written in this way (and if we assume
that the coefficients ωi1···ik are skew-symmetric in the indexes i1, . . . , ik then they are also unique!).

Next, for all k, we define an R-linear (beware, not C∞(U)-linear) map

d : Ω
k(U)→Ω

k+1(U)

via the following formula

dω(X1, . . . ,Xk+1) = ∑
i
(−)i+1Xi

(
ω(X1, . . . , X̂i, . . . ,Xk+1)

)
+∑

i< j
(−)i+ j

ω
(
[Xi,X j],X1, . . . , X̂i, . . . , X̂ j, . . . ,Xk+1

)
,

for all X1, . . . ,Xk+1 ∈ X(U). In order to show that this is well defined, we have to prove various
things. First of all that dω is a differential k+1-form. To do this we have to show C∞(U)-linearity
in each argument Xi, and skew-symmetry. This can be done with a straightforward computation
that we omit. We need also to prove that d is R-linear. This is easy and we leave the details to the
reader.

Definition 6.1.3 — de Rham Differential. The operator d : Ωk(U)→Ωk+1(U) defined above
is called the (k-th) de Rham differential.

One can actually show that, if ω is given by

ω = ∑
i1,...,ik

ωi1···ik dxi1 ∧·· ·∧dxik
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for some smooth functions ωi1···ik ∈C∞(U), then

dω = ∑
i,i1,...,ik

∂

∂xi ωi1···ik dxi∧dxi1 ∧·· ·∧dxik . (6.3)

If k = 0, then ω =: f ∈Ω0(U) =C∞(U) is a smooth function and

d f =
n

∑
i=1

∂ f
∂xi dxi.

In particular, the de Rham differential of the coordinate function xi is exactly dxi (do you see it?),
which explains the notation.

Theorem 6.1.2 Let U ⊆ Rn be an open subset. Then the sequence of linear maps

0−→C∞(U)
d−→Ω

1(U)
d−→ ·· · d−→Ω

n(U)−→ 0

is a cochain complex of R-vector spaces.

Proof. A straightforward but long (and a bit intricate) computation that we omit. ■

Definition 6.1.4 — de Rham Cohomology. The cochain complex (Ω•(U),d) is called the
de Rham complex of U . The cohomology H•dR(U) := H•(Ω(U),d) is called the de Rham
cohomology of U . A differential form ω is called closed if dω = 0, i.e. ω is a cocycle, and it is
called exact if ω = dρ for some other differential form ρ , i.e. ω is a coboundary.

■ Example 6.1 If U = R3 then X(U) is generated by(
∂

∂x1 ,
∂

∂x2 ,
∂

∂x3

)
,

Ω1(U) is generated by
(
dx1,dx2,dx3

)
, Ω2(U) is generated by(

dx2∧dx3,dx3∧dx1,dx1∧dx2)
and Ω3(U) is generated by dx1 ∧ dx2 ∧ dx3 (there are no non-trivial higher degree differential
forms in this case). Accordingly, there is a C∞(U)-module isomorphism Ω1(U)∼=C∞(R3,R3) (just
map a 1-form to its triple of components, that can be seen as a vector valued map). Similarly
Ω2(U)∼=C∞(R3,R3) and Ω3(U)∼=C∞(R3). A direct computation exploiting Formula (6.3) now
reveals that the de Rham complex

0−→C∞(R3)
d−→Ω

1(R3)
d−→Ω

2(R3)
d−→Ω

3(R3)−→ 0

identifies with the (grad, rot,div) cochain complex (2.8). Similarly, the de Rham complex of R2

identifies with the cochain complex (2.9). Check the details as an exercise. ■

■ Example 6.2 — de Rham Cohomology of a Point. When U =R0 = {0} is 0-dimensional, the
de Rham complex reduces to

0−→C∞({0})∼= R−→ 0.

We conclude that

Hk
dR({0}) =

{
R if k = 0
0 otherwise

.

■
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■ Example 6.3 — Degree 0 de Rham Cohomology. Let U ⊆ Rn be a non-empty open subset.
The 0-th de Rham cohomology of U is the kernel of the map

d : C∞(U)→Ω
1(U), f 7→ d f =

n

∑
i=1

∂ f
∂xi dxi.

As the dxi are linearly independent, d f = 0 if and only if

∂ f
∂xi = 0, for all i = 1, . . . ,n,

which in turn implies that f is a locally constant function, i.e. for any x ∈ U there is an open
neighborhood V ⊆U of x such that f |V = const. It follows that f is constant on each connected
component of U . This means that f descends to a function

f : π0(U)→ R,

on the set π0(U) of connected components of U (notice that, for an open subset of Rn, connected
components and path connected components are the same thing. This explains why we used
the same notation π0). Specifically, if Ux is the connected components of a point x ∈ U , then
f (Ux) := f (x) (which is well defined because f is constant on Ux). Conversely, given a function f :
π0(U)→R we can consider the function f = f ◦π : U→R where π : U→ π0(U), x 7→ π(x) :=Ux

is the natural projection. Clearly f is a locally constant, hence smooth, function. We conclude that
there is a bijection

H0
dR(U)→ Rπ0(U), f 7→ f .

It is clear that such bijection is also R-linear, hence it is a vector space isomorphism. So

H0
dR(U)∼= Rπ0(U).

In particular, U is connected if and only if H0
dR(U)∼= R. ■

6.2 Homotopies and de Rham Cohomology
We begin this section promoting the de Rham complex to a contravariant functor

dR : Op→ CoChR.

