

A tail-sensitive generalization of Spearman's coefficient for upper-tail dependence analysis

Miguel Angel Sordo-Díaz

Dpto. Estadística e Investigación Operativa, Universidad de Cádiz, Spain

Quantifying dependence during extreme events is of paramount importance in fields such as finance, insurance, and environmental sciences. Classical correlation measures often fail to capture co-movements in the tails of distributions. Tail dependence measures — particularly those derived from copula theory — provide a natural framework for modeling such behavior. In this paper, we introduce two classes of copula-based dependence measures designed to assess tail dependence at sub-asymptotic levels. The first class includes, as special cases, Spearman's coefficient and Blest's index, while the second arises as a limiting case of the first. Our approach generalizes Spearman's coefficient to focus explicitly on tail behavior, offering a flexible and interpretable tool for evaluating co-movements in extreme, yet non-asymptotic, regions of the distribution. For both classes, we establish theoretical properties, propose rank-based estimators, derive their asymptotic distributions, and demonstrate their performance through simulation studies and an empirical application.