For a non-empty open subset U ⊆ Rn we put dR(U) := (Ω•(U),d). It remains to define dR on
morphisms. So let U ⊆Rn, and V ⊆Rm be non-empty open subsets and let F = (F1, . . . ,Fm) : U→
V be a smooth map. We denote by (x1, . . . ,xn) the standard coordinates on U and by (y1, . . . ,ym)
the standard coordinates on V . We denote by Fa = Fa(x1, . . . ,xn) ∈C∞(U) the components of F ,
a = 1, . . . ,m. For every k, define the map

F∗ : Ω
k(V )→Ω

k(U),

mapping the k-form

ω = ∑
a1,...,ak

ωa1···ak dya1 ∧·· ·∧dyak ∈Ω
k(V ) (6.4)

to the k-form

F∗(ω) := ∑
a1,...,ak

(ωa1···ak ◦F)dFa1 ∧·· ·∧dFak

= ∑
a1,...,ak

∑
i1,...,ik

(ωa1···ak ◦F)
∂Fa1

∂xi1
· · · ∂Fak

∂xik
dxi1 ∧·· ·∧dxik .

(6.5)

It is clear that F∗ is R-linear. It is also called the pull-back of differential forms along F .
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■ Example 6.4 — Restriction of a Differential Form to an Open Subset. Let F = iU : U →V be
the inclusion of a non-empty open subset U ⊆V ⊆ Rm. In this case the coordinates on U are the
restrictions to U of the coordinates on V and we denote both by (y1, . . . ,ym). As the composition
f ◦ iU of the inclusion with a smooth function f ∈C∞(V ) is just the restriction f |U , in this case
Formula (6.5) reduces to

F∗(ω) = i∗U(ω) = ∑
a1,...,ak

ωa1···ak |U dya1 ∧·· ·∧dyak .

The k-form i∗U(ω) is called the restriction of ω to U and it is also denoted by ω|U . We conclude
that restricting a differential form to a non-empty open subset amounts to restricting its coefficients.
■

Proposition 6.2.1 Let U ⊆ Rn and V ⊆ Rm be non-empty open subsets, and let F : U →V be a
smooth map. The family F∗ := (F∗ : Ωk(V )→Ωk(U))k∈Z is a cochain map F∗ : (Ω•(V ),d)→
(Ω•(U),d). Additionally, the assignment dR : Op→CoChR mapping U to its de Rham complex
(Ω•(U),d) and the smooth function F : U →V to the pull-back F∗ : (Ω•(V ),d)→ (Ω•(U),d)
is a contravariant functor.

Proof. For the first part of the statement, we have to prove that d ◦F∗ = F∗ ◦d. This can be done
with a straightforward computation in coordinates exploiting Formulas (6.3) and (6.5). We discuss
only the case k = 1. So, let ω ∈Ω1(V ) be given by

ω = ∑
a

ωadya,

then

dF∗(ω) = d ∑
a

∑
i
(ωa ◦F)

∂Fa

∂xi dxi = ∑
a

∑
j,i

∂

∂x j

(
(ωa ◦F)

∂Fa

∂xi

)
dx j ∧dxi

= ∑
a

∑
j,i

(
∂ (ωa ◦F)

∂x j
∂Fa

∂xi +(ωa ◦F)
∂ 2Fa

∂x j∂xi

)
dx j ∧dxi.

As the wedge product dx j ∧ dxi is skew-symmetric while ∂ 2Fa

∂x j∂xi is symmetric in the indexes j, i
(Schwarz Theorem), the last summand does not contribute (do you see it?) and we get

dF∗(ω) = ∑
a

∑
j,i

∂ωa ◦F
∂x j

∂Fa

∂xi dx j ∧dxi = ∑
b,a

∑
j,i

(
∂ωa

∂yb ◦F
)

∂Fb

∂x j
∂Fa

∂xi dx j ∧dxi

= F∗
(

∑
b,a

∂ωa

∂yb dyb∧dya

)
= F∗(dω),

as desired. The general case is similar.
For the second part of the statement, it is clear that the pull-back id∗U along the identity map

idU : U →U is the identity: id∗U = id : Ωk(U)→Ωk(U). To conclude, consider three non-empty
open subsets U ⊆ Rn, V ⊆ Rm, W ⊆ Rp, and two smooth maps

U F−→V G−→W.

We have to prove that (G ◦F)∗ = F∗ ◦G∗. We discuss again only the case k = 1. So denote by
(z1, . . . ,zp) the standard coordinates on W and consider a differential 1-form

ρ = ∑
α

ραdzα .
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We have

(G◦F)∗(ρ) = ∑
α

∑
i
(ρα ◦G◦F)

∂ (G◦F)α

∂xi dxi

= ∑
a

∑
α

∑
i
(ρα ◦G◦F)

(
∂Gα

∂ya ◦F
)

∂Fa

∂xi dxi

= F∗
(

∑
a

∑
α

(ρα ◦G)
∂Gα

∂ya dya
)
= F∗ (G∗(ω)) ,

as desired. The general case is similar. This concludes the proof. ■

■ Example 6.5 We already remarked that the de Rham complexes of R3 and R2 identify with
the cochain complexes (C•,d) and (B•,dB) in Example 2.14. Recall that (C•,d) and (B•,dB) are
intertwined by a cochain map p : (C•,d)→ (B•,dB). Now, the map F : R2 → R3, (x1,x2) 7→
(x1,x2,0) is clearly smooth, and the pull-back F∗ : (Ω•(R3),d)→ (Ω•(R2),d) identifies with
p : (C•,d)→ (B•,dB) (do you see it?). ■

Composing the functor dR : Op→ CoChR with the k-th cohomology functor Hk : CoChR→
VectR, we get a new functor denoted

Hk
dR : Op→ VectR,

the k-th de Rham cohomology functor. Given a morphism F : U →V between two objects U,V in
Op, the linear map Hk

dR(F) : Hk
dR(V )→ Hk

dR(U) associated to it via the functor Hk
dR is also called

the map induced by F in the k-th de Rham cohomology. It immediately follows from the functorial
properties of the k-th de Rham cohomology that diffeomorphic open subsets of Rn have isomorphic
de Rham cohomologies.

■ Example 6.6 — Map Induced in de Rham Cohomology by a Constant Map. Let U ⊆ Rn

and V ⊆ Rm be non-empty open subsets. Take a point y0 ∈ V and consider the constant map
cy0 : U →V mapping every point x ∈U to y0. Clearly cy0 is a smooth map. We want to compute
the induced map in de Rham cohomology Hk

dR(cy0) : Hk
dR(V )→ Hk

dR(U) for all k. First notice that,
from Formula (6.5), the pull-back along a constant map vanishes in all degrees but the 0-th one. It
immediately follows that Hk

dR(cy0) = 0 for all k ̸= 0. It remains to compute

H0
dR(cy0) : H0

dR(V )→ H0
dR(U).

From Example 6.3, H0
dR(V )∼= Rπ0(V ) and H0

dR(V )∼= Rπ0(U) (where, as usual, π0(U),π0(V ) denote
the sets of connected components of U,V respectively). It is then immediate to see that

H0
dR(cy0) : Rπ0(V )→ Rπ0(U)

maps a function f : π0(V )→ R to the constant function whose unique value is f (Vy0) (where Vy0 is
the connected component of y0 in V ). ■

We now come to smooth homotopies. Let U ⊆ Rn and V ⊆ Rm be non-empty open subsets and
let F,G : U →V be smooth maps.

Definition 6.2.1 — Smooth Homotopy. A smooth homotopy between the smooth maps F,G :
U →V is a smooth map H : [0,1]×U →V such that

H (0,x) = F(x) and H (1,x) = G(x)

for all x ∈U (in particular H is a geometric homotopy). Two smooth maps are said to be
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smoothly homotopic if there exists a smooth homotopy H between them. In this case we write
F ∼H G.

For smooth homotopies we adopt the same notation as for geometric homotopies denoting by
Ht : U →V the map defined by Ht(x) := H (t,x) for all x ∈U . “Being smoothly homotopic” is
an equivalence relation on the set of smooth maps between given non-empty open subsets U ⊆ Rn,
V ⊆ Rm. Reflexivity and symmetry can be proved exactly as for geometric homotopies while
transitivity is a little bit more intricate in this case. We provide just the idea of the proof. Given
smooth maps F,G,L : U →V and smooth homotopies H ,K such that F ∼H G and G∼K L we
first construct the geometric homotopy H ∗K exactly as in the proof of Proposition 5.2.1. In
general H ∗K is continuous but it is only smooth around points (t,x) ∈ [0,1]×U with t ̸= 1/2.
However it is possible to “smooth out” H ∗K in a small neighborhood U of {1/2}×U leaving
it unchanged outside U so that it is still a (now smooth) homotopy.

■ Example 6.7 The same exact argument as in Example 5.3 works in the smooth setting and shows
that any two smooth maps F,G : U → V are homotopic if V ⊆ Rm is a convex non-empty open
subset (e.g. Rm itself). ■

Proposition 6.2.2 Smooth homotopies respect the composition of smooth maps.

Proof. The same as for Proposition 5.2.2. ■

Theorem 6.2.3 Let F,G : U → V be smoothly homotopic smooth maps between non-empty
open subsets U ⊆ Rn and V ⊆ Rm. Then F,G induce the same map in de Rham cohomology:

Hk
dR(F) = Hk

dR(G), for all k ∈ Z.

Proof. Let H : [0,1]×U →V be a smooth homotopy between F and G. This means that H0 =
F and H1 = G. Now, take a differential form ω ∈ Ωk(V ). We want to compare the k-forms
G∗(ω),F∗(ω). To do this, we compute

G∗(ω)−F∗(ω) = H ∗
1 (ω)−H ∗

0 (ω) =
∫ 1

0

dH ∗
t (ω)

dt
dt. (6.6)

The last equality might be intuitive but actually needs some explanations: both the integral and the
derivative in the last term are computed component-wise. Namely, let (x1, . . . ,xn) and (y1, . . . ,ym)
be standard coordinates on U and V respectively. Let (Ωt)t∈[0,1] be a 1-parameter family of
differential k-forms on U of the type

Ωt = ∑
i1,...,ik

Ωi1···ik(t,x
1, . . . ,xn)dxi1 ∧·· ·∧dxik ,

where Ωi1···ik(t,x
1, . . . ,xn) are smooth functions of both the variables (x1, . . . ,xn) and t. Any such

family is called a smooth 1-parameter family of differential forms. For any such family (Ωt)t∈[0,1] it
makes sense to consider the families(

d
dτ
|τ=tΩτ

)
t∈[0,1]

and
(∫ t

0
Ωτ dτ

)
t∈[0,1]

defined by

d
dτ
|τ=tΩτ := ∑

i1,...,ik

(
∂

∂τ
|τ=tΩi1···ik(τ,x

1, . . . ,xn)

)
dxi1 ∧·· ·∧dxik (6.7)
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and ∫ t

0
Ωτ dτ = ∑

i1,...,ik

(∫ t

0
Ωi1···ik(τ,x

1, . . . ,xn) dτ

)
dxi1 ∧·· ·∧dxik (6.8)

respectively, and they are smooth 1-parameter families again. A direct computation also shows that
taking “time” derivatives and integrals of smooth 1-parameter families commute with the de Rham
differential, i.e. for any smooth 1-parameter family of differential forms (Ωt)t∈[0,1], the family
(dΩt)t∈[0,1] is a smooth 1-parameter family again and moreover

d
dτ
|τ=tdΩτ = d

d
dτ
|τ=tΩτ and

∫ t

0
dΩτ dτ = d

∫ t

0
Ωτ dτ for all t ∈ [0,1].

Now, let

ω = ∑
a1,...,ak

ωa1···ak dya1 ∧·· ·∧dyak .

From Formula (6.5) we easily see that (H ∗
t (ω))t∈[0,1] is a smooth 1-parameter family of differential

forms so that the last term in (6.6) makes sense. The last equality in (6.6) immediately follows
from Definitions (6.7), (6.8) and the Fundamental Theorem of Calculus (do you see it?). Next, for
all t ∈ [0,1] we define an R-linear map

iHt : Ω
k(V )→Ω

k−1(U)

by putting

iHt ω := ∑
a1,...,ak

k

∑
j=1

(−) j+1(
ωa1···ak ◦Ht

)
Ḣ a j dH a1

t ∧·· ·∧ d̂H
a j

t ∧·· ·∧dH ak
t ,

where

Ḣ a =
d
dt
|t=0H

a
t , a = 1, . . . ,m.

A direct computation that we omit (but the brave reader is invited to try to perform it) shows that,
for all ω ∈Ωk(V ),

dH ∗
t (ω)

dt
= diHt ω + iHt dω.

The latter formula is sometimes referred to as the Infinitesimal Homotopy Formula. Integrating
both sides of the Infinitesimal Homotopy Formula and using (6.6) we find

G∗(ω)−F∗(ω) =
∫ 1

0

(
diHt ω + iHt dω

)
dt =

∫ 1

0
diHt ω dt +

∫ 1

0
iHt dω dt

= d
∫ 1

0
iHt ω dt +

∫ 1

0
iHt dω dt.

This shows that the linear operator

hH : Ω
k(V )→Ω

k−1(U),

defined by putting

hH (ω) :=
∫ 1

0
iHt ω dt

is an algebraic homotopy between the cochain maps G∗,F∗ : (Ω•(V ),d)→ (Ω•(U),d). This
concludes the proof. ■
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Corollary 6.2.4 If F : U→V is a null-homotopic smooth map between non-empty open subsets
U ⊆ Rn and V ⊆ Rm, then Hk

dR(F) = 0 for all k ̸= 0.

■ Example 6.8 For any smooth map F : U → V between non-empty open subsets U ⊆ Rn and
V ⊆ Rm, with V convex we have Hk

dR(F) = 0 for all k ̸= 0. ■

Definition 6.2.2 — Smooth Homotopy Equivalence. A smooth map F : U →U ′ between
non-empty open subsets U ⊆ Rn and U ′ ⊆ Rn′ is a smooth homotopy equivalence if there exists
a smooth map G : U ′→U in the other direction such that G◦F is smoothly homotopic to the
identity of U and F ◦G is smoothly homotopic to the identity of U ′. In this situation we also
say that G is a smooth homotopy inverse of F (and viceversa) or that G inverts F up to smooth
homotopies. If U,U ′ are connected by a smooth homotopy equivalence, we say that they are
smoothly homotopy equivalent.

Proposition 6.2.5 Let F : U→U ′ be a smooth homotopy equivalence between non-empty open
subsets U ⊆ Rn and U ′ ⊆ Rn′ , and let G : U ′→U be a smooth homotopy inverse of F . Then
F,G induce mutually inverse vector space isomorphisms in de Rham cohomology, i.e. Hk

dR(F) :
Hk

dR(U
′)→ Hk

dR(U) and Hk
dR(G) : Hk

dR(U)→ Hk
dR(U

′) are vector space isomorphisms and

Hk
dR(F)−1 = Hk

dR(G) for all k ∈ Z.

In particular, smoothly homotopy equivalent open subsets in some standard Euclidean space
have isomorphic de Rham cohomologies.

Proof. Formally identical to the proof of Proposition 5.2.5 (up to some minor changes that we
leave to the reader). ■

Definition 6.2.3 — Smoothly Contractible Open Subset. A non-empty open subset U ⊆ Rn

is smoothly contractible if there exists a point x0 ∈U such that the constant map cx0 : U →U is
smoothly homotopic to the identity of U .

Proposition 6.2.6 Let U ⊆ Rn be a smoothly contractible open subset. Then

Hk
dR(U)∼=

{
R if k = 0
0 otherwise

.

Proof. Let x0 ∈U be a point as in Definition 6.2.3. Then the map R0→U , 0 7→ x0 is a smooth
homotopy equivalence with smooth homotopy inverse given by U → R0, x 7→ 0 (do you see it?). It
follows that Hk

dR(U)∼= Hk
dR(R

0) and the statement follows from Example 6.2. ■

Exercise 6.4 Let U ⊆ Rn and V ⊆ Rm be non-empty open subsets. Prove that if V is smoothly
contractible, then the non-empty open subset U×V ⊆ Rn×Rm = Rn+m is smoothly homotopy
equivalent to U . ■

■ Example 6.9 — Rn is Smoothly Contractible. recall that an open subset U ⊆ Rn is star-shaped
if there exists a point x0 ∈ U such that, for all x ∈ U , the segment joining x0 and x is entirely
contained into U . In this case x0 is called a star center for U . For instance, any (non-empty) convex
open subset U is star-shaped and any point in U is a star center. Any star-shaped open subset
U ⊆ Rn is smoothly contractible. Indeed, let x0 ∈U be a star center. Then the map

H : [0,1]×U →U, (t,x) 7→ tx+(1− t)x0 (6.9)
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is a well-defined smooth homotopy between the constant map cx0 : U →U and the identity of U .
It immediately follows from Proposition 6.2.6 that, if U ⊆ Rn is a star-shaped open subset (for
instance U is a convex open subset), then

Hk
dR(U)∼=

{
R if k = 0
0 otherwise

.

In particular

Hk
dR(R

n)∼=
{

R if k = 0
0 otherwise

.

We already remarked that the cochain complex in Example 2.12 is canonically isomorphic to the
de Rham complex of R3. The algebraic homotopy h defined therein does actually agree with the
algebraic homotopy hH from the proof of Theorem 6.2.3 where

H : [0,1]×R3→ R3, (t,x) 7→ tx

is the smooth homotopy constructed as in (6.9) with x0 = 0 (R3 is star-shaped and 0 is a star center
for it). ■

The following Theorem is an easy consequence of Example 6.9.

Theorem 6.2.7 — Poincaré Lemma. Let V ⊆ Rn be a non-empty open subset and let k be
a positive integer. Every closed differential k-form ω ∈ Ωk(V ) on V is locally exact, i.e. for
every x0 ∈ V there exists an open neighborhood U ⊆ V of x0, and a differential (k− 1)-form
ρ ∈Ωk−1(U) such that ω|U = dρ .

Proof. Let ω ∈ Ωk(V ) be a closed differential form, i.e. dω = 0, and let x0 ∈ V . Choose a star-
shaped open neighborhood U ⊆V of x0. It always exists (we can take, e.g., an open disk centered
in x0 and entirely contained in V ). The restriction map Ωk(V )→ Ωk(U), η 7→ η |U is (the pull-
back along the inclusion iU : U → V , hence it is) a cochain map. So ω|U ∈ Ωk(U) is a closed
differential form on U (see the discussion immediately preceding Proposition 6.2.1 about restricting
a differential form to an open subset). But k > 0 so, from Example 6.9, Hk(U) = 0. This means
that kerd = imd and every closed differential form on U is exact. ■

Smooth homotopy equivalence is an equivalence relation. The proof of this fact is very similar
to that of Proposition 5.2.7 and we leave the details to the reader (but take into account the discussion
following Definition 6.2.1).

R Let U ⊆ Rn and V ⊆ Rm be non-empty open subsets and let F,G : U →V be smooth maps.
In particular F,G are continuous maps and it makes sense to wonder whether there is a
continuous homotopy between them (in which case, they induce the same map in singular
homology). It can actually be proved that if such a continuous homotopy exists, then a smooth
homotopy exists as well. The proof is based on an appropriate approximation technique of
continuous maps by smooth maps. We conclude that two smooth maps F,G : U →V induce
the same map in de Rham cohomology provided only they are continuously homotopic.
Even more, one can show that any continuous map between non-empty open subsets in some
standard Euclidean spaces is homotopic to a smooth map and, using this, we conclude that
two such open subsets are smoothly homotopy equivalent if and only if they are continuously
homotopy equivalent.



174 Chapter 6. de Rham Cohomology

R Consider the category Op of non-empty open subsets in some standard Euclidean space.
Define a new category hOp as follows. The objects in hOp are the same as in Op. In order to
define morphisms recall that “being smoothly homotopic” is an equivalence relation on the set
HomOp(U,V ) of smooth maps between non-empty open subsets U ⊆ Rn, V ⊆ Rm. Denote
by ∼ this equivalence relation and, for any two non-empty open subsets U ⊆Rn, V ⊆Rm put

HomhOp(U,V ) := HomOp(U,V )
/
∼ ,

the set of smooth homotopy classes of smooth maps. Given a smooth map F : U → V we
will denote by [F ]∼ ∈ HomhOp(U,V ) its smooth homotopy class. The composition law of
morphisms in hOp is defined as follows. Let

U F−→V G−→W

be smooth maps between non-empty open subsets U ⊆ Rn, V ⊆ Rm, W ⊆ Rp. We put

[G]∼ ◦ [F ]∼ := [G◦F ]∼.

As smooth homotopies respect the composition of continuous maps, this is well defined (do
you see it?). The composition law in hOp defined in this way is clearly associative. The units
are the smooth homotopy classes of the identity maps. The isomorphisms in hOp are the
(smooth homotopy classes of) smooth homotopy equivalences (do you see it?). The category
hOp is called the homotopy category of Op.
It should now be clear that the de Rham complex can also be seen as a contravariant functor

dR• : hOp→ hChR

from the homotopy category of Op to the homotopy category of chain complexes (of real
vector spaces). Similarly, for all k ∈ Z, the k-th de Rham cohomology functor can be seen as
a functor

Hk
dR : hOp→ VectR.

6.3 Mayer-Vietoris Sequence in de Rham Cohomology
Let W ⊆ Rn be a non-empty open subset and let {U,V} be an open cover of W , i.e. U,V ⊆ X are
(non-empty) open subsets such that W =U ∪V . We assume that U ∩V ̸=∅. We have a commuting
diagram of smooth maps:

W

U

iU
??

V

iV
__

U ∩V
jU

__

jV

??
, (6.10)

where the arrows are the inclusions. Applying the de Rham complex functor to diagram (6.10) we
get a commuting diagram of cochain maps:(

Ω•(W ),d
)

(
Ω•(U),d

)~~
i∗U (

Ω•(V ),d
)  

i∗V

(
Ω•(U ∩V ),d

)  j∗U ~~ j∗V

.
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We can combine the top cochain maps in a single chain map

i∗ :
(
Ω•(W ),d

)
→

(
Ω•(U)⊕Ω•(V ),d⊕

)
ω 7→ i∗ω := (i∗U ω, i∗V ω) = (ω|U ,ω|V ).

We can also combine the bottom cochain maps in a single chain map

j∗ :
(
Ω•(U)⊕Ω•(V ),d⊕

)
→

(
Ω•(U ∩V ),d

)
(ωU ,ωV ) 7→ j∗(ωU ,ωV ) := j∗V ωV − j∗U ωV = ωV |U∩V −ωU |U∩V .

Hence we get a sequence of cochain maps

0−→
(
Ω
•(W ),d

) i∗−→
(
Ω
•(U)⊕Ω

•(V ),d⊕
) j∗−→

(
Ω
•(U ∩V ),d

)
−→ 0. (6.11)

Lemma 6.3.1 The sequence (6.11) is a short exact sequence of cochain complexes.

Proof. It is clear that i∗ is injective. Now, take ρ ∈Ωk(W ) and compute

j∗ (i∗(ω)) = j∗(ω|U ,ω|V ) = ω|V |U∩V −ω|U |U∩V = ω|U∩V −ω|U∩V = 0.

This shows that im i∗ ⊆ ker j∗. Next, take (ωU ,ωV ) ∈ ker j∗. So

0 = j∗(ωU ,ωV ) = ωV |U∩V −ωU |U∩V ,

i.e. ωU |U∩V = ωV |U∩V . In other words ωU ,ωV agree on U ∩V . This clearly implies that there exists
a (necessarily unique) differential form ω on W such that ω|U = ωU and ω|V = ωV (do you see
it?). So (ωU ,ωV ) = i∗ω . So ker j∗ ⊆ im i∗, hence ker j∗ = im i∗.

To conclude we have to show that j∗ is surjective. This is done with a technical trick. One can
prove that there exist two (non unique) smooth functions fU , fV ∈C∞(W ) such that fU + fV = 1
and, additionally, the support of fU is entirely contained in U while the support of fV is entirely
contained into V (Figure 6.2). Recall that the support of a function f : W → R is the topological
closure in W of the subset{

x ∈W : f (x) ̸= 0
}
.

Any pair { fU , fV} as above is called a partition of unity (subordinate to the open cover {U,V} of
W ). The existence of partitions of unity, particularly in our simple setting, is not hard to prove but
we prefer to omit the technical details.

So, let { fU , fV} be a partition of unity. Take a differential form η ∈Ωk(U ∩V ) and consider
the differential forms

η
′
V := fU |U∩V ·η , and η

′
U :=− fV |U∩V ·η .

We have

η
′
V −η

′
U = fU |U∩V ·η + fV |U∩V ·η = ( fU |U∩V + fV |U∩V )η = ( fU + fV ) |U∩V ·η = η .

Moreover, as the support of fU is contained into U , there exists a unique differential form ηV ∈
Ωk(V ) such that ηV |U∩V = η ′V and whose coefficients all vanish in V ∖U (Figure 6.3). Similarly,
there exists a differential form ηU ∈Ωk(U) such that ηU |U∩V = η ′U . Consider (ηU ,ηV ) ∈Ωk(U)⊕
Ωk(V ) and compute

j∗ (ηU ,ηV ) = ηV |U∩V −ηU |U∩V = η
′
V −η

′
U = η .

This shows that j∗ is surjective and concludes the proof. ■

We are now ready to state the main result of this section.
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Figure 6.2: A partition of unity.

Theorem 6.3.2 — Smooth Mayer-Vietoris Theorem. Let W ⊆Rn be a non-empty open subset
and let U,V ⊆ W be non-empty open subsets such that W = U ∪V and U ∩V ̸= ∅. Then,
for every k ∈ Z there exists a linear map ∆ : Hk−1

dR (U ∩V )→ Hk
dR(W ) such that the following

sequence of linear maps:

· · · Hk−1
dR (U ∩V )//

H( j∗)
Hk

dR(W )//∆ Hk
dR(U)⊕Hk

dR(V )//
H(i∗)

Hk
dR(U ∩V )//

H( j∗)
· · ·// (6.12)

is exact. The maps ∆ are natural in the sense that if W ′ ⊆ Rn′ is another non-empty open subset,
U ′,V ′ ⊆W ′ are non-empty open subsets such that W ′ =U ′∪V ′, U ′∩V ′ ̸=∅, and F : W →W ′

is a smooth map such that F(U)⊆U ′ and F(V )⊆V ′, then the following diagram:

· · · Hk−1
dR (U ∩V )

OO

//
H( j∗)

Hk
dR(W )
OO

//∆ Hk
dR(U)⊕Hk

dR(V )
OO

//
H(i∗)

Hk
dR(U ∩V )
OO

//
H( j∗)

// · · ·

· · · Hk−1
dR (U ′∩V ′)//

H( j∗)
Hk

dR(W
′)//∆ Hk

dR(U
′)⊕Hk

dR(V
′)//

H(i∗)
Hk

dR(U
′∩V ′)//

H( j∗)
// · · ·

commutes, where the vertical arrows are the maps induced by F in the obvious way.

Proof. It is enough to consider the long exact sequence induced in cohomology by the short exact
sequence of cochain complexes (6.11). We leave the details to the reader. We only recall how
does the connecting homomorphism ∆ : Hk−1

dR (U ∩V )→ Hk
dR(W ) act. Take a closed (k−1)-form

η ∈ Hk−1
dR (U ∩V ). Using, e.g., a partition of unity as in the proof of Lemma 6.3.1, find a cochain

(ηU ,ηV ) ∈ Ωk−1(U)⊕Ωk−1(V ) such that j∗(ηU ,ηV ) = η . Take its differential d⊕(ηU ,ηV ) =
(dηU ,dηV ) and notice that (dηU ,dηV ) ∈ ker j∗ = im i∗. Hence there exists (a unique) closed
k-form ω ∈ Ωk(W ) such that i∗(ω) = (dηU ,dηV ), i.e. ω|U = dηU and ω|V = dηV . Finally
∆[η ] = [ω]. ■
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Figure 6.3: The form ηV in the proof of Lemma 6.3.1.

Definition 6.3.1 — Mayer-Vietoris Sequence in de Rham Cohomology. The sequence
(6.12) is called the Mayer-Vietoris sequence in de Rham cohomology (associated to the open
cover {U,V} of W ).

■ Example 6.10 — de Rham Cohomology of the Punctured Euclidean Space. As an ap-
plication of the Smooth Mayer-Vietoris Theorem, we compute the de Rham cohomology of the
punctured space Rn+1

× := Rn+1 ∖{0}. More precisely, we will prove that, for all n > 0,

Hk
dR(R

n+1
× ) =

{
R if k = 0,n
0 otherwise

. (6.13)

First of all, notice that, for n > 0, Rn+1
× is connected (and path connected, do you see it?) hence,

from Example 6.3, H0
dR(R

n+1
× ) = R. The rest of the proof is by induction on n and exploits

both smooth homotopy equivalence and Mayer-Vietoris arguments (actually the present proof
closely parallels that in Example 5.9). Consider preliminarily the case n = 0 (which is not in the
statement but will be useful anyway). The punctured line R× has two connected components:
R+ := {positive reals} and R− := {negative reals}. Hence, H0

dR(R×) = R2. The first de Rham
cohomology H1

dR(R×) vanishes in this case. Indeed a differential 1-form ω on R× is the same
as a pair (ω+,ω−) with ω± ∈ Ω1(R±) (do you see it?). Both R± are diffeomorphic to R (for
instance the logarithm log : R+→ R is a diffeomorphism with inverse diffeomorphism given by
the exponential map). As H1

dR(R) = 0 from Example 6.9, both ω± are exact 1-form, i.e. there
exist functions f± ∈C∞(R±) such that ω± = d f±. But the pair ( f+, f−) can be seen as a smooth
function f on R×, and from ω± = d f± we get ω = d f as desired.

We now pass to the generic case n > 0. Denote by (x1, . . . ,xn+1) the coordinates on Rn+1. In
Rn
× consider the open subsets

U± := Rn+1 ∖half line of non-negative/positive xn+1.

We have U+∪U− = Rn+1
× , and

U+∩U− = Rn+1 ∖ xn+1 axis.

The open subsets U+,U− are both diffeomorphic to Rn+1. For instance the smooth map

U+→ Rn+1, x 7→
(

ϕ+(x/∥x∥), log∥x∥
)
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where ϕ+ is the stereographic projection from the north (see Example 5.9) is a diffeomorphism
inverted by the smooth map

Rn+1→U+, y = (y1, . . . ,yn+1) 7→ exp(yn+1)ϕ−1
+ (y1, . . . ,yn).

The intersection U+∩U− is homotopy equivalent to the punctured space Rn
×, indeed U+∩U− =

Rn
××R and the claim follows from Exercise 6.4. We conclude that the de Rham cohomology of

U± are the same as those of Rn+1:

Hk
dR(U±) =

{
R if k = 0
0 otherwise

,

and the de Rham cohomologies of U+∩U− are the same as those of the punctured space Rn
×:

Hk
dR(U+∩U−) = Hk(Rn

×), k ≥ 0.

We are now ready to discuss the base of induction: n = 1. We already discussed the de Rham
cohomologies of the punctured line R×. We conclude that, when n = 1,

Hk
dR(U+∩U−) = Hk

dR(R×) =
{

R2 if k = 0
0 otherwise

.

We need to drop one more word on the isomorphisms H0
dR(U±)∼= R and H0

dR(U+∩U−)∼= R2.
For the first one, H0

dR(U±) = ker(d : C∞(U±)→Ω1(U±)) is generated by the constant function 1,
which we identify with the generator 1 ∈ R (as we always do in the connected case). As for the
isomorphism H0

dR(U+∩U−)∼=R2, the two generators of the real vector space H0
dR(U+∩U−)∼=R2

are the two functions f±, where f± is 1 where±x1 > 0 and 0 elsewhere. We are identifying this two
generators with (1,0) ∈R2 and (0,1) ∈R2 respectively (beware that swapping these identifications
might change some formulas).

Now, the Mayer-Vietoris sequence associated to the open cover {U+,U−} of R2
× is

0 H0
dR(R

2
×)// H0

dR(U+)⊕H0
dR(U−)//

H(i∗)
H0

dR(U+∩U−)//
H( j∗)

H1
dR(R2

×)//∆ 0// · · ·//

0 R// R2// R2// H1
dR(R2

×)// 0//
(6.14)

in low degree, and

· · · 0// Hk
dR(R

2
×)// 0// // · · · (6.15)

in higher degree k > 1.
The map H( j∗) : H0

dR(U+)⊕H0
dR(U−)→ H0

dR(U+∩U−) in (6.14) is given by

H0
dR(U+)⊕H0

dR(U−)
H( j∗)

// H0
dR(U+∩U−)

R2 // R2

(a1,a2)
� // (a2−a1,a2−a1).

Therefore the image I of H( j∗) is

I := imH( j∗) =
{
(a,a) ∈ R2 : a ∈ R

}
⊆ R2,
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and the cokernel H0
dR(U+∩U−)/ imH( j∗) is canonically isomorphic to R via the map (a,b)mod

imH( j∗) 7→ b− a. From exactness (of the Mayer-Vietoris sequence), H1
dR(R2

×) is isomorphic
to the latter cokernel. More precisely, there is a unique isomorphism H1

dR(R2
×)
∼= R identifying

∆ : H0
dR(U+∩U−) = R2→ H1

dR(R2
×) with the linear map R2→ R, (a,b) 7→ b− a. Finally, from

(6.15), Hk
dR(R

2
×) = 0 for higher k. This proves the base of induction.

Next assume that the claim (6.13) is correct for n = m and prove it for n = m+ 1. In the
latter case U+∩U− has only one path connected component so that H0

dR(U+∩U−) = R and the
Mayer-Vietoris sequence associated to the open cover {U+,U−} is

0 H0
dR(R

m+2
× )// H0

dR(U+)⊕H0
dR(U−)//

H(i∗)
H0

dR(U+∩U−)//
H( j∗)

H1
dR(R

m+2
× )//∆ 0// · · ·//

0 R// R2// R// H1
dR(R

m+2
× )// 0//

(6.16)

in low degree, and

· · · 0// Hk−1
dR (U+∩U−)// Hk

dR(R
m+2
× )//∆ Hk

dR(U+)⊕Hk
dR(U−)// · · ·//

0 Hk−1
dR (Rm+1

× )// Hk
dR(R

m+2
× )// 0//

(6.17)

in higher degree k > 1.
The map H( j∗) : H0

dR(U+)⊕H0
dR(U−)→ H0

dR(U+∩U−) in (6.16) is given by

H0
dR(U+)⊕H0

dR(U−)
H( j∗)

// H0
dR(U+∩U−)

R2 // R

(a1,a2)
� // a2−a1,

while H(i∗) : H0
dR(R

m+2
× )→ H0

dR(U+)⊕H0
dR(U−) is given by

H0
dR(R

m+2
× )

H(i∗)
// H0

dR(U+)⊕H0
dR(U−)

R // R2

a � // (a,a).

In particular, H( j∗) is surjective and imH( j∗) = H0
dR(U+∩U−). It follows from the exactness of

the Mayer-Vietoris sequence that

∆ : H0
dR(U+∩U−)→ H1

dR(Rm+2
× )

is the zero map and, from exactness again, H1
dR(R

m+2
× ) = 0 (do you see it?). Finally, it follows from

(6.17) that ∆ : Hk−1
dR (U+∩U−) = Hk−1

dR (Rm+1
× )→ Hk

dR(R
m+2
× ) is both injective and surjective. We

conclude that Hk
dR(R

m+2
× )∼= Hk−1

dR (Rm+1
× ) for all k > 1, and from the induction hypothesis we get

Hk
dR(R

m+2
× )∼= Hk−1

dR (Rm+1
× ) =

{
0 if 1 < k < m
R if k = m+1

,

as claimed. ■



180 Chapter 6. de Rham Cohomology

Exercise 6.5 Compute the de Rham cohomology of the 2-punctured plane and the 2-punctured
3D-space. ■

We conclude this chapter and these notes briefly discussing the relationship between singular
homology and de Rham cohomology.

Theorem 6.3.3 — de Rham Theorem. Let U ⊆ Rn be a non-empty open subset. For every
k ∈ Z there exists a natural real vector space isomorphism

τdR : Hk
dR(U)→ Hk(U,R),

where Hk(U,R) is the singular cohomology of U with coefficients in R.

Proof. The proof of the de Rham Theorem is extremely technical. Here we only discuss how does
the isomorphism τdR roughly work. First of all, for all k, the singular cohomology with coefficients
in R is naturally isomorphic to the dual of the singular homology with coefficients in R:

Hk(U,R)∼= Hk(U,R)∗

(this is true for every topological space whenever the ring of coefficients is a field). The latter
isomorphism identifies the cohomology class [φ ] of a k-cocycle φ ∈ Zk(U,R) with the linear map

φ̄ : Hk(U,R)→ R, [c] 7→ φ̄ [c] := φ(c),

where we used that a singular k-cochain φ ∈ Ck(U,R) = RSk(U) can be seen as a linear map
φ : Ck(U,R) = RSk(U)→ R. The real number φ̄(c) does only depend on the homology class of c
and the cohomology class of φ (prove it as an exercise using the remark at page 118). So we get a
well defined map

Hk(U,R)→ Hk(U,R)∗, [φ ] 7→ φ̄

as desired, and one can show that this map is an isomorphism using that R is a field.
It remains to show that Hk

dR(U) is also dual to Hk(U,R). To do this one first define a smooth
version of singular homology. Namely, a smooth singular k-simplex in U is a smooth map s : ∆k→U
(this means that s can be extended to a smooth map on some open neighborhood of ∆k in Rk+1).
A smooth singular k-simplex is, in particular, a standard singular k-simplex. As all the face maps
of the standard simplex are smooth maps, smooth singular k-simplexes form a semi-simplicial
subset in standard singular simplexes (this means that smooth singular simplexes are preserved by
the face maps). As a consequence, the real vector spaces spanned by smooth singular simplexes
form a subcomplex in the chain complex (C•(U,R),∂ ) that we denote (C∞

• (U,R),∂ ) and call the
complex of smooth singular chains. A smooth singular chain, i.e. a chain in (C∞

• (U,R),∂ ), is
a formal linear combination of smooth singular simplexes with real coefficients. The homology
H∞
• (U) :=H•(C∞(U,R),∂ ) is the smooth singular homology of U . Using approximation techniques

of continuous maps by smooth maps one can show that the inclusion (C∞
• (U,R),∂ )→ (C•(U,R),∂ )

is actually a quasi-isomorphism, so we get natural vector space isomorphisms

H∞
k (U)∼= Hk(U,R).

In other words, every singular k-cycle is homologous to a smooth singular k-cycle and if two
smooth singular k-cycles are homologous as standard singular k-cycles, they are also smoothly
homologous, i.e. they are homologous as smooth singular k-cycles. We are now ready to defined a
linear map

τdR : Hk
dR(U)→ Hk(U,R)∗.
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So let ω ∈Ωk(U) be a closed differential k-form, and let [c] ∈ Hk(U,R) be a singular k-homology
class. We can choose a smooth representative c̃ ∈C∞

k (U,R) in [c]. This means that c̃ is a formal
linear combination of smooth singular k-simplexes with real coefficients:

c̃ = ∑
i

aisi, si : ∆k→ R.

Now define

ω̄[c] := ∑
i

ai

∫
∆k

s∗i ω,

the latter integral being just the usual integral of a differential k-form on a measurable domain in a
(oriented) hypersurface of Rk+1. One can prove using the (higher dimensional) Stokes Theorem
that the real number ω̄[c] does only depend on the cohomology class of ω and the homology class
of c. Moreover ω̄ is clearly a linear map. So we get a well defined map

τdR : Hk
dR(U,R)→ Hk(U,R)∗, [ω] 7→ τdR[ω] := ω̄,

and one can show that this is an isomorphism concluding the proof. ■
